Symbiotic Associations Between Termites and Prokaryotes

  • Andreas Brune


The symbiotic associations of termites with microorganisms comprise different levels of interaction, ranging from the extracorporal cultivation of fungus gardens to the most intimate associations, where bacteria reside intracellularly in dedicated bacteriocytes. However, the majority of prokaryotic symbionts of termites are located in the intestinal tract, where they are free-swimming, attached to the gut epithelium, or associated with the intestinal protozoa (Fig. 1). Although it is suggestive that the gut microbiota of termites is directly or indirectly involved in the digestion of lignocellulose or has other nutritional implications, the exact nature of the associations and possible benefits for the partners of each particular symbiosis are often far from clear. Therefore, this chapter will use the term “symbiosis” in its broader sense, as originally defined by Anton de Bary (de Bary, 1878). A definitive classification of the associations into the different categories...


Clone Library Hydrogen Partial Pressure Termite Species Intestinal Protozoan High Termite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Aanen, D. K., P. Eggleton, C. Rouland-Lefevre, T. Guldberg-Froslev, S. Rosendahl, and J. J. Boomsma. 2002 The evolution of fungus-growing termites and their mutualistic fungal symbionts Proc. Natl. Acad. Sci. USA 99 14887–14892PubMedCrossRefGoogle Scholar
  2. Abo-Khatwa, N. 1978 Cellulase of fungus-growing termites: A new hypothesis on its origin Experientia 34 559–60CrossRefGoogle Scholar
  3. Amburgey, T. L., G. N. Johnson, and J. L. Etheridge. 1980 A method to mass-produce decayed-wood termite bait blocks J. Georgia Entomol. Soc. 16 112–115Google Scholar
  4. Anklin-Mühlemann, R., D. E. Bignell, P. C. Veivers, R. H. Leuthold, and M. Slaytor. 1995 Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus J. Insect Physiol. 41 929–940CrossRefGoogle Scholar
  5. Bakalidou, A., P. Kämpfer, M. Berchtold, T. Kuhnigk, M. Wenzel, and H. König. 2002 Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis Int. J. System. Evol. Microbiol. 52 1185–1192CrossRefGoogle Scholar
  6. Bandi, C., M. Sironi, G. Damiani, L. Magrassi, C. A. Nalepa, U. Laudani, and L. Sacchi. 1995 The establishment of intracellular symbiosis in an ancestor of cockroaches and termites Proc. R. Soc. Lond. Ser. B. Biol. Sci. 259 293–299CrossRefGoogle Scholar
  7. Bandi, C., M. Sironi, C. A. Nalepa, S. Corona, and L. Sacchi. 1997 Phylogenetically distant intracellular symbionts in termites Parassitologia 39 71–75PubMedGoogle Scholar
  8. Bauer, S., A. Tholen, J. Overmann, and A. Brune. 2000 Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood-and soil-feeding termites by molecular and culture-dependent techniques Arch. Microbiol. 173 126–173PubMedCrossRefGoogle Scholar
  9. Béguin, P., and J.-P. Aubert. 1994 The biological degradation of cellulose FEMS Microbiol. Rev. 13 25–58PubMedCrossRefGoogle Scholar
  10. Benemann, J. R. 1973 Nitrogen fixation in termites Science 181 164–165PubMedCrossRefGoogle Scholar
  11. Bentley, B. L. 1984 Nitrogen fixation in termites: Fate of newly fixed nitrogen J. Insect Physiol. 30 653–655CrossRefGoogle Scholar
  12. Berchtold, M., W. Ludwig, and H. Koenig. 1994 16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt FEMS Microbiol. Lett. 123 269–273PubMedCrossRefGoogle Scholar
  13. Berchtold, M., and H. König. 1996 Phylogenetic analysis and in-situ identification of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis System. Appl. Microbiol. 19 66–73CrossRefGoogle Scholar
  14. Berchtold, M., A. Chatzinotas, W. Schönhuber, A. Brune, R. Amann, D. Hahn, and H. König. 1999 Differential enumeration and in situ localization of micro-organisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes Arch. Microbiol. 172 407–416PubMedCrossRefGoogle Scholar
  15. Bermudes, D., D. Chase, and L. Margulis. 1988 Morphology as a basis for taxonomy of large spirochetes symbiotic in wood-eating cockroaches and termites: Pillotina gen. nov., nom. rev.; Pillotina calotermitidis sp. nov., nom. rev.; Diplocalyx gen. nov., nom. rev.; Diplocalyx calotermitidis sp. nov., nom. rev.; Hollandina gen. nov., nom. rev.; Hollandina pterotermitidis sp. nov., nom. rev.; and Clevelandina reticulitermitidis gen. nov., sp. nov Int. J. Syst. Bacteriol. 38 291–302PubMedCrossRefGoogle Scholar
  16. Bignell, D. E., H. Oskarsson, and J. M. Anderson. 1979 Association of actinomycete-like bacteria with soil-feeding termites (Termitidae, Termitinae) Appl. Environ. Microbiol. 37 339–342PubMedGoogle Scholar
  17. Bignell, D. E., and J. M. Anderson. 1980a Determination of pH and oxygen status in the guts of lower and higher termites J. Insect Physiol. 26 183–188CrossRefGoogle Scholar
  18. Bignell, D. E., H. Oskarsson, and J. M. Anderson. 1980b Distribution and abundance of bacteria in the gut of a soil-feeding termite Procubitermes aburiensis (Termitidae, Termitinae) J. Gen. Microbiol. 117 393–403PubMedGoogle Scholar
  19. Bignell, D. E., H. Oskarsson, and J. M. Anderson. 1980c Specialization of the hindgut wall for the attachment of symbiotic microorganisms in a termite Procubitermes aburiensis Zoomorphology 96 103–112CrossRefGoogle Scholar
  20. Bignell, D. E., H. Oskarsson, J. M. Anderson, P. Ineson, and T. G. Wood. 1983 Structure, microbial associations and function of the so-called “mixed segment” of the gut in two soil-feeding termites, Procubitermes aburiensis and Cubitermes severus (Termitidae, Termitinae) J. Zool. Lond. 201 445–480CrossRefGoogle Scholar
  21. Bignell, D. E. 1984 The arthropod gut as an environment for microorganisms In: J. M. Anderson, A. D. M. Rayner, and D. W. H. Walton (Eds.) Invertebrate-microbial Interactions Cambridge University Press Cambridge, UK 205–227Google Scholar
  22. Bignell, D. E., J. M. Anderson, and R. Crosse. 1991 Isolation of facultatively aerobic actinomycetes from the gut, parent soil and mound materials of the termites Procubitermes aburiensis and Cubitermes severus FEMS Microbiol. Ecol. 85 151–160Google Scholar
  23. Bignell, D. E. 1994a Soil-feeding and gut morphology in higher termites In: J. H. Hunt and C. A. Nalepa (Eds.) Nourishment and Evolution in Insect Societies Westview Press Boulder, CO 131–158Google Scholar
  24. Bignell, D. E., M. Slaytor, P. C. Veivers, R. Mühlemann, and R. H. Leuthold. 1994b Functions of symbiotic fungus gardens in higher termites of the genus Macrotermes: Evidence against the acquired enzyme hypothesis Acta Microbiol. Immunol. Hung. 41 391–401PubMedGoogle Scholar
  25. Bignell, D. E., and P. Eggleton. 1995 On the elevated intestinal pH of higher termites (Isoptera: Termitidae) Insect. Soc. 42 57–69CrossRefGoogle Scholar
  26. Bignell, D. E., P. Eggleton, L. Nunes, and K. L. Thomas. 1997 Termites as mediators of carbon fluxes in tropical forests: Budgets for carbon dioxide and methane emissions In: A. B. Watt, N. E. Stork, and M. D. Hunter (Eds.) Forests and Insects Chapman and Hall London, UK 109–134Google Scholar
  27. Bignell, D. E. 2000 Introduction to Symbiosis In: T. Abe, D. E. Bignell, and M. Higashi (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 189–208Google Scholar
  28. Bloodgood, R. A., K. R. Miller, T. P. Fitzharris, and J. R. Mcintosh. 1974 The ultrastructure of Pyrsonympha and its associated microorganisms J. Morphol. 143 77–106CrossRefGoogle Scholar
  29. Bloodgood, R. A., and T. P. Fitzharris. 1976 Specific association of prokaryotes with symbiotic flagellate protozoa from the hindgut of the termite Reticulitermes and the wood-eating roach, Cryptocercus Cytobios 17 103–122PubMedGoogle Scholar
  30. Boga, H. I., and A. Brune. 2003a Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts Appl. Environ. Microbiol. 69 779–786PubMedCrossRefGoogle Scholar
  31. Boga, H. I., W. Ludwig, and A. Brune. 2003b Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite Int. J. System. Evol. Microbiol. 53 1397–1404CrossRefGoogle Scholar
  32. Brauman, A., J. F. Koenig, J. Dutreix, and J. L. Garcia. 1990a Characterization of two sulfate-reducing bacteria from the gut of the soil-feeding termite, Cubitermes speciosus Ant. v. Leeuwenhoek 58 271–275CrossRefGoogle Scholar
  33. Brauman, A., M. Labat, and J. L. Garcia. 1990b Preliminary studies on the gut microbiota of the soil-feeding termite: Cubitermes speciosus In: R. Lésel (Ed.) Microbiology in Poecilotherms Elsevier Amsterdam, The Netherlands 73–77Google Scholar
  34. Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak. 1992 Genesis of acetate and methane by gut bacteria of nutritionally diverse termites Science 257 1384–1387PubMedCrossRefGoogle Scholar
  35. Brauman, A., J. A. Müller, J. L. Garcia, A. Brune, and B. Schink. 1998 Fermentative degradation of 3-hydroxybenzoate in pure culture by a novel strictly anaerobic bacterium, Sporotomaculum hydroxybenzoicum gen. nov., sp. nov Int. J. System. Bacteriol. 48 215–221CrossRefGoogle Scholar
  36. Brauman, A., D. E. Bignell, and I. Tayasu. 2000 Soil-feeding termites: Biology, microbial associations and digestive mechanisms In: T. Abe, D. E. Bignell, and M. Higashi (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 233–259Google Scholar
  37. Brauman, A., J. Dore, P. Eggleton, D. Bignell, J. A. Breznak, and M. D. Kane. 2001 Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits FEMS Microbiol. Ecol. 35 27–36PubMedCrossRefGoogle Scholar
  38. Brennan, Y., W. N. Callen, L. Christoffersen, P. Dupree, F. Goubet, S. Healey, M. Hernandez, M. Keller, K. Li, N. Palackal, A. Sittenfeld, G. Tamayo, S. Wells, G. P. Hazlewood, E. J. Mathur, J. M. Short, D. E. Robertson, and B. A. Steer. 2004 Unusual microbial xylanases from insect guts Appl. Environ. Microbiol. 70 3609–3617PubMedCrossRefGoogle Scholar
  39. Breznak, J. A., W. J. Brill, J. W. Mertins, and H. C. Coppel. 1973 Nitrogen fixation in termites Nature 244 577–580PubMedCrossRefGoogle Scholar
  40. Breznak, J. A. 1975 Symbiotic relationships between termites and their intestinal microbiota Symp. Soc. Exp. Biol. 29 559–580PubMedGoogle Scholar
  41. Breznak, J. A., and H. S. Pankratz. 1977 In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]; Appl. Environ. Microbiol. 33 406–426PubMedGoogle Scholar
  42. Breznak, J. A. 1984a Hindgut spirochetes of termites and Cryptocercus punctulatus In: N. R. Krieg and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 1 67–70Google Scholar
  43. Breznak, J. A., and J. M. Switzer. 1986 Acetate synthesis from H2 plus CO2 by termite gut microbes Appl. Environ. Microbiol. 52 623–630PubMedGoogle Scholar
  44. Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988 Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites Arch. Microbiol. 150 282–288CrossRefGoogle Scholar
  45. Breznak, J. A., and M. D. Kane. 1990 Microbial H2/CO2 acetogenesis in animal guts: Nature and nutritional significance FEMS Microbiol. Rev. 87 309–314CrossRefGoogle Scholar
  46. Breznak, J. A., and J. Switzer Blum. 1991 Mixotrophy in the termite gut acetogen, Sporomusa termitida Arch. Microbiol. 156 105–110CrossRefGoogle Scholar
  47. Breznak, J. A. 1994a Acetogenesis from carbon dioxide in termite guts In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 303–330CrossRefGoogle Scholar
  48. Breznak, J. A., and A. Brune. 1994b Role of microorganisms in the digestion of lignocellulose by termites Ann. Rev. Entomol. 39 453–487CrossRefGoogle Scholar
  49. Breznak, J. A. 2000 Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites In: T. Abe, D. E. Bignell, and M. Higashi (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 209–231Google Scholar
  50. Breznak, J. A. 2002 Phylogenetic diversity and physiology of termite gut spirochetes Integr. Comp. Biol. 42 313–318PubMedCrossRefGoogle Scholar
  51. Breznak, J. A. 2004 Invertebrates—Insects In: A. T. Bull (Ed.) Microbial Biodiversity and Bioprospecting ASM Press Washington, DC 191–203Google Scholar
  52. Brune, A., D. Emerson, and J. A. Breznak. 1995a The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites Appl. Environ. Microbiol. 61 2681–2687PubMedGoogle Scholar
  53. Brune, A., E. Miambi, and J. A. Breznak. 1995b Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites Appl. Environ. Microbiol. 61 2688–2695PubMedGoogle Scholar
  54. Brune, A., and M. Kühl. 1996 pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes J. Insect Physiol. 42 1121–1127CrossRefGoogle Scholar
  55. Brune, A. 1998 Termite guts: The world’s smallest bioreactors Trends Biotechnol. 16 16–21CrossRefGoogle Scholar
  56. Brune, A., and M. Friedrich. 2000a Microecology of the termite gut: Structure and function on a microscale Curr. Opin. Microbiol. 3 263–269PubMedCrossRefGoogle Scholar
  57. Brune, A., P. Frenzel, and H. Cypionka. 2000b Life at the oxic-anoxic interface: Microbial activities and adaptations FEMS Microbiol. Rev. 24 691–710PubMedGoogle Scholar
  58. Brune, A., W. Ludwig, and B. Schink. 2002 Propionivibrio limicola sp. nov., a fermentative bacterium specialized in the degradation of hydroaromatic compounds, reclassification of Propionibacter pelophilus as Propionivibrio pelophilus comb. nov. and amended description of the genus Propionivibrio Int. J. System. Evol. Microbiol. 52 441–444Google Scholar
  59. Brune, A. 2003 Symbionts aiding digestion In: V. H. Resh and R. T. Cardé (Eds.) Encyclopedia of Insects Academic Press New York, NY 1102–1107Google Scholar
  60. Brune, A., and U. Stingl. 2005 Prokaryotic symbionts of termite gut flagellates: Phylogenetic and metabolic implications of a tripartite symbiosis In: J. Overmann (Ed.) Molecular Basis of Symbiosis Springer-Verlag New York, NYGoogle Scholar
  61. Cazemier A. E., J. C. Verdoes, F. A. G. Reubsaet, J. H. P. Hackstein, C. van der Drift, and H. J. M. Op den Camp. 2003 Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata Ant. v. Leeuwenhoek 83 135–148CrossRefGoogle Scholar
  62. Cleveland, L. R. 1925a The effects of oxygenation and starvation on the symbiosis between the termite, Termopsis, and its intestinal flagellates Biol. Bull. 48 309–327CrossRefGoogle Scholar
  63. Cleveland, L. R. 1925b Toxicity of oxygen for protozoa in vivo and in vitro: Animals defaunated without injury Biol. Bull. 48 455–468CrossRefGoogle Scholar
  64. Cleveland, L. R. 1926 Symbiosis among animals with special reference to termites and their intestinal flagellates Quart. Rev. Biol. 1 51–64CrossRefGoogle Scholar
  65. Cleveland, L. R., and A. V. Grimstone. 1964 The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms Proc. R. Soc. Lond. Ser. B. Biol. Sci. 159 668–686CrossRefGoogle Scholar
  66. Collins, N. M. 1983 The utilization of nitrogen resources by termites (Isoptera) In: J. A. Lee, S. McNeill, and I. C. H. Rorison (Eds.) Nitrogen as an Ecological Factor Blackwell Scientific Publications Oxford, UK 381–412Google Scholar
  67. Collins, M. D., and H. N. Shah. 1986 Reclassification of Bacteroides termitidis Sebald (Holdeman and Moore) in a new genus Sebaldella, as Sebaldella termitidis comb. nov Int. J. System. Bacteriol. 36 349–350CrossRefGoogle Scholar
  68. Cook, S. F. 1932 The respiratory gas exchange in Termopsis nevadensis Biol. Bull. 63 246–257CrossRefGoogle Scholar
  69. Cook, S. F. 1943 Nonsymbiotic utilization of carbohydrates by the termite Zootermopsis angusticollis Physiol. Zool. 16 123–128Google Scholar
  70. Cook, T. J., and R. E. Gold. 2000 Effects of different cellulose sources on the structure of the hindgut flagellate community in Reticulitermes virginicus (Isoptera: Rhinotermitidae) Sociobiology 35 119–130Google Scholar
  71. Cord-Ruwisch, R., H. J. Seitz, and R. Conrad. 1988 The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor Arch. Microbiol. 149 350–357CrossRefGoogle Scholar
  72. Cornelius, M. L., D. J. Daigle, W. J. Connick Jr., A. Parker, and K. Wunch. 2002 Responses of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae) to three types of wood rot fungi cultured on different substrates J. Econ. Entomol. 95 121–128PubMedCrossRefGoogle Scholar
  73. Crosland, M. W. J., L. K. Chan, and J. A. Buswell. 1996 Symbiotic fungus and enzymatic digestion in the gut of the termite, Macrotermes barneyi (Light) (Isoptera: Termitidae) J. Entomol. Sci. 31 132–137Google Scholar
  74. Curtis, A. D., and D. A. Waller. 1995 Changes in nitrogen fixation rates in termites (Isoptera: Rhinotermitidae) maintained in the laboratory Ann. Entomol. Soc. Am. USA 88 764–767Google Scholar
  75. Curtis, A. D., and D. A. Waller. 1996 The effects of decreased pO2 and increased pCO2 on nitrogen fixation rates in termites (Isoptera: Rhinotermitidae) J. Insect Physiol. 42 867–872CrossRefGoogle Scholar
  76. Curtis, A. D., and D. A. Waller. 1998 Seasonal patterns of nitrogen fixation in termites Funct. Ecol. 12 803–807CrossRefGoogle Scholar
  77. Cypionka, H. 2000 Oxygen respiration by Desulfovibrio species Ann. Rev. Microbiol. 54 827–848CrossRefGoogle Scholar
  78. Czolij, R., M. Slaytor, P. C. Veivers, and R. W. O’Brien. 1984 Gut morphology of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae) Int. J. Insect Morphol. Embryol. 13 337–355CrossRefGoogle Scholar
  79. Czolij, R., M. Slaytor, and R. W. O’Brien. 1985 Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nasutitermitinae) Appl. Environ. Microbiol. 49 1226–1236Google Scholar
  80. d’Ambrosio, U., M. Dolan, A. M. Wier, and L. Margulis. 1999 Devescovinid trichomonad with axostyle-based rotary motor (“Rubberneckia”): Taxonomic assignment as Caduceia versatilis sp. nov Eur. J. Protistol. 35 327–337PubMedCrossRefGoogle Scholar
  81. Darlington, J. P. E. C. 1994 Nutrition and evolution in fungus-growing termites In: J. H. Hunt and C. A. Nalepa (Eds.) Nourishment and Evolution in Insect Societies Westview Press Boulder, CO 105–130Google Scholar
  82. Davison, A., and M. Blaxter. 2005 Ancient Origin of Glycosyl Hydrolase Family 9 Cellulase Genes Mol. Biol. Evol. 22 1273–1284PubMedCrossRefGoogle Scholar
  83. de Bary, A. 1878 Ueber Symbiose Bericht der Versammlung Deutscher Naturforscher und Aerzte 121–126Google Scholar
  84. Derakshani, M., L. Lukow, and W. Liesack. 2001 Novel bacterial lineages at the (sub)division level as detected by signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms Appl. Environ. Microbiol. 67 623–631PubMedCrossRefGoogle Scholar
  85. Dolan, M., and L. Margulis. 1997 Staurojoenia and other symbionts in Neotermes from San Salvador Island, Bahamas Symbiosis 22 229–239PubMedGoogle Scholar
  86. Dolan, M. F. 2001 Speciation of termite gut protists: The role of bacterial symbionts Int. Microbiol. 4 203–208PubMedCrossRefGoogle Scholar
  87. Donovan, S. E., P. Eggleton, and D. E. Bignell. 2001 Gut content analysis and a new feeding group classification of termites Ecol. Entomol. 26 356–366CrossRefGoogle Scholar
  88. Donovan, S. E., K. J. Purdy, M. D. Kane, and P. Eggleton. 2004 Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types Appl. Environ. Microbiol 70 3884–3892PubMedCrossRefGoogle Scholar
  89. Ebert, A., and A. Brune. 1997 Hydrogen concentration profiles at the oxic-anoxic interface: A microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar) Appl. Environ. Microbiol. 63 4039–4046PubMedGoogle Scholar
  90. Eutick, M. L., R. W. O’Brien, and M. Slaytor. 1976 Aerobic state of gut of Nasutitermes exitiosus and Coptotermes lacteus, high and low caste termites J. Insect Physiol. 22 1377–1380CrossRefGoogle Scholar
  91. Eutick, M. L., R. W. O’Brien, and M. Slaytor. 1978a Bacteria from the gut of Australian termites Appl. Environ. Microbiol. 35 823–828PubMedGoogle Scholar
  92. Eutick, M. L., P. C. Veivers, R. W. O’Brien, and M. Slaytor. 1978b Dependence of the higher termite Nasutitermes exitiosus and the lower termite Coptotermes lacteus on their gut flora J. Insect Physiol. 24 363–368CrossRefGoogle Scholar
  93. French, J. R. J., G. L. Turner, and J. F. Bradbury. 1976 Nitrogen fixation by bacteria from the hindgut of termites J. Gen. Microbiol. 95 202–206CrossRefGoogle Scholar
  94. Friedrich, M. W., D. Schmitt-Wagner, T. Lueders, and A. Brune. 2001 Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus Appl. Environ. Microbiol. 67 4880–4890PubMedCrossRefGoogle Scholar
  95. Fröhlich, J., and H. König. 1999a Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator System. Appl. Microbiol. 22 249–257CrossRefGoogle Scholar
  96. Fröhlich, J., H. Sass, H.-D. Babenzien, T. Kuhnigk, A. Varma, S. Saxena, C. Nalepa, P. Pfeiffer, and H. König. 1999b Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis Can. J. Microbiol. 45 145–152PubMedGoogle Scholar
  97. Fujita, A., I. Shimizu, and T. Abe. 2001 Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe): Possible digestion of symbiont bacteria transferred by trophallaxis Physiol. Entomol. 26 116–123CrossRefGoogle Scholar
  98. Fujita, A., and T. Abe. 2002a Amino acid concentration and distribution of lysozyme and protease activities in the guts of higher termites Physiol. Entomol. 27 76–78CrossRefGoogle Scholar
  99. Fujita, A., T. Minamoto, I. Shimizu, and T. Abe. 2002b Molecular cloning of lysozyme-encoding cDNAs expressed in the salivary gland of a wood-feeding termite, Reticulitermes speratus Insect Biochem. Molec. Biol. 32 1615–1624CrossRefGoogle Scholar
  100. Fujita, A. 2004 Lysozymes in insects: what role do they play in nitrogen metabolism? Physiol. Entomol 299 305–310CrossRefGoogle Scholar
  101. Graber, J. R., and J. A. Breznak. 2004a Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts Appl. Environ. Microbiol. 70 1307–1314PubMedCrossRefGoogle Scholar
  102. Graber, J. R., J. R. Leadbetter, and J. A. Breznak. 2004b Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts Appl. Environ. Microbiol. 70 1307–1314PubMedCrossRefGoogle Scholar
  103. Graber, J. R., and J. A. Breznak. 2005 Folate cross-feeding supports symbiotic homoacetogenic spirochetes Appl. Environ. Microbiol 71 1883–1889PubMedCrossRefGoogle Scholar
  104. Grandi, G., L. Guidi, and M. Chicca. 1997 Endonuclear bacterial symbionts in two termite species: An ultrastructural study J. Submicrosc. Cytol. Pathol. 29 281–292Google Scholar
  105. Grassé, P.-P., and C. Noirot. 1958 Le meule des termites champignonnistes et sa signification symbiotique Ann. Sci. Nat. Ser. 11, Zool. Biol. Animale 11 113–128Google Scholar
  106. Grech-Mora, I., M.-L. Fardeau, B. K. C. Patel, B. Ollivier, A. Rimbault, G. Prensier, G., J.-L. Garcia, and E. Garnier-Sillam. 1996 Isolation and characterization of Sporobacter termitidis gen. nov., sp. nov., from the digestive tract of the wood-feeding termite Nasutitermes lujae Int. J. Syst. Bacteriol. 46 512–518CrossRefGoogle Scholar
  107. Guo, L., D. R. Quicili, J. Chase, and G. J. Blomquist. 1991 Gut tract microorganisms supply the precursors for methyl-branched hydrocarbon biosynthesis in the termite, Zootermopsis nevadensis Insect Biochem. 21 327–333CrossRefGoogle Scholar
  108. Harazono, K., N. Yamashita, N. Shinzato, Y. Watanabe, T. Fukatsu, and R. Kurane. 2003 Isolation and characterization of aromatics-degrading microorganisms from the gut of the lower termite Coptotermes formosanus Biosci. Biotechnol. Biochem. 67 889–892PubMedCrossRefGoogle Scholar
  109. Hethener, P., A. Brauman, and J. L. Garcia. 1992 Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut of the wood-feeding termite, Nasutitermes lujae System. Appl. Microbiol. 5 52–58CrossRefGoogle Scholar
  110. Higashi, M., T. Abe, and T. P. Burns. 1992 Carbon-nitrogen balance and termite ecology Proc. R. Soc. Lond. Ser. B. Biol. Sci. 249 303–308CrossRefGoogle Scholar
  111. Hirai, H., N. Shinzato, A. Nakagawa, Y. Watanabe, and R. Kurane. 2000 Degradation of lignin model compounds by various termites [in Japanese]; Mokuzai Gakkaishi 46 63–67Google Scholar
  112. Hollande A., and J. Valentin. 1969 Appareil de Golgi, pinocytose, lysosomes, mitochondries, bactéries symbiontiques, atractophores et pleuromitose chez les Hypermastigines du genre Joenia: Affinités entre Joenidae et Trichomonadines Protistologica 5 39–86Google Scholar
  113. Hongoh, Y., M. Ohkuma, and T. Kudo. 2003a Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae) FEMS Microbiol. Ecol. 44 231–242PubMedCrossRefGoogle Scholar
  114. Hongoh Y., H. Yuzawa, M. Ohkuma, and T. Kudo. 2003b Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment FEMS Microbiol. Lett. 221 299–304PubMedCrossRefGoogle Scholar
  115. Honigberg, B. M. 1970 Protozoa associated with termites and their role in digestion In: K. Krishna and F. M. Weesner (Eds.) Biology of Termites Academic Press New York, NY 2 1–36Google Scholar
  116. Hopkins, D. W., J. A. Chudek, D. E. Bignell, J. Frouz, E. A. Webster, and T. Lawson. 1998 Application of 13C NMR to investigate the transformations and biodegradation of organic materials by wood-and soil-feeding termites, and a coprophagous litter-dwelling dipteran larva Biodegradation 9 423–431PubMedCrossRefGoogle Scholar
  117. Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998 Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity J. Bacteriol. 180 4765–4774PubMedGoogle Scholar
  118. Hungate, R. E. 1939 Experiments on the nutrition of Zootermopsis. III: The anaerobic carbohydrate dissimilation by the intestinal protozoa Ecology 20 230–245CrossRefGoogle Scholar
  119. Hungate, R. E. 1943 Quantitative analyses of the cellulose fermentation by termite protozoa Ann. Entomol. Soc. Am. 36 730–739Google Scholar
  120. Hungate, R. E. 1946 Studies on cellulose fermentation. II: An anaerobic cellulose-decomposing actinomycete, Micromonospora propionici, n. sp J. Bacteriol. 51 51–56Google Scholar
  121. Hungate, R. E. 1955 Mutualistic intestinal protozoa In: S. H. Hutner and A. Lwoff (Eds.) Biochemistry and Physiology of Protozoa Academic Press New York, NY 2 159–199Google Scholar
  122. Hyodo F., J. Azuma, and T. Abe. 1999 Estimation of effect of passage through the gut of a lower termite, Coptotermes formosanus Shiraki, on lignin by solid-state CP MAS 13C-NMR Holzforschung 53 244–246CrossRefGoogle Scholar
  123. Hyodo F., T. Inoue, J. I. Azuma, I. Tayasu, and T. Abe. 2000 Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera: Macrotermitinae) Soil Biol. Biochem. 32 653–658CrossRefGoogle Scholar
  124. Iida, T., M. Ohkuma, K. Ohtoko, and T. Kudo. 2000 Symbiotic spirochetes in the termite hindgut: Phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists FEMS Microbiol. Ecol. 34 17–26PubMedCrossRefGoogle Scholar
  125. Inoue, T., K. Murashima, J.-I. Azuma, A. Sugimoto, and M. Slaytor. 1997 Cellulose and xylan utilization in the lower termite Reticulitermes speratus J. Insect Physiol. 43 235–242PubMedCrossRefGoogle Scholar
  126. Inoue, T., O. Kitade, T. Yoshimura, and I. Yamaoka. 2000 Symbiotic associations with protists In: T. Abe, D. E. Bignell, and M. Higashi (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 275–288Google Scholar
  127. Inoue, T., S. Moriya, M. Ohkuma, and T. Kudo. 2005 Molecular cloning and charactrization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus Gene 349 67–75PubMedCrossRefGoogle Scholar
  128. Itakura, S., H. Tanaka, and A. Enoki. 1999 Occurrence and metabolic role of the pyruvate dehydrogenase complex in the lower termite Coptotermes formosanus (Shiraki) Insect Biochem. Molec. Biol. 29 625–633CrossRefGoogle Scholar
  129. Itakura, S., H. Tanaka, A. Enoki, D. J. Chappell, and M. Slaytor. 2003 Pyruvate and acetate metabolism in termite mitochondria J. Insect Physiol. 49 917–926PubMedCrossRefGoogle Scholar
  130. Jeffries, T. W. 1994 Biodegradation of lignin and hemicelluloses In: C. Ratledge (Ed.) Biochemistry of Microbial Degradation Kluwer Academic Publishers Dordrecht, The Netherlands 233–277CrossRefGoogle Scholar
  131. Ji, R., A. Kappler, and A. Brune. 2000 Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites Soil Biol. Biochem. 32 1281–1291CrossRefGoogle Scholar
  132. Ji, R., and A. Brune. 2001 Transformation and mineralization of 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes orthognatus Biol. Fertil. Soils 33 166–174CrossRefGoogle Scholar
  133. Ji, R., and A. Brune. 2005 Digestion of peptidic residues in humic substances by an alkali-stable and humic-acidtolerant proteolytic activity in the gut of soil-feeding termites Soil. Biol. Biochem 37 1648–1655CrossRefGoogle Scholar
  134. Johjima, T., M. Ohkuma, and T. Kudo. 2003 Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus Appl. Microbiol. Biotechnol 61 220–225PubMedGoogle Scholar
  135. Kambhampati, S., and P. Eggleton. 2000 Taxonomy and phylogenetics of Isoptera In: T. Abe, D. E. Bignell, and M. Higashi (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 1–23Google Scholar
  136. Kane, M. D., and J. A. Breznak. 1991a Acetonema longum gen. nov. sp.nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis Arch. Microbiol. 156 91–98PubMedCrossRefGoogle Scholar
  137. Kane, M. D., A. Brauman, and J. A. Breznak. 1991b Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus Arch. Microbiol. 156 99–104CrossRefGoogle Scholar
  138. Kane, M. D. 1997 Microbial fermentation in insect guts In: R. I. Mackie and B. A. White (Eds.) Gastrointestinal Microbiology Chapman and Hall New York, NY 1 231–265CrossRefGoogle Scholar
  139. Kappler, A., and A. Brune. 1999 Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites Appl. Soil Ecol. 13 219–229CrossRefGoogle Scholar
  140. Kappler A., and A. Brune. 2002 Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites (Cubitermes spp.) Soil Biol. Biochem. 34 221–227CrossRefGoogle Scholar
  141. Katoh, H., T. Miura, K. Maekawa, N. Shinzato, and T. Matsumoto. 2002 Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago Molec. Ecol. 11 1565–1572CrossRefGoogle Scholar
  142. Katzin, L. I., and H. Kirby. 1939 The relative weight of termites and their protozoa J. Parasitol. 25 444–445CrossRefGoogle Scholar
  143. Koidzumi, M. 1921 Studies on the intestinal protozoa found in the termites of Japan Parasitology 13 235–305CrossRefGoogle Scholar
  144. Kovoor, J. 1967 Le pH intestinal d’un termite supérieur, Microcerotermes edentatus (Was., Amitermitinae) Insect. Soc. 14 157–160CrossRefGoogle Scholar
  145. Kovoor, J. 1968 L’intestin d’un termite supérieur (Microcerotermes edentatus, Wasman, Amitermitinae). Histophysiologie et flore bacterienne symbiotique Bull. Biol. Fr. Belg. 102 45–84Google Scholar
  146. Kudo, T., M. Ohkuma, S. Moriya, S. Noda, and K. Ohtoko. 1998 Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation Extremophiles 2 155–161PubMedCrossRefGoogle Scholar
  147. Kuhnigk, T., E.-M. Borst, A. Ritter, P. Kämpfer, A. Graf, H. Hertel, and H. König. 1994 Degradation of lignin monomers by the hindgut flora of xylophagous termites System. Appl. Microbiol. 17 76–85CrossRefGoogle Scholar
  148. Kuhnigk, T., E.-M. Borst, and A. Breunig. 1995 Bacillus oleronius sp. nov., a member of the hindgut flora of the termite Reticulitermes santonensis (Feytaud) Can. J. Microbiol. 41 699–706PubMedCrossRefGoogle Scholar
  149. Kuhnigk, T., J. Branke, D. Krekeler, H. Cypionka, and H. König. 1996 A feasible role of sulfate-reducing bacteria in the termite gut System. Appl. Microbiol. 19 139–149CrossRefGoogle Scholar
  150. Kuhnigk, T., and H. König. 1997 Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites J. Basic Microbiol. 37 205–211PubMedCrossRefGoogle Scholar
  151. La Fage, J. P., and W. L. Nutting. 1978 Nutrient dynamics of termites In: M. V. Brian (Ed.) Production Ecology of Ants and Termites Cambridge University Press Cambridge, UK 165–232Google Scholar
  152. Leadbetter, J. R., and J. A. Breznak. 1996 Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes Appl. Environ. Microbiol. 62 3620–3631PubMedGoogle Scholar
  153. Leadbetter, J. R., L. D. Crosby, and J. A. Breznak. 1998 Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts Arch. Microbiol. 169 287–292PubMedCrossRefGoogle Scholar
  154. Leadbetter, J. R., T. M. Schmidt, J. R. Graber, and J. A. Breznak. 1999 Acetogenesis from H2 plus CO2 by spirochetes from termite guts Science 283 686–689PubMedCrossRefGoogle Scholar
  155. Leander, B. S., and P. J. Keeling. 2004 Symbiotic innovation in the oxymonad Streblomastix strix J. Euk. Microbiol 51 291–300PubMedCrossRefGoogle Scholar
  156. Leaphart, A. B., and C. R. Lovell. 2001 Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria Appl. Environ. Microbiol. 67 1392–1395PubMedCrossRefGoogle Scholar
  157. Leaphart, A. B., M. J. Friez, and C. R. Lovell. 2003 Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups Appl. Environ. Microbiol. 69 693–696PubMedCrossRefGoogle Scholar
  158. Lee, M. J., P. J. Schreurs, A. C. Messer, and S. H. Zinder. 1987 Association of methanogenic bacteria with flagellated protozoa from a termite hindgut Curr. Microbiol. 15 337–341CrossRefGoogle Scholar
  159. Leidy, J. 1849 [no title]; Proc. Acad. Nat. Sci. (Phila.) 4 225–233Google Scholar
  160. Leidy, J. 1881 The parasites of the termites J. Acad. Nat. Sci. (Phila.), 2nd Ser. 8 425–447Google Scholar
  161. Lemke T., T. van Alen, J. H. P. Hackstein, and A. Brune. 2001 Cross-epithelial hydrogen transfer from the midgut compartment drives methanogenesis in the hindgut of cockroaches Appl. Environ. Microbiol. 67 4657–4661PubMedCrossRefGoogle Scholar
  162. Li, L., J. Fröhlich, P. Pfeiffer, and H. König. 2003 Termite gut symbiotic archaezoa are becoming living metabolic fossils Eukar. Cell 2 1091–1098CrossRefGoogle Scholar
  163. Lilburn, T. G., T. M. Schmidt, and J. A. Breznak. 1999 Phylogenetic diversity of termite gut spirochaetes Environ. Microbiol. 1 331–345PubMedCrossRefGoogle Scholar
  164. Lilburn, T. G., K. S. Kim, N. E. Ostrom, K. R. Byzek, J. R. Leadbetter, and J. A. Breznak. 2001 Nitrogen fixation by symbiotic and free-living spirochetes Science 292 2495–2498PubMedCrossRefGoogle Scholar
  165. Lo, N., C. Bandi, H. Watanabe, C. Nalepa, and T. Beninati. 2003a Evidence for co-cladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts Molec. Biol. Evol. 20 907–913PubMedCrossRefGoogle Scholar
  166. Lo, N., H. Watanabe, and M. Sugimura. 2003b Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals Proc. R. Soc. Lond. Ser. B. Biol. Sci. 270, Suppl. 1 S69–S72CrossRefGoogle Scholar
  167. Lysenko, O. 1985 Non-sporeforming bacteria pathogenic to insects: Incidence and mechanisms Ann. Rev. Microbiol. 39 673–695CrossRefGoogle Scholar
  168. Machida, M., O. Kitade, T. Miura, and T. Matsumoto. 2001 Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae) Insect. Soc. 48 52–56CrossRefGoogle Scholar
  169. Mannesmann, R., and B. Piechowski. 1989 Verteilungsmuster von Gärkammerbakterien einiger Termitenarten Mater. Org. 24 161–178Google Scholar
  170. Margulis, L., A. Olendzenski, and B. A. Afzelius. 1990 Endospore-forming filamentous bacteria symbiotic in termites: Ultrastructure and growth in culture of Arthromitus Symbiosis 8 95–116PubMedGoogle Scholar
  171. Margulis, L., J. Z. Jorgensen, S. Dolan, R. Kolchinsky, F. A. Rainey, and S. C. Lo. 1998 The Arthromitus stage of Bacillus cereus: Intestinal symbionts of animals Proc. Natl. Acad. Sci. USA 95 1236–1241PubMedCrossRefGoogle Scholar
  172. Martin, M. M., and J. S. Martin. 1978 Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: The role of acquired digestive enzymes Science 199 1453–1455PubMedCrossRefGoogle Scholar
  173. Martin, M. M., and J. S. Martin. 1979 The distribution and origins of the cellulolytic enzymes of the higher termite, Macrotermes natalensis Physiol. Zool. 52 11–21Google Scholar
  174. Martin, M. M. 1983 Cellulose digestion in insects Comp. Biochem. Physiol. 75A 313–324CrossRefGoogle Scholar
  175. Matoub, M., and C. Rouland. 1995 Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp Comp. Biochem. Physiol. 112B 629–635Google Scholar
  176. Matsuura, K. 2001 Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus Oikos 92 20–26CrossRefGoogle Scholar
  177. McSweeney C. S., A. Dulieu, R. I. Webb, T. Del Dot, and L. L. Blackall. 1999 Isolation and characterization of a Clostridium sp. with cinnamoyl esterase activity and unusual cell envelope ultrastructure Arch. Microbiol. 172 139–149PubMedCrossRefGoogle Scholar
  178. Messer, A. C., and M. J. Lee. 1989 Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis Microb. Ecol. 18 275–284CrossRefGoogle Scholar
  179. Moriya, S., J. B. Dacks, A. Takagi, S. Noda, M. Ohkuma, W. F. Doolittle, and T. Kudo. 2003 Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas J. Eukar. Microbiol. 50 190–197CrossRefGoogle Scholar
  180. Nakashima, K., H. Watanabe, and J.-I. Azuma. 2002a. Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus Cell. Mol. Life. Sci 59 1554–1560PubMedCrossRefGoogle Scholar
  181. Nakashima, K., H. Watanabe, H. Saitoh, G. Tokuda, and J.-I. Azuma. 2002 Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki Insect Biochem. Molec. Biol. 32 777–784CrossRefGoogle Scholar
  182. Nalepa, C. A., D. E. Bignell, and C. Bandi. 2001 Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera Insect. Soc. 48 194–201CrossRefGoogle Scholar
  183. Ndiaye, D., R. Lensi, M. Lepage, and A. Brauman. 2004 The effect of the soil-feeding termite Cubitermes niokoloensis on soil microbial activity in a semi-arid savanna in West Africa Plant Soil 259 277–286CrossRefGoogle Scholar
  184. Noda, S., M. Ohkuma, R. Usami, K. Horikoshi, and T. Kudo. 1999 Culture-independent characterization of a gene responsible for nitrogen fixation in the symbiotic microbial community in the gut of the termite Neotermes koshunensis Appl. Environ. Microbiol. 65 4935–4942PubMedGoogle Scholar
  185. Noda, S., M. Ohkuma, A. Yamada, Y. Hongoh, and T. Kudo. 2003 Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut Appl. Environ. Microbiol. 69 625–633PubMedCrossRefGoogle Scholar
  186. Noirot, C. 1992 From wood-to humus-feeding: An important trend in termite evolution In: J. Billen (Ed.) Biology and Evolution of Social Insects Leuven University Press Leuven, Belgium 107–119Google Scholar
  187. Noirot, C. 1995 The gut of termites (isoptera): Comparative anatomy, systematics, phylogeny. I: Lower termites Ann. Soc. Entomol. Fr. (N.S.) 31 197–226Google Scholar
  188. Noirot, C. 2001 The gut of termites (isoptera). Comparative anatomy, systematics, phylogeny. II: Higher termites (termitidae) Ann. Soc. Entomol. Fr. (N.S.) 37 431–471Google Scholar
  189. O’Brien, R. W., and M. Slaytor. 1982 Role of microorganisms in the metabolism of termites Australian J. Biol. Sci. 35 239–262Google Scholar
  190. O’Brien, R. W., and J. A. Breznak. 1984 Enzymes of acetate and glucose metabolism in termites Insect Biochem. 14 639–643CrossRefGoogle Scholar
  191. Odelson, D. A., and J. A. Breznak. 1983 Volatile fatty acid production by the hindgut microbiota of xylophagous termites Appl. Environ. Microbiol. 45 1602–1613PubMedGoogle Scholar
  192. Odelson, D. A., and J. A. Breznak. 1985a Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites Appl. Environ. Microbiol. 49 622–626PubMedGoogle Scholar
  193. Odelson, D. A., and J. A. Breznak. 1985b Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites Appl. Environ. Microbiol. 49 614–621PubMedGoogle Scholar
  194. Ohtoko K., M. Ohkuma, S. Moriya, T. Inoue, R. Usami, and T. Kudo. 2000 Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus Extremophiles 4 343–349PubMedCrossRefGoogle Scholar
  195. Ohkuma, M., S. Noda, K. Horikoshi, and T. Kudo. 1995 Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus FEMS Microbiol. Lett. 134 45–50PubMedCrossRefGoogle Scholar
  196. Ohkuma, M., and T. Kudo. 1996a Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus Appl. Environ. Microbiol. 62 461–468PubMedGoogle Scholar
  197. Ohkuma, M., S. Noda, R., Usami, K. Horikoshi, and T. Kudo. 1996b Diversity of nitrogen-fixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus Appl. Environ. Microbiol. 62 2747–2752PubMedGoogle Scholar
  198. Ohkuma, M., and T. Kudo. 1998 Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus FEMS Microbiol. Lett. 164 389–395CrossRefGoogle Scholar
  199. Ohkuma, M., T. Iida, and T. Kudo. 1999a Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites FEMS Microbiol. Lett. 181 123–129PubMedCrossRefGoogle Scholar
  200. Ohkuma M., S. Noda, and T. Kudo. 1999b Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites Appl. Environ. Microbiol. 65 4926–4934PubMedGoogle Scholar
  201. Ohkuma, M., S. Noda, and T. Kudo. 1999c Phylogenetic relationships of symbiotic methanogens in diverse termites FEMS Microbiol. Lett. 171 147–153PubMedCrossRefGoogle Scholar
  202. Ohkuma, M. 2002a Symbiosis in the termite gut: Culture-independent molecular approaches In: J. Seckbach (Ed.) Symbiosis: Mechanisms and Model Systems Kluwer Academic Publishers Dordrecht, The Netherlands 717–730Google Scholar
  203. Ohkuma, M., S. Noda, Y. Hongoh, and T. Kudo. 2002b Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites Biosci. Biotechnol. Biochem. 66 78–84PubMedCrossRefGoogle Scholar
  204. Ohkuma, M. 2003 Termite symbiotic systems: Efficient bio-recycling of lignocellulose Appl. Microbiol. Biotechnol. 61 1–9PubMedGoogle Scholar
  205. Ohkuma, M., H. Shimizu, T. Thongaram, S. Kosono, K. Moriya, S. Trakulnaleamsai, N. Noparatnaraporn, and T. Kudo. 2003 An alkaliphilic and xylanolytic Paenibacillus species isolated from the gut of a soil-feeding termite Microb. Environ 18 145–151CrossRefGoogle Scholar
  206. Osbrink, W. L. A., K. S. Williams, W. J. Connick, Jr., M. S. Wright, and A. R. Lax. 2001 Virulence of bacteria associated with the formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, La Environ. Entomol. 30 443–448CrossRefGoogle Scholar
  207. Paster, B. J., W. Ludwig, W. G. Weisburg, E. Stackebrandt, R. B. Hespell, C. M. Hahn, H. Reichenbach, K. O. Stetter, and C. R. Woese. 1985 A phylogenetic grouping of the bacteroides, cytophagas, and certain flavobacteria System. Appl. Microbiol. 6 34–42CrossRefGoogle Scholar
  208. Paster, B. J., F. E. Dewhirst, S. M. Cooke, V. Fussing, L. K. Poulsen, and J. A. Breznak. 1996 Phylogeny of not-yet-cultured spirochetes from termite guts Appl. Environ. Microbiol. 62 347–352PubMedGoogle Scholar
  209. Pasti, M. B., and M. L. Belli. 1985 Cellulolytic activity of actinomycetes isolated from termite (Termitidae) gut FEMS Microbiol. Lett. 26 107–112CrossRefGoogle Scholar
  210. Pasti, M. B., A. L. Pometto III, M. P. Nuti, and D. L. Crawford. 1990 Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut Appl. Environ. Microbiol. 56 2213–2218PubMedGoogle Scholar
  211. Patricolo, E., L. Villa, and M. Arizzi. 2001 TEM observations on symbionts of Joenia annectens (Flagellata Hypermastigida) J. Nat. Hist. 35 471–480CrossRefGoogle Scholar
  212. Paul, J., A. Sarkar, and A. K. Varma. 1986 In vitro studies of cellulose digesting properties of Staphylococcus saprophyticus isolated from termite gut Curr. Sci. 55 710–714Google Scholar
  213. Paul, J., S. Saxena, and A. Varma. 1993 Ultrastructural studies of the termite (Odontotermes obesus) gut microflora and its cellulolytic properties World J. Microbiol. Biotechnol. 9 108–112CrossRefGoogle Scholar
  214. Pierantoni, U. 1936 La simbiosi fisiologica nei termitidi xilophagi e nei loro flagellati intestinali Arch. Zool. Ital. 22 135–173Google Scholar
  215. Potrikus, C. J., and J. A. Breznak. 1977 Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites Appl. Environ. Microbiol. 33 392–399PubMedGoogle Scholar
  216. Potrikus, C. J., and J. A. Breznak. 1980 Anaerobic degradation of uric acid by gut bacteria of termites Appl. Environ. Microbiol. 40 125–132PubMedGoogle Scholar
  217. Potrikus, C. J., and J. A. Breznak. 1981 Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation Proc. Natl. Acad. Sci. USA 78 4601–4605PubMedCrossRefGoogle Scholar
  218. Potts, R. C., and P. H. Hewitt. 1973 The distribution of intestinal bacteria and cellulase activity in the harvester termite Trinervitermes trinervoides (Nasutitermitidae) Insect. Soc. 20 215–220CrossRefGoogle Scholar
  219. Radek, R., K. Hausmann, and A. Breunig. 1992 Ectobiotic and endocytobiotic bacteria associated with the termite flagellate Joenia annectens Acta Protozool. 31 93–107Google Scholar
  220. Radek, R., J. Rösel, and K. Hausmann. 1996 Light and electron microscopic study of the bacterial adhesion to termite flagellates applying lectin cytochemistry Protoplasma 193 105–122CrossRefGoogle Scholar
  221. Radek, R. 1999a Flagellates, bacteria, and fungi associated with termites: Diversity and function in nutrition—a review Ecotropica 5 183–196Google Scholar
  222. Radek, R., and G. Tischendorf. 1999b Bacterial adhesion to different termite flagellates: Ultrastructural and functional evidence for distinct molecular attachment modes Protoplasma 207 43–53CrossRefGoogle Scholar
  223. Rasmussen, R. A., and M. A. K. Khalil. 1983 Global production of methane by termites Nature 301 704–705CrossRefGoogle Scholar
  224. Rath, A. C. 2000 The use of entomopathogenic fungi for control of termites Biocontrol Sci. Technol. 10 563–581CrossRefGoogle Scholar
  225. Rohrmann, G. F., and A. Y. Rossman. 1980 Nutrient strategies of Macrotermes ukuzii (Isoptera: Termitidae) Pedobiologia 20 61–73Google Scholar
  226. Rother, A., R. Radek, and K. Hausmann. 1999 Characterization of surface structures covering termite flagellates of the family Oxymonadidae and ultrastructure of two oxymonad species, Microrhopalodina multinucleata and Oxymonas sp Eur. J. Protistol. 35 1–16CrossRefGoogle Scholar
  227. Rouland, C., C. Chararas, and J. Renoux. 1989 Les osidases digestives présentes dans l’intestin moyen, l’intestin postérieur et les glandes salivaires du termite humivore Crenetermes albotarsalis C. R. Acad. Sci. Paris Série III 308 281–285Google Scholar
  228. Rouland, C. 2000 Symbiosis with fungi In: T. Abe, D. E. Bignell, and M. Higashi (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 289–306Google Scholar
  229. Rouland-Lefevre C., M. N. Diouf, A. Brauman, and M. Neyra. 2002 Phylogenetic relationships in Termitomyces (family Agaricaceae) based on the nucleotide sequence of ITS: A first approach to elucidate the evolutionary history of the symbiosis between fungus-growing termites and their fungi Molec. Phylogenet. Evol. 22 423–429PubMedCrossRefGoogle Scholar
  230. Sacchi, L., C. A. Nalepa, M. Lenz, C. Bandi, S. Corona, A. Grigolo, and E. Bigliardi. 2000 Transovarial transmission of symbiotic bacteria in Mastotermes darwiniensis (Isoptera: Mastotermitidae): Ultrastructural aspects and phylogenetic implications Ann. Entomol. Soc. Am. 93 1308–1313CrossRefGoogle Scholar
  231. Salmassi, T. M., and J. R. Leadbetter. 2003 Molecular aspects of CO2-reductive acetogenesis in cultivated spirochetes and the gut community of the termite Zootermopsis angusticollis Microbiology 149 2529–2537PubMedCrossRefGoogle Scholar
  232. Sanderson, M. G. 1996 Biomass of termites and their emissions of methane and carbon dioxide: A global database Global Biogeochem. Cycles 10 543–557CrossRefGoogle Scholar
  233. Sands, W. A. 1969 The association of termites and fungi In: K. Krishna and F. M. Weesner (Eds.) Biology of Termites Academic Press New York, NY 1 495–524Google Scholar
  234. Schäfer, A., R. Konrad, T. Kuhnigk, P. Kämpfer, H. Hertel, and H. König. 1996 Hemicellulose-degrading bacteria and yeasts from the termite gut J. Appl. Bacteriol. 80 471–478PubMedCrossRefGoogle Scholar
  235. Schmitt-Wagner, D., and A. Brune. 1999 Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.) Appl. Environ. Microbiol. 65 4490–4496PubMedGoogle Scholar
  236. Schmitt-Wagner, D., M. Friedrich, B. Wagner, and A. Brune. 2003a Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.) Appl. Environ. Microbiol. 69 6018–6024PubMedCrossRefGoogle Scholar
  237. Schmitt-Wagner, D., M. Friedrich, B. Wagner, and A. Brune. 2003b Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.) Appl. Environ. Microbiol. 69 6007–6017PubMedCrossRefGoogle Scholar
  238. Schultz, J. E., and J. A. Breznak. 1978 Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]; Appl. Environ. Microbiol. 35 930–936PubMedGoogle Scholar
  239. Schultz, J. E., and J. A. Breznak. 1979 Cross-feeding of lactate between Streptococcus lactis and Bacteroides sp. isolated from termite hindguts Appl. Environ. Microbiol. 37 1206–1210PubMedGoogle Scholar
  240. Seedorf, H., A. Dreisbach, R. Hedderich, S. Shima, and R. K. Thauer. 2004 F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification Arch. Microbiol 182 126–137PubMedCrossRefGoogle Scholar
  241. Shima, S., M. Sordel-Klippert, A. Brioukhanov, A. Netrusov, D. Linder, and R. K. Thauer. 2001 Characterization of a heme-dependent catalase from Methanobrevibacter arboriphilus Appl. Environ. Microbiol 67 3041–3045PubMedCrossRefGoogle Scholar
  242. Shinzato, N., T. Matsumoto, I. Yamaoka, T. Oshima, and A. Yamagishi. 1999 Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization Appl. Environ. Microbiol. 65 837–840PubMedGoogle Scholar
  243. Shinzato, N., T. Matsumoto, I. Yamaoka, T. Oshima, and A. Yamagishi. 2001 Methanogenic symbionts and the locality of their host lower termites Microb. Environ. 16 43–47CrossRefGoogle Scholar
  244. Sikorowski, P. P., and A. M. Lawrence. 1998 Transmission of Serratia marcescens (Enterobacteriaceae) in adult Heliothis virescens (Lepidoptera: Noctuidae) laboratory colonies Biol. Control 12 50–55CrossRefGoogle Scholar
  245. Slaytor, M. 1992 Cellulose digestion in termites and cockroaches: What role do symbionts play? Comp. Biochem. Physiol. 103B 775–784Google Scholar
  246. Slaytor, M., and D. J. Chappell. 1994 Nitrogen metabolism in termites Comp. Biochem. Physiol. 107 1–10CrossRefGoogle Scholar
  247. Slaytor, M., P. C. Veivers, and N. Lo. 1997 Aerobic and anaerobic metabolism in the higher termite Nasutitermes walkeri (Hill) Insect Biochem. Molec. Biol. 27 291–303CrossRefGoogle Scholar
  248. Slaytor, M. 2000 Energy metabolism in the termite gut and its gut microbiota In: T. Abe, D. E. Bignell, and M. Higashi, M. (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 307–332Google Scholar
  249. Snel, J., H. J. Blok, H. M. P. Kengen, W. Ludwig, F. G. J. Poelma, J. P. Koopman, and A. D. L. Akkermans. 1994 Phylogenetic characterization of Clostridium related segmented filamentous bacteria in mice based on 16S ribosomal RNA analysis System. Appl. Microbiol 17 172–179CrossRefGoogle Scholar
  250. Snel, J., P. P. Heinen, H. J. Blok, R. J. Carman, A. J. Duncan, P. C. Allen, and M. D. Collins. 1995 Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of “Candidatus Arthromitus” Int. J. Syst. Bacteriol 45 780–782PubMedCrossRefGoogle Scholar
  251. Stackebrandt, E., P. Schumann, and X. L. Cui. 2004 Reclassification of Cellulosimicrobium variabile Bakalidou et al. 2002 as Isoptericola variabilis gen. nov., comb. nov Int. J. System. Evol. Microbiol. 54 685–688CrossRefGoogle Scholar
  252. Stingl, U., and A. Brune. 2003 Phylogenetic diversity and whole-cell hybridization of oxymonad flagellates from the hindgut of the wood-feeding lower termite Reticulitermes flavipes Protist 154 147–155PubMedCrossRefGoogle Scholar
  253. Stingl, U., A. Maass, R. Radek, and A. Brune. 2004 Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales: Description of “Candidatus Vestibaculum illigatum.” Microbiology 150 2229–2235PubMedCrossRefGoogle Scholar
  254. Stingl, U., R. Radek, and A. Brune. 2005 “Endomicrobia”: Cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes Appl. Environ. Microbiol. 71 1473–1479PubMedCrossRefGoogle Scholar
  255. Sugimoto, A., T. Inoue, I. Tayasu, L. Miller, S. Takeichi, and T. Abe. 1998 Methane and hydrogen production in a termite-symbiont system Ecol. Res. 13 241–257CrossRefGoogle Scholar
  256. Tamm, S. L. 1980 The ultrastructure of prokaryotic-eukaryotic cell junctions J. Cell. Sci. 44 335–352PubMedGoogle Scholar
  257. Tamm, S. L. 1982 Flagellated epibiotic bacteria propel a eucaryotic cell J. Cell. Biol. 94 697–709PubMedCrossRefGoogle Scholar
  258. Taprab, Y., M. Ohkuma, T. Johjima, Y. Maeda, S. Moriya, T. Inoue, P. Suwanarit, N. Noparatnaraporn, and T. Kudo. 2002 Molecular phylogeny of symbiotic basidiomycetes of fungus-growing termites in Thailand and their relationship with the host Biosci. Biotechnol. Biochem. 66 1159–1163PubMedCrossRefGoogle Scholar
  259. Tayasu, I., A. Sugimoto, E. Wada, and T. Abe. 1994 Xylophagous termites depending on atmospheric nitrogen Naturwissenschaften 81 229–231Google Scholar
  260. Tayasu, I., T. Abe, P. Eggleton, and D. E. Bignell. 1997 Nitrogen and carbon isotope ratios in termites: An indicator of trophic habit along the gradient from wood-feeding to soil-feeding Ecol. Entomol. 22 343–351CrossRefGoogle Scholar
  261. Tayasu, I. 1998 The use of carbon and nitrogen isotope ratios in termite research Ecol. Res. 13 377–387CrossRefGoogle Scholar
  262. Terra, W. R. 1990 Evolution of digestive systems of insects Ann. Rev. Entomol. 35 181–200CrossRefGoogle Scholar
  263. Thauer, R. K., K. Jungermann, and K. Decker. 1977 Energy conservation in chemotrophic anaerobic bacteria Bacteriol. Rev. 41 100–180PubMedGoogle Scholar
  264. Thayer, D. W. 1976 Facultative wood-digesting bacteria from the hind-gut of the termite Reticulitermes hesperus J. Gen. Microbiol. 95 287–296CrossRefGoogle Scholar
  265. Thayer, D. W. 1978 Carboxymethylcellulase produced by facultative bacteria from the hind-gut of the termite Reticulitermes hesperus J. Gen. Microbiol. 106 13–18PubMedCrossRefGoogle Scholar
  266. Tholen, A., B. Schink, and A. Brune. 1997 The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp FEMS Microbiol. Ecol. 24 137–149CrossRefGoogle Scholar
  267. Tholen, A., and A. Brune. 1999 Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.) Appl. Environ. Microbiol. 65 4497–4505PubMedGoogle Scholar
  268. Tholen, A., and A. Brune. 2000 Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes Environ. Microbiol. 2 436–449PubMedCrossRefGoogle Scholar
  269. Thongaram, T., S. Kosono, M. Ohkuma, Y. Hongoh, M. Kitada, T. Yoshinaka, S. Trakulnaleamsai, N. Noparatnaraporn, and T. Kudo. 2003 Gut of higher termites as a niche for alkaliphiles as shown by culturebased and culture-independent studies Microb. Environ 18 152–159CrossRefGoogle Scholar
  270. Thongaram, T., Y. Hongoh, S. Kosono, M. Ohkuma, S. Trakulnaleamsai, N. Noparatnaraporn, and T. Kudo. 2005 Comparison of bacterial communities in the alkaline gut segment among various species of higher termites Extremophiles 9 229–238PubMedCrossRefGoogle Scholar
  271. To, L., L. Margulis, and A. T. W. Cheung. 1978 Pillotinas and hollandinas: Distribution and behaviour of large spirochaetes symbiotic in termites Microbios 22 103–133PubMedGoogle Scholar
  272. To, L. P., L. Margulis, D. Chase, and W. L. Nutting. 1980 The symbiotic microbial community of the Sonoran desert termite: Pterotermes occidentis Biosystems 13 109–137PubMedCrossRefGoogle Scholar
  273. Tokuda, G., I. Yamaoka, and H. Noda. 2000 Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki) Appl. Environ. Microbiol. 66 2199–2207PubMedCrossRefGoogle Scholar
  274. Tokuda, G., T. Nakamura, R. Murakami, and I. Yamaoka. 2001 Morphology of the digestive system in the wood-feeding termite Nasutitermes takasagoensis (Shiraki) [Isoptera: Termitidae]; Zool. Sci. 18 869–877CrossRefGoogle Scholar
  275. Tokuda, G., N. Lo, H. Watanabe, G. Arakawa, T. Matsumoto, and H. Noda. 2004 Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage Mol. Ecol 13 3219–3228PubMedCrossRefGoogle Scholar
  276. Tokura, M., M. Ohkuma, and T. Kudo. 2000 Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites FEMS Microbiol. Ecol. 33 233–240PubMedCrossRefGoogle Scholar
  277. Trinkerl, M., A. Breunig, R. Schauder, and H. König. 1990 Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite System. Appl. Microbiol. 13 372–377CrossRefGoogle Scholar
  278. Veivers, P. C., R. W. O’Brien, and M. Slaytor. 1980 The redox state of the gut of termites J. Insect Physiol. 26 75–77CrossRefGoogle Scholar
  279. Veivers, P. C., R. W. O’Brien, and M. Slaytor. 1982 Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing entry of foreign bacteria J. Insect Physiol. 28 947–951CrossRefGoogle Scholar
  280. Vu, A. T., N. C. Ngyen, and J. R. Leadbetter. 2004 Iron reduction in the metal-rich guts of wood-feeding termites Geobiology 2 239–247CrossRefGoogle Scholar
  281. Watanabe, H., and G. Tokuda. 2001 Animal cellulases Cell. Molec. Life Sci. 58 1167–1178PubMedCrossRefGoogle Scholar
  282. Watanabe, H., K. Nakashima, H. Saito, and M. Slaytor. 2002 New endo-beta-1,4-glucanases from the parabasalian symbionts, Pseudotrichonympha grassii and Holomastigotoides mirabile of Coptotermes termites Cell. Mol. Life Sci. 59 1983–1992PubMedCrossRefGoogle Scholar
  283. Watanabe, Y., N. Shinzato, and T. Fukatsu. 2003 Isolation of actinomycetes from termites’ guts Biosci. Biotechnol. Biochem. 67 1797–1801PubMedCrossRefGoogle Scholar
  284. Wenzel, M., I. Schönig, M. Berchtold, P. Kämpfer, and H. König. 2002 Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis J. Appl. Microbiol. 92 32–40PubMedCrossRefGoogle Scholar
  285. Wenzel, M., R. Radek, G. Brugerolle, and H. König. 2003 Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis Eur. J. Protistol. 39 11–24CrossRefGoogle Scholar
  286. Wier, A., J. Ashen, and L. Margulis. 2000 Canaleparolina darwiniensis, gen. nov., sp. nov., and other pillotinaceous spirochetes from insects Int. Microbiol. 3 213–223PubMedGoogle Scholar
  287. Williams, C. M., P. C. Veivers, M. Slaytor, and S. V. Cleland. 1994 Atmospheric carbon dioxide and acetogenesis in the termite Nasutitermes walkeri (Hill) Comp. Biochem. Physiol. 107A 113–118CrossRefGoogle Scholar
  288. Yamin, M. A. 1979 Termite flagellates Sociobiology 4 1–119Google Scholar
  289. Yang, H., D. Schmitt-Wagner, U. Stingl, and A. Brune. 2005 Niche heterogeneity determines bacterial community structure in the in the termite gut (Reticulitermes santonensis) Environ. Microbiol. 7(7) 916–932CrossRefGoogle Scholar
  290. Yara, K., K. Jahana, and H. Hayashi. 1989 In situ morphology of the gut microbiota of the fungus-growing termite Odontotermes formosanus (Termitidae: Macrotermitinae) Sociobiology 15 247–260Google Scholar
  291. Yoshimura, T., T. Fujino, T. Ito, K. Tsunoda, and M. Takahashi. 1996 Ingestion and decomposition of wood and cellulose by the protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) as evidenced by polarizing and transmission electron microscopy Holzforschung 50 99–104CrossRefGoogle Scholar
  292. Zoberi, M. H., and J. K. Grace. 1990 Fungi associated with the subterranean termite Reticulitermes flavipes in Ontario Mycologia 82 289–294CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Andreas Brune

There are no affiliations available

Personalised recommendations