Skip to main content

Biodegradation of lignin and hemicelluloses

  • Chapter
Biochemistry of microbial degradation

Abstract

The compositions and percentages of lignin and hemicellulose vary from one plant species to another so it is difficult to arrive at generalizations concerning structure and abundance of these polymers. Moreover, composition varies within a single plant (roots, stems, leaves), with age (heartwood versus sapwood), stage of growth (early wood versus late wood in annual rings) and with the conditions under which the plant grows. Study over many decades has elucidated the major structural features of wood hemicelluloses and lignins, along with the biochemical mechanisms for their degradation. These have been the subjects of comprehensive book-length reviews (e.g. Higuchi 1985a). More specifically, the structures (Fengel and Wegner 1984) and degradation (Shoemaker 1990; Higuchi 1990; Kirk and Farrell 1987; Reiser et al. 1989; Leisola and Garcia 1989) of lignin have been the subject of several reviews, as have the structures (Aspinall 1959; Timell 1964, 1965; Wilkie 1979; Lewis and Paice 1989) and degradation (Dekker and Richards 1976; Reilly 1981; Zimmerman 1989; Dekker 1985; Woodward 1984; Biely 1985; Wong et al. 1988; Johnson et al. 1989) of hemicellulose components. Most recently, attention has turned to the molecular characteristics of these enzymes (Gilkes et al. 1991; Kersten and Cullen 1992). It is beyond the scope of the present review to recapitulate these findings in detail. Rather, the focus will be on specialized or recently revealed aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

APPL:

acid precipitable polymeric lignin

CBQase:

cellobiose:quinone oxidoreductase

CEL:

cellulase-treated enzyme lignin

DDQ:

2,3-dichloro-5,6-dicyano-1,4-bezoquinone

DHP:

dehydrogenative polymerizate (synthetic lignin)

DMF:

dimethylformamide

DNS:

dinitrosalicylic acid

DP:

degree of polymerization

HPLC:

high performance liquid chromatography

LC:

lignin-carbohydrate

LCC:

lignin-carbohydrate complex

Mr :

relative molecular weight

MWEL:

milled wood enzyme lignin

NMR:

nuclear magnetic resonance

TLC:

thin layer chromatography

References

  • Adhi TP, Korus RA and Crawford DL (1989) Production of major extracellular enzymes during lignocellulose degradation by two Streptomyces in agitated submerged culture. Appl. Environ. Microbiol. 55: 1165–1168.

    PubMed  CAS  Google Scholar 

  • Akin DE and Rigsby LL (1985) Influence of phenolic acids on rumen fungi. Agronomy J. 77: 180–185.

    CAS  Google Scholar 

  • Araujo A and Ward OP (1990) Hemicellulases of Bacillus species: preliminary comparative studies on production and properties of mannanases and galactanases. J. Appl. Bacteriol. 68:253–261.

    Article  PubMed  CAS  Google Scholar 

  • Aspinall GO (1959) Structural chemistry of the hemicelluloses. Adv. Carbohyd. Chem. 14: 429–468.

    Article  CAS  Google Scholar 

  • Atsushi K, Azuma J-I and Koshijima T (1984) Lignin-carbohydrate complexes and phenolic acids in bagasse. Holzforschung 38: 141–149.

    Article  CAS  Google Scholar 

  • Azuma J-I and Koshijima T (1988) Lignin-carbohydrate complexes from various sources. Methods Enzymology 161: 12–18.

    Article  CAS  Google Scholar 

  • Azuma J-I, Takahashi N and Koshijima T (1981) Isolation and characterization of lignin-carbohydrate complexes from the milled-wood lignin fraction of Pinus densiflora Sieb et Zuce. Carbohyd. Res. 93: 91–104.

    Article  CAS  Google Scholar 

  • Azuma J-I, Takahashi N, Isaka M and Koshijima T (1985) Lignin-carbohydrate complexes extracted with aqueous dioxane from beech wood. Mokuzai Gakkaishi 31: 587–594.

    CAS  Google Scholar 

  • Biely P (1985) Microbial xylanaolytic systems. Trends Biotechnol. 3: 286–290.

    Article  CAS  Google Scholar 

  • Biely P, Vršanská M and Krátký Z (1980) Xylan-degrading enzymes of the yeast Cryptococcus albidus. Identification and cellular localization. Eur. J. Biochem. 108: 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Biely P, Krátky Z and Vršanská M (1981) Substrate-binding site of endo-1,4-β-xylanase of the yeast Cryptococcus albidus. Eur. J. Biochem. 119: 559–564.

    Article  PubMed  CAS  Google Scholar 

  • Biely P, Markovič and Mislovičová D (1985a) Sensitive detection of endo-1,4-β-glucanases and endo-1,4-β-xylanasesin gels. Anal. Chem. 144: 147–151.

    CAS  Google Scholar 

  • Biely P, Puls J and Schneider H (1985b) Acetyl xylan esterases in fungal xylanolytic systems. FEBS 186: 80–84.

    Article  CAS  Google Scholar 

  • Biely P, MacKenzie CR, Puls J and Schneider H (1986) Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Bio/Technology 4: 731–733.

    Article  CAS  Google Scholar 

  • Biely P, Markovic and Toman R (1988) Remazol brilliant blue-xylan: a soluble chromogenic substrate for xylanases. Meth. Enzymol. 160: 536–541.

    Article  CAS  Google Scholar 

  • Biswas-Hawkes DA, Dodson PJ, Harvey PJ and Palmer JM (1987) Ligninases from white-rot fungi. In: E Odier (ed) Lignin Enzymic and Microbial Degradation (pp 125–130). INRA Publications, Paris.

    Google Scholar 

  • Björkman A (1956) Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Svensk Papperstid. 59: 477–485.

    Google Scholar 

  • Björkman A (1957) Studies on finely divided wood. Part 3. Extraction of lignin-carbohydrate complexes with neutral solvents. Svensk Papperstid. 60: 243–251.

    Google Scholar 

  • Björkman A and Person B (1957) Studies on finely divided wood. Part 2. The properties of lignins extracted with neutral solvents from softwoods and hardwoods. Svensk Papperstid. 60:158–169.

    Google Scholar 

  • Blanchette RA (1984) Manganese accumulation in wood decayed by white-rot fungi. Phytopathology 74: 725–730.

    Article  CAS  Google Scholar 

  • Bonnarme P and Jeffries TW (1990) Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white-rot fungi. Appl. Environ. Microbiol. 56: 210–217.

    PubMed  CAS  Google Scholar 

  • Borneman WS, Hartley RD, Morrison WH, Akin DE and Ljungdahl LG (1990) Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl. Microbiol. Biotechnol. 33: 345–351.

    Article  CAS  Google Scholar 

  • Bourbonnais R and Paice MG (1988) Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem. J. 255: 445–450.

    PubMed  CAS  Google Scholar 

  • Brice RE and Morrison IM (1982) The degradation of isolated hemicelluloses and lignin-hemicellulose complexes by cell-free rumen hemicellulases. Carbohyd. Res. 101: 93–100.

    Article  CAS  Google Scholar 

  • Broda PMA, Mason JC and Zimmerman WK (1987) Decomposition of lignocellulose. International Patent WO 87/06609.

    Google Scholar 

  • Brown JA, Glenn JK and Gold MH (1990) Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J. Bacteriol. 172: 3125–3130.

    PubMed  CAS  Google Scholar 

  • Chang H-M, Cowling EB, Brown W, Adler E and Miksche G (1975) Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung 29: 153–159.

    Article  CAS  Google Scholar 

  • Chauvet J-M, Comtat J and Noe P (1987) Assistance in bleaching of never-dried pulps by the use of xylanases: consequences on pulp properties. 4th Intl. Symp. Wood Pulping Chem. (Paris), Poster Presentations Vol 2: 325–327.

    Google Scholar 

  • Chesson A (1988) Lignin-polysaccharide complexes of the plant cell wall and their effect on microbial degradation in the rumen. Animal Feed Sci. Technol. 21: 219–228.

    Article  CAS  Google Scholar 

  • Chesson A, Gordon AH and Lomax JA (1983) Substituent groups linked by alkali-labile bonds to arabinose and xylose residues of legume, grass and cereal straw cell walls and their fate during digestion by rumen microorganisms. J. Sci. Food. Agric. 34: 1330–1340.

    Article  CAS  Google Scholar 

  • Comtat J, Joseleau J-P, Bosso C and Barnoud (1974) Characterization of structurally similar neutral and acidic tetrasaccharides obtained from the enzymic hydrolysate of a 4-O-methyl-D-glucurono-D-xylan. Carbohyd. Res. 38: 217–224.

    Article  CAS  Google Scholar 

  • Conchie J, Hay AJ and Lomax JA (1988) Soluble lignin-carbohydrate complexes from sheep rumen fluid: their composition and structural features. Carbohyd. Res. 177: 127–151.

    Article  CAS  Google Scholar 

  • Crawford D (1978) Lignocellulose decomposition by selected Streptomyces strains. Appl. Environ. Microbiol. 35: 1041–1045.

    PubMed  CAS  Google Scholar 

  • Crawford DL, and Crawford RL (1976) Microbial degradation of lignocellulose: the lignin component. Appl. Environ. Microbiol. 31: 714–717.

    PubMed  CAS  Google Scholar 

  • Crawford DL, Pometto AL and Crawford RL (1983) Lignin degradation by Streptomyces viridosporus: isolation and characterization of a new polymeric lignin degradation intermediate. Appl. Environ. Microbiol. 45: 898–904.

    PubMed  CAS  Google Scholar 

  • Cui F and Dolphin D (1990) The role of manganese in model systems related to lignin biodegradation. Holzforschung 44: 279–283.

    Article  CAS  Google Scholar 

  • Dekker RF (1985) Biodegradation of the hemicelluloses. In: T Higuchi (ed) Biosynthesis and Biodegradation of Wood Components (pp 505–532). Academic Press, New York.

    Google Scholar 

  • Dekker RFH and Richards GN (1976) Hemicellulases: their occurrence, purification, properties and mode of action. Adv. Carbohyd. Chem. Biochem. 32: 277–352.

    Article  CAS  Google Scholar 

  • Deobald LE and Crawford DL (1987) Activities of cellulase and other extracellular enzymes during lignin solubilization by Streptomyces viridosporus. Appl. Microbiol. Biotechnol. 26: 158–163.

    Article  CAS  Google Scholar 

  • Dobberstein J and Emeis CC (1991) Purification and Characterization of β-xylosidase from Aureobasidium pullulans. Appl. Microbiol. Biotechnol. 35: 210–215.

    Article  CAS  Google Scholar 

  • Donnelly PK and Crawford DL (1988) Production by Streptomyces viridosporus T7A of an enzyme which cleaves aromatic acids from lignocellulose. Appl. Environ. Microbiol. 54: 2237–2244.

    PubMed  CAS  Google Scholar 

  • Ericksson Ö and Lindgren BO (1977) About the linkage between lignin and hemicelluloses in wood. Svensk Papperstind. 80: 59–63.

    Google Scholar 

  • Ericksson Ö, Goring DAI and Lindgren BO (1980) Structural studies on the chemical bonds between lignins and carbohydrates in spruce wood. Wood Sci. Technol. 14: 267–279.

    Article  Google Scholar 

  • Evans CS and Palmer JM (1983) Ligninolytic activity of Coriolus versicolor. J. Gen. Microbiol. 129: 2103–2108.

    CAS  Google Scholar 

  • Fengel D and Wegner D (1984) Wood Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin, New York.

    Google Scholar 

  • Ferrer I, Esposito E and Durán N (1992) Lignin peroxidase from Chrysonilia sitophilia: heat denaturation kinetics and pH stability. Enzyme Microb. Technol. 14: 402–406.

    Article  CAS  Google Scholar 

  • Ford CW (1989) A feruloylated arabinoxylan liberated from cell walls of Digitaria decumbens (pangola grass) by treatment with borohydride. Carbohyd. Res. 190: 137–144.

    Article  CAS  Google Scholar 

  • Ford CW (1990) Borohydride-soluble lignin-carbohydrate complex esters of p-coumaric acid from the cell walls of a tropical grass. Carbohyd. Res. 201: 299–309.

    Article  CAS  Google Scholar 

  • Freudenberg K (1968) The constitution and biosynthesis of lignin. In: K Freudenberg and AC Neish (eds) Constitution and Biosyntheses of Lignin (pp 45–122). Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Fukuzumi T (1987) Ligninolytic enzymes of Pleurotus sajor-caju. In: E Odier (ed) Lignin Enzymic and Microbial Degradation (pp 137–142). INRA Publications, Paris.

    Google Scholar 

  • Gaillard BDE and Richards GN (1975) Presence of soluble lignin-carbohydrate complexes in the bovine rumen. Carbohyd. Res. 42: 135–145.

    Article  CAS  Google Scholar 

  • Galliano H, Gas G, Seris JL and Boudet AM (1991) Lignin degradation by Rigidoporous lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and lacease. Enzyme Microb. Technol. 13: 478–482.

    Article  CAS  Google Scholar 

  • Ghose TK and Bisaria VS (1987) Measurement of hemicellulase activities. Part 1: Xylanases. Pure and Appl. Chem. 59: 1739–1752.

    Article  CAS  Google Scholar 

  • Gierer J (1970) The reactions of lignin during pulping. Svensk Papperstid. 73: 571–596.

    CAS  Google Scholar 

  • Gierer J and Wännström S (1984) Formation of alkali-stable C-C-bonds between lignin and carbohydrate fragments during kraft pulping. Holzforschung 38: 181–184.

    Article  CAS  Google Scholar 

  • Gilkes NR, Henrissat B, Kilburn DG, Miller RC and Warren RAJ (1991) Domains in microbial β-l,4-glycanases: sequence conservation, function, and enzyme families. Microb. Rev. 55: 303–315.

    CAS  Google Scholar 

  • Glenn, JK and Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Arch. Biochem. Biophys. 242: 329–341.

    Article  PubMed  CAS  Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M and Gold MH (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white-rot basidiomycete Phanerochaete chrysosporium. Biochem. Biophys. Res. Comm. 114: 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  • Gold MH, Wariishi H, Akileswaran L, Mino Y, and Loehr TM (1987) Spectral characterization of Mn-peroxidase, an extracellular heme enzyme from Phanerochaete chrysosporium. In: E Odier (ed) Lignin Enzymic and Microbial Degradation (pp 113–118). INRA Publications, Paris.

    Google Scholar 

  • Gruninger H and Fiechter A (1986) A novel, highly thermostable D-xylanase. Enzyme Microb. Technol. 8: 309–314.

    Article  Google Scholar 

  • Haemmerli SD, Liesola MSA and Fiechter A (1986) Polymerization of lignins by ligninases from Phanerochaete chrysosporium. FEMS Microbiol. Lett. 35: 33–36.

    Article  CAS  Google Scholar 

  • Hammel KE and Moen MA (1991) Depolymerization of a synthetic lignin in vitro by lignin peroxidase. Enzyme Microb. Technol. 13: 15–18.

    Article  CAS  Google Scholar 

  • Hammel KE, Tien M, Kalyanaraman B, and Kirk TK (1985) Mechanism of oxidative Cα-Cβ cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 260: 8348–8353.

    PubMed  CAS  Google Scholar 

  • Hamomoto T, Honda H, Kudo T and Horikoshi K (1987) Nucleotide sequence of the xylanase A gene of alkalophilic Bacillus sp. strain C-125. Agric Biol. Chem. 51: 953–955.

    Article  Google Scholar 

  • Hartley RD (1973) Carbohydrate esters of ferulic acid as components of cell-walls of Lolium multiflorum. Phytochemistry 12: 661–665.

    Article  CAS  Google Scholar 

  • Hartley RD and Jones EC (1976) Diferulic acid as a component of cell walls of Lolium multiflorum. Phytochemistry 15: 1157–1160.

    Article  CAS  Google Scholar 

  • Hartley RD, Jones EC and Wood TM (1976) Carbohydrates and carbohydrate esters of ferulic acid released from cell walls of Lolium multiflorum by treatment with cellulolytic enzymes. Phytochemistry 15: 305–307.

    Article  CAS  Google Scholar 

  • Hatfield RD, Helm RF and Ralph J (1991) Synthesis of methyl 5-O-trans-feruloyl-α-L-arabinosuranoside and its use as a substrate to assess feruloyl esterase activity. Anal. Biochem. 194: 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi T (ed) (1985a) Biosynthesis and Biodegradation of Wood Components. Academic Press, Tokyo.

    Google Scholar 

  • Higuchi T (1985b) Biosynthesis of lignin. In: T Higuchi (ed) Biosynthesis and Biodegradation of Wood Components (pp 141–160). Academic Press, Tokyo.

    Google Scholar 

  • Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci. Technol. 24: 23–63.

    Article  CAS  Google Scholar 

  • Higuchi T, Ioto Y, Shimada M and Kawamura I (1967) Chemical properties of milled wood lignin of grasses. Phytochemistry 6: 1551–1556.

    Article  CAS  Google Scholar 

  • Holtz C, Kaspari H and Klemme J-H (1991) Production and properties of xylanases from thermophilicactinomycetes. Antonie van Leeuwenhoek 59: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Honda H, Kudo T, Ikura Y and Horikoshi K (1985) Two types of xylanases of alkalophilic Bacillus sp. no. C-125. Can. J. Microbiol. 31: 538–542.

    Article  CAS  Google Scholar 

  • Hortling B, Ranua B and Sundquist J (1990) Investigation of the residual lignin in chemical pulps. Part 1. Enzymatic hydrolysis of the pulps and fractionation of the products. Nordic Pulp Paper Res. J. 1:33–37.

    Article  Google Scholar 

  • Huynh V-B, and Crawford RL (1985) Novel extracellular enzymes (ligninases) of Phanerochaete chrysosporium. FEMS Microbiol. Lett. 28: 119–123.

    Article  Google Scholar 

  • Ide JA, Daly JM and Rickards PAD (1983) Production of glycosidase activity by cellulomonas during growth on various carbohydrate substrates. Eur J. Appl. Microbiol. Biotechnol. 18: 100–102.

    Article  CAS  Google Scholar 

  • Ishihara M and Shimizu K (1988) α-(1,2)-glucuronidase in the enzymatic saccharification of hardwood xylan I. Screening of a-glucuronidase producing fungi. Mokuzai Gakkaishi 34:58–64.

    CAS  Google Scholar 

  • Ishii T and Hiroi T (1990) Isolation and characterization of feruloylated arabinoxylan oligosaccharides from bamboo shoot cell-walls. Carbohyd. Res. 196: 175–183.

    Article  CAS  Google Scholar 

  • Iversen T (1985) Lignin-carbohydrate bonds in a lignin-carbohydrte complex isolated from spruce. Wood Sci. Technol. 19: 243–251.

    Article  CAS  Google Scholar 

  • Iversen T and Wännström S (1986) Lignin-carbohydrate bonds in a residual lignin isolated from pine kraft pulp. Holzforschung 40: 19–22.

    Article  CAS  Google Scholar 

  • Iversen T and Westermark U (1985) Lignin carbohydrate bonds in pine lignins dissolved during kraft pulping. Cellu. Chem. Technol. 19: 531–536.

    CAS  Google Scholar 

  • Iversen T, Westermark U and Samuelsson B (1987) Some comments on the isolation of galactose-containing lignin-carbohydrate complexes. Holzforschung 41: 119–121.

    Article  CAS  Google Scholar 

  • Jeffries TW, Choi S and Kirk TK (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 42: 290–296.

    PubMed  CAS  Google Scholar 

  • Johansson T, and Nyman PO (1987) A manganese(II)-dependent extracellular peroxidase from the white-rot fungus Trametes versicolor. Acta Chem. Scand. B41: 762–765.

    Article  CAS  Google Scholar 

  • Johnson KG and Overend RP (1991) Lignin-carbohydrate complexes from Populus deltoides I. Purification and characterization. Holzforschung 45: 469–475.

    Article  CAS  Google Scholar 

  • Johnson KG and Overend RP (1992) Lignin-carbohydrate complexes from Populus deltoides. IL Effect of hydrolyzing enzymes. Holzforschung 46: 31–37.

    Article  CAS  Google Scholar 

  • Johnson KG, Harrison BA, Schneider H, Mackenzie CR and Fontana JD (1988) Xylan-hydrolyzing enzymes from Streptomyces spp. Enzyme Microb. Technol. 10: 403–409.

    Article  CAS  Google Scholar 

  • Johnson KG, Silva MC MacKenzie CR, Schneider H and Fontana JD (1989) Microbial degradation of hemicellulosic materials. Appl. Biochem. Biotechnol. 20/21: 245–258.

    Article  Google Scholar 

  • Johnson KG, Ross NW and Schneider H (1990) Purification and some properties of β-mannanase from Polyporous versicolor. World J. Microbiol. Biotechnol. 6: 245–254.

    Article  CAS  Google Scholar 

  • Jönsson L, Johansson T, Sjöström K and Nyman PO (1987) Purification of ligninase isozymes from the white-rot fungus Trametes versicolor. Acta Chem. Scand. B41: 766–769.

    Article  Google Scholar 

  • Joseleau J-P, and Gancet C (1981) Selective degradations of the lignin-carbohydrate complex from aspen wood. Svensk Papperstidning 84: R123–R127.

    CAS  Google Scholar 

  • Jurasek L and Paice MG (1988) Biological beaching of pulp. Tappi Internat. Pulp Bleach. Conf., Orlando, Florida, pp 11–13.

    Google Scholar 

  • Kaji A (1984) L-Arabinosidases. Advan. Carbohyd. Chem. Biochem. 42: 383–394.

    Article  CAS  Google Scholar 

  • Kantelinen A, Rättö M, Sundquist J, Ranua M, Viikari L and Linko M (1988a) Hemicellulases and their potential role in bleaching. Tappi Internat. Pulp Bleaching Conf., Orlando, Florida, pp 1–9.

    Google Scholar 

  • Kantelinen A, Waldner R, Niku-Paavola M-L, and Leisola MSA (1988b) Comparison of two lignin-degrading fungi: Phlebia radiata and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 28: 193–198.

    Article  CAS  Google Scholar 

  • Kantelinen A, Sundquist J, Linko M and Viikari L (1992) The role of reprecipitated xylan in the enzymatic bleaching of kraft pulp. Proceedings of the Sixth International Symposium on Wood and Paper Chemistry, pp 493–500.

    Google Scholar 

  • Kato A, Azuma JI and Koshijima T (1987) Isolation and identification of a new feruloylated tetrasaccharide from bagasse lignin-carbohydrate complex containing phenolic acid. Agric. Biol. Chem. 51: 1691–1693.

    Article  CAS  Google Scholar 

  • Kawai S, Umezawa T and Higuchi T (1988) Degradation mechanisms of phenolic β-1 lignin substructure model compounds by lacease of Coriolus versicolor. Arch. Biochem. Biophys. 262: 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Kern HW and Kirk TK (1987) Influence of molecular size and ligninase treatment on degradation of lignins by Xanthomonas sp. strain 99. Appl. Environ. Microbiol. 53: 2242–2246.

    PubMed  CAS  Google Scholar 

  • Kern H, Haider K, Pool W, de Leeuw JW and Ernst L (1989) Comparison of the action of Phanerochaete chrysosporium and its extracellular enzymes (lignin peroxidases) on lignin preparations. Holzforschung 43: 375–384.

    Article  CAS  Google Scholar 

  • Kersten P and Cullen D (1992) Fungal enzymes for lignocellulose degradation In: JR Kinghorn and G Turner (eds) Applied Molecular Genetics of Filamentous Fungi (pp 100–131). Blackie and Sons, London.

    Google Scholar 

  • Kersten PJ, Tien M, Kalyanaraman B, and Kirk TK (1985) The ligninase of Phanerochaete chrysosporiwn generates cation radicals from methoxybenzenes. J. Biol. Chem. 260: 2609–2612.

    PubMed  CAS  Google Scholar 

  • Khan AW, Tremblay D and LeDuy L (1986) Assay of xylanase and xylosidase activities in bacterial and fungal cultures. Enzyme Microb. Technol. 8: 373–377.

    Article  CAS  Google Scholar 

  • Khan AW, Lanm KA and Overend RP (1990) Comparison of natural hemicellulose and chemically acetylated xylan as substrates for the determination of acetyl-xylan esterase activity in Aspergilli. Enzyme Microb. Technol. 12: 127–131.

    Article  CAS  Google Scholar 

  • Khowala S, Mukherjee M and Sengupta S (1988) Carboxymethyl xylan — a specific substrate directly differentiating backbone-hydrolyzing and side chain-reacting β-D-(1,4)-xylanases of the mushroom Termitomyces clypeatus. Enzyme Microb. Technol. 10: 563–567.

    Article  CAS  Google Scholar 

  • Kirk TK and Chang H-M (1981) Potential applications of bioligninolytic systems. Enzyme Microb. Technol. 3: 189–197.

    Article  CAS  Google Scholar 

  • Kirk TK and Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Ann Rev. Microbiol. 41: 465–505.

    Article  CAS  Google Scholar 

  • Kirk TK and Shimada M (1985) Lignin biodegradation: the microorganisms involved and the physiology and biochemistry of degradation by white-rot fungi. In: T Higuchi (ed) Biosynthesis and Biodegradation of Wood Components (pp 579–605). Academic Press, San Diego, CA.

    Google Scholar 

  • Kirk TK, Connors WJ, Bleam RD, Hackeα WF and Zeikus JG (1975) Preparation and microbial decomposition of synthetic [14C] lignins. Proc. Natl. Acad. Sci. U.S.A. 72: 2515–2519.

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK, Connors WJ and Zeikus JG (1976) Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Appl. Environ. Microbiol. 32: 192–194.

    PubMed  CAS  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF and Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporiwn. Arch. Microbiol. 117: 277–285.

    Article  CAS  Google Scholar 

  • Kivaisi AK, Op den Camp HJM, Lubberding HJ, Boon JJ and Vogels GD (1990) Generation of soluble lignin-derived compounds during degradation of barley straw in an artificial rumen reactor. Appl. Microbiol. Biotechnol. 33: 93–98.

    Article  CAS  Google Scholar 

  • Kluepfel D, Daigneault N, Morosoli R and Sharek F (1992) Purification and characterization of a new xylanase (xylanase C) produced by Streptomyces lividans 66. Appl. Microbiol. Biotechnol. 36: 626–631.

    Article  CAS  Google Scholar 

  • Kondo R and Imamura H (1987) The formation of model glycosides by wood-rotting fungi. Lignin enzymatic and microbial degradation. INRA Publications, Paris.

    Google Scholar 

  • Kondo R and Imamura H (1989a) Formation of lignin model xyloside in polysaccharides media by wood-rotting fungi. Mokuzai Gakkaishi 35: 1001–1007.

    CAS  Google Scholar 

  • Kondo R and Imamura H (1989b) Model study on the role of the formation of glycosides in the degradation of lignin by wood-rotting fungi. Mokuzai Gakkaishi 35: 1008–1013.

    CAS  Google Scholar 

  • Kondo R, Imori T and Imamura H (1988) Enzymatic synthesis of glucosides of monomelic lignin compounds with commercial β-glucosidase. Mokuzai Gakkaishi 34: 724–731.

    CAS  Google Scholar 

  • Kondo T, Hiroi T, Mizuno K and Kato T (1990a) Characterization of lignin-carbohydrate complexes of Italian ryegrass and alfalfa. Can. J. Plant Sci. 70: 193–201.

    Article  CAS  Google Scholar 

  • Kondo R, Imori T, Imamura H and Kishida T (1990b) Polymerization of DHP and depolymerization of DHP glucoside by lignin oxidizing enzymes. J. Biotechnol. 13: 181–188.

    Article  CAS  Google Scholar 

  • Kormlink FJM, Searle-van Leeuwen MJF, Wood TM and Voragen AGJ (1991a) (1,4)-β-D-arabinoxylan arabinofuranohydrolase: a novel enzyme in the bioconversion of arabinoxylan. Appl. Microbiol. Biotechnol.35: 231–232.

    Google Scholar 

  • Kormlink FJM, Searle-van Leeuwen MJF, Wood TM and Voragen AGJ (1991b) Purification and characterization of a (1,4)-β-D-arabinoxylan arabinofuranohydrolase from Aspergillus awamori. Appl. Microbiol. Biotechnol. 35: 753–758.

    Google Scholar 

  • Koshijima T, Watanobe T and Yaku T (1989) Structure and properties of the lignin-carbohydrate complex polymer as an amphipathic substance. In: WG Glasser and S Sarkanen (eds) Lignin Properties and Materials. ACS Symposium Ser. 397 (pp 11–28). American Chemical Society, Washington, DC.

    Chapter  Google Scholar 

  • Košíková B, Joniak D and Kosáková L (1979) On the properties of benzyl ether bonds in the lignin-saccharidic complex isolated from spruce. Holzforschung 33: 11–14.

    Article  Google Scholar 

  • Kurek B, Monties B and Odier E (1990) Influence of the physical state of lignin on its degradability by the lignin peroxidase of Phanerochaete chrysosporium. Enzyme Microb. Technol. 12: 771–777.

    Article  CAS  Google Scholar 

  • Lee H, To RJB, Latta RK, Biely P and Schneider H (1987) Some properties of extracellular acetylxylan esterase produced by the yeast Rhodotorula mucilaginosa. Appl. Environ. Microbiol. 53: 2831–2834.

    PubMed  CAS  Google Scholar 

  • Leisola MSA and Garcia S (1989) The mechanism of lignin degradation. In: MP Coughlan (ed) Production, Characterization and Application of Cellulose, Hemicellulose and Lignin Degrading Enzyme Systems (pp 89–99). Elsevier, Amsterdam.

    Google Scholar 

  • Lewis NG and Paice MG (eds) (1989) Plant Cell Wall Polymers: Biogenesis and Biodegradation. ACS Symp. Ser. Vol. 399, American Chemical Society, Washington, DC.

    Google Scholar 

  • Lindberg B, Rosell KG and Svensson S (1973a) Positions of the O-acetyl groups in birch xylan. Svensk Papperstid. 76: 30–32.

    CAS  Google Scholar 

  • Lindberg B, Rosell KG and Svensson S (1973b) Positions of the O-acetyl groups in pine glucomannan. Svensk Papperstid.76: 383–384.

    CAS  Google Scholar 

  • Lobarzewski, J (1987) A lignin-biotransforming peroxidase from Trametes versicolor and its use in immobilized form. In: E Odier (ed) Lignin Enzymic and Microbial Degradation (pp 197–202). INRA Publications, Paris.

    Google Scholar 

  • Lundquist K, Simonson R and Tingsvik K (1983) Lignin carbohydrate linkages in milled wood lignin preparations from spruce wood. Svensk Papperstid. R44–R47.

    Google Scholar 

  • Liithi E, Reif K, Jasmat NB and Bergquist PL (1992) In vitro mutagenesis of a xylanase from the extreme thermophile Caldocellum saccharolyticum. Appl. Microbiol. biotechnol. 36: 503–506.

    Google Scholar 

  • MacKenzie CR and Bilous D (1988) Ferulic acid esterase activity from Schizophyllun commune. Appl. Environ. Microbiol. 54: 1170–1173.

    PubMed  CAS  Google Scholar 

  • MacKenzie CR, Bilous D, Schneider H and Johnson KG (1987) Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl. Environ. Microbiol. 53: 2835–2839.

    PubMed  CAS  Google Scholar 

  • Markwalder HU and Neukom H (1976) Diferulic acid as a possible crosslink in hemicelluloses from wheat germ. Phytochemistry 15: 836–837.

    Article  CAS  Google Scholar 

  • Mason JC, Richards M, Zimmerman W and Broda P (1988) Identification of extracellular proteins from actinomycetes responsible for the solubilization of lignocellulose. Appl. Microbiol. Biotechnol. 28: 276–280.

    CAS  Google Scholar 

  • Mason JC, Birch OM and Broda P (1990) Preparation of 14C-radiolabelled lignocelluloses from spring barley of differing maturities and their solubilization by Phanerochaete chrysosporium and Streptomyces cyanus. J. Gen. Microbiol. 136: 227–232.

    Article  CAS  Google Scholar 

  • McCarthy AJ, MacDonald MJ, Paterson A and Broda P (1984) Degradation of [14C] lignin-labelled wheat lignocellulose by white-rot fungi. J. Gen. Microbiol. 130: 1023–1030.

    CAS  Google Scholar 

  • McCarthy AJ, Paterson A and Broda P (1986) Lignin solubilization by Thermonospora mesophila. Appl. Microbiol. Biotechnol. 24: 347–352.

    Article  CAS  Google Scholar 

  • McDermid KP, MacKenzie CR and Forsberg CW (1990) Esterase activities of Fibrobacter succinogenes subsp Succino genes S85. Appl. Environ. Microbiol. 56: 127–132.

    PubMed  CAS  Google Scholar 

  • Merewether JWT (1957) A lignin-carbohydrate complex of wood. Holzforschung 11: 65–80.

    Article  Google Scholar 

  • Meshitsuka G, Lee ZZ, Nakano J and Eda S (1983) Contribution of pectic substances to lignin-carbohydrate bonding. Int. Symp. Wood Pulping Chem. 1: 149–152.

    Google Scholar 

  • Michel FC, Dass SB, Grulke EA and Reddy CA (1991) Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of kraft bleach plant effluent. Appl. Environ. Microbiol. 57: 2368–2375.

    PubMed  CAS  Google Scholar 

  • Miller GL (1959) Use of Dinitorsalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426–428.

    Article  CAS  Google Scholar 

  • Miller GL, Blum R, Glennon WE and Burton AL (1960) Measurement of carboxymethylcellulose activity. Anal. Biochem. 2: 127–132.

    Article  Google Scholar 

  • Milstein O, Vered Y, Sharma A, Gressel J and Flowers HM (1983) Fungal biodegradation and biotransformation of soluble lignocarbohydrate complexes from straw. Appl. Environ. Microbiol. 46: 55–61.

    PubMed  CAS  Google Scholar 

  • Minor JL (1982) Chemical linkage of pine polysaccharides to lignin. J. Wood Chem. Technol. 2(1): 1–16.

    Article  CAS  Google Scholar 

  • Minor JL (1986) Chemical linkage of polysaccharides to residual lignin in loblolly pine kraft pulps. J. Wood. Chem. Technol. 6(2): 185–201.

    Article  CAS  Google Scholar 

  • Morrison IM (1974) Structural investigation on the lignin-carbohydrate complexes of Lolium perene. Biochem J. 139: 197–204.

    PubMed  CAS  Google Scholar 

  • Morosoli R, Bertrand JL, Mondou F, Sharek F and Kluepfel D (1986) Purification and properties of a xylanase from Streptomyces lividans. Biochem. J. 239: 587–592.

    PubMed  CAS  Google Scholar 

  • Mukoyoshi SI, Azuma JI and Koshijima T (1981) Lignin-carbohydrate complexes from compression wood of Pinus densiflora Sieb et. Zucc. Holzforschung 35: 233–240.

    Article  CAS  Google Scholar 

  • Nanmori T, Watanabe T, Shinke R, Kohno A and Kawamura Y (1990) Purification and properties of thermostable xylanase and β-xylosidase produced by a newly isolated Bacillus sterothermophilus strain. J. Bacteriol. 172: 6669–6672.

    PubMed  CAS  Google Scholar 

  • Neilson MJ and Richards GN (1982) Chemical structures in a lignin-carbohydrate complex isolated from bovine rumen. Carbohyd. Chem. 104: 121–138.

    CAS  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375–380.

    CAS  Google Scholar 

  • Nerud F and Mišurcová Z (1989) Production of ligninolytic peroxidases by the white-rot fungus Coriolopsis occidentalis. Biotechnol. Lett. 11: 427–432.

    Article  CAS  Google Scholar 

  • Niku-Paavola M-L (1987) Ligninolytic enzymes of the white-rot fungus Phlebia radiata. In: E Odier (ed) Lignin Enzymic and Microbial Degradation (pp 119–123). INRA Publications, Paris.

    Google Scholar 

  • Niku-Paavola M-L, Karhunen E, Salola P and Raunio V (1988) Ligninolytic enzymes of the whiterot fungus Phlebia radiata. Biochem. J. 254: 877–884.

    PubMed  CAS  Google Scholar 

  • Obst JR (1982) Frequency and alkali resistance of lignin-carbohydrate bonds in wood. Tappi 65(4): 109–112.

    CAS  Google Scholar 

  • Obst JR and Kirk TK (1988) Isolation of lignin. Meth. Enzymol. 161: 3–12.

    Article  CAS  Google Scholar 

  • Odier E, Mozuch M, Kalyanaraman B and Kirk TK (1987) Cellobiose: quinone oxidoreductase does not prevent oxidative coupling of phenols or polymerization of lignin by ligninase (pp 131–136). INRA Publications, Paris.

    Google Scholar 

  • Paice MG, Bernier R and Jurasek L (1988a) Viscosity-enhancing bleaching of hardwood kraft pulp with xylanase from a cloned gene. Biotechnol. Bioeng. 32: 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Paice MG, Bernier R and Jurasek L (1988b) Bleaching hardwood kraft with enzymes from cloned systems. CPPA Ann. Mtg. (Montreal) preprints 74A: 133–136.

    Google Scholar 

  • Paice MG, Gurnagul N, Page DH and Jurasek L (1992) Mechanism of hemicellulose-directed prebleaching of kraft pulps. Enzyme Microb. Technol. 14: 272–276.

    Article  CAS  Google Scholar 

  • Paszczynski A, Huynh V-B and Crawford R (1985) Enzymatic activities of an extracellular manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol. Lett. 29: 37–41.

    Article  CAS  Google Scholar 

  • Paszczyński, A, Huynh V-Band Crawford R (1986) Comparison of ligninase-1 and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch. Biochem. and Biophys. 244: 750–765.

    Article  Google Scholar 

  • Périé FH and Gold MH (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white-rot fungus Dichomitus squalens. Appl. Environ. Microbiol. 57: 2240–2245.

    PubMed  Google Scholar 

  • Perez J and Jeffries TW (1990) Mineralization of 14C-ring-labelled synthetic lignin correlates with the production of lignin peroxidase, not of manganese peroxidase or laccase. Appl. Environ. Microbiol. 56: 1806–1812.

    PubMed  CAS  Google Scholar 

  • Perez J and Jeffries TW (1992) The roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 2402–2409.

    PubMed  CAS  Google Scholar 

  • Pew JC (1957) Properties of powdered wood and isolation of lignin by cellulytic enzymes. Tappi 40: 553–558.

    CAS  Google Scholar 

  • Pometto AL and Crawford DL (1986) Catabolic fate of Streptomyces viridosporus T7A-produced, acid-precipitable polymeric lignin upon incubation with ligninolytic Streptomyces species and Phanerochaete chrysosporium. Appl. Environ. Microbiol. 51: 171–179.

    PubMed  CAS  Google Scholar 

  • Poutanen K and Sundberg M (1988) An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans. Appl. Microbiol. Biotechnol. 28: 419–424.

    Article  CAS  Google Scholar 

  • Poutanen K, Ratto M, Puls J and Viikari L (1987) Evaluation of different microbial xylanaolytic systems. J. Biotechnol. 6: 49–60.

    Article  CAS  Google Scholar 

  • Puls J, Schmidt O and Granzow C (1987) α-Glucuronidase in two microbial xylanolytic systems. Enzyme Microb. Technol. 9: 83–88.

    Article  CAS  Google Scholar 

  • Ramachandra M, Crawford DL and Pometto AL (1987) Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp.: a comparative study of wild-type and genetically manipulated strains. Appl. Environ. Microbiol. 53: 2754–2760.

    PubMed  CAS  Google Scholar 

  • Ramachandra M, Crawford DL and Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl. Environ. Microbiol. 54: 3057–3063.

    PubMed  CAS  Google Scholar 

  • Ratto M and Poutanen K (1988) Production of mannan degrading enzymes. Biotechnol. Lett. 10: 661–664.

    Article  CAS  Google Scholar 

  • Reid ID, Abrams GD and Pepper JM (1982) Water soluble products from the degradation of aspen lignin by Phanerochaete chrysosporium Can. J. Bot. 60: 2357–2364.

    Article  CAS  Google Scholar 

  • Reilly PJ (1981) Xylanases: Structure and function. In: A HoUaender (ed) Trends in Biology of Fermentations for Fuels and Chemicals (pp 111–129). Plenum Press, New York.

    Chapter  Google Scholar 

  • Reiser J, Kälin M, Walther I and Fiechter A (1989) Structure and expression of lignin peroxidase genes. In: MP Coughlan (ed) Production, Characterization and Application of Cellulose, Hemicellulose and Lignin Degrading Enzyme Systems (pp 135–146). Elsevier, Amsterdam.

    Google Scholar 

  • Renganathan V, Usha SN and Lindenburg F (1990) Cellobiose-oxidizing enzymes from the lignocellulose-degrading basidiomycete Phanerochaete chrysosporium: interaction with microcrystalline cellulose. Appl. Microbiol. Biotechnol. 32: 609–613.

    Article  CAS  Google Scholar 

  • Ristoph DL and Humprey AE (1985) Kinetic characterization of the extracellular xylanases of Thermonospora sp. Biotechnol. Bioeng. 27: 832–836.

    Article  Google Scholar 

  • Ritter D, Jaklin-Farcher S, Messner K and Stachelberger H (1990) Polymerization and depolymerization of lignosulphonate immobilized on foam. J. Biotechnol. 13: 229–241.

    Article  CAS  Google Scholar 

  • Roberts JC, McCarthy AJ, Flynn NJ and Broda P (1990) Modification of paper properties by the pretreatment of pulp with Saccharomonospora viridis xylanase. Enzyme Microb. Technol. 12: 210–213.

    Article  CAS  Google Scholar 

  • Ross NW, Johnson KG, Braun C, MacKenzie CR and Schneider H (1992) Enzymatic hydrolysis of water soluble lignin-carbohydrate complexes from Populus deltoides: effects of combinations of β-mannanases, xylanase, and acetyl xylan esterase. Enzyme Microb. Technol. 14: 90–95.

    Article  CAS  Google Scholar 

  • Roybt JF and Whelan WH (1972) Reducing value methods for maltodextrins: I. Chain length dependence of alkaline 3,5-dinitrosalicylate and chain-length independence of alkaline copper. Anal. Biochem. 45: 510–516.

    Article  Google Scholar 

  • Royer JC and Nakas JP (1989) Xylanase production by Trichoderma longibrachiatum. Enzyme. Microb. Technol. 11: 405–410.

    Article  CAS  Google Scholar 

  • Scalbert A, Monties B, Lallemand JY, Guittet E and Rolando C (1985) Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24: 1359–1362.

    Article  CAS  Google Scholar 

  • Schmidt O and Kebernik U (1988) A simple assay with dyed substrates to quantify cellulase and hemicellulase activity of fungi. Biotechnol. Tech. 2: 153–158.

    Article  CAS  Google Scholar 

  • Shimada M, Fukuzuka T and Higuchi T (1971) Ester linkages of p-coumaric acid in bamboo and grass lignins. Tappi 54:72–78.

    CAS  Google Scholar 

  • Shoemaker HE (1990) On the chemistry of lignin biodegradation. Recl. Trav. Chim. Pays-Bas 109: 255–272.

    Article  Google Scholar 

  • Simpson HD, Haufler UR and Daniel RM (1991) An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J. 227: 413–417.

    Google Scholar 

  • Smith DCC (1955) Ester groups in lignin. Nature 176: 267–268.

    Article  CAS  Google Scholar 

  • Somogyi M (1952) Notes on sugar determination. J. Biol. Chem. 195: 19–23.

    CAS  Google Scholar 

  • Sundberg M, Poutanen K, Markkanen P and Linko M (1990) An extracellular esterase of Aspergillus awamori. Biotechnol. Appl. biochem. 12: 670–680.

    CAS  Google Scholar 

  • Takahashi N and Koshijima T (1987) Properties of enzyme-unhydrolyzable residue of lignin-carbohydrate complexes isolated from beech wood. Wood Res. 74: 1–11.

    CAS  Google Scholar 

  • Takahashi N and Koshijima T (1988a) Molecular properties of lignin-carbohydrate complexes from beech (Fagus crenata) and pine (Pinus densiflora) woods. Wood Sci. Technol. 22: 177–189.

    Article  CAS  Google Scholar 

  • Takahashi N and Koshijima T (1988b) Ester linkages between lignin and glucuronoxylan in a lignin-carbohydrate complex from beech (Fagus crenata) wood. Wood Sci. Technol. 22: 231–241.

    Article  CAS  Google Scholar 

  • Tan LUL, Mayers P and Saddler JN (1987) Purification and characterization of a thermostable xylanase from a thermophilic fungus Thermoascus aurantiacus. Can. J. Microbiol. 33:689–692.

    Article  CAS  Google Scholar 

  • Tanabe H and Kobayashi Y (1986) Enzymatic maceration mechanism in biochemical pulping of mitsumata (Edgeworthia papyrifera Sieb, et Zucc.) bast. Agric. Biol. Chem. 50: 2779–2784.

    Article  CAS  Google Scholar 

  • Tanabe H and Kobayashi Y (1987) Effect of lignin-carbohydrate complex on maceration of mitsumata (Edgeworthia papyrifera Sieb, et Zucc.) bast by pectinolytic enzymes from Erwinia carotovora. Holzforschung 41: 395–399.

    Article  CAS  Google Scholar 

  • Tanabe H and Kobayashi Y (1988) Aggregate of pectic substances and lignin-carbohydrate complex in mitsumata (Edgeworthia papyrifera Sieb, et Zucc.) bast and its degradation by pectinolytic enzymes from Erwinia cartovora. Holzforschung 42: 47–52.

    Article  CAS  Google Scholar 

  • Tien M and Kirk TK (1983) Lignin-degrading enzyme from hymenomycete Phanerochaete chrysosporium Burds. Science 221: 661–663.

    Article  PubMed  CAS  Google Scholar 

  • Tien M and Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc. Natl. Acad. Sci. U.S.A. 81: 2280–2284.

    Article  PubMed  CAS  Google Scholar 

  • Timell TE (1962) Enzymatic hydrolysis of a 4-O-methylglucuronoxylan from the wood of white birch. Holzforschung 11: 436–447.

    Google Scholar 

  • Timell TW (1964) Wood hemicelluloses. Part I. Adv. Carbohyd. Chem. 19: 247–302.

    CAS  Google Scholar 

  • Timell TW (1965) Wood hemicelluloses. Part II. Adv. Carbohyd. Chem. 20: 409–493.

    CAS  Google Scholar 

  • Torrie JP, Senior DJ and Saddler JN (1990) Production of β-mannanases by Trichoderma harzianum E58. Appl. Microbiol. Biotechnol. 34: 303–307.

    Article  CAS  Google Scholar 

  • Tsujibo H Sakamoto T, Nishino N, Hasegawa T and Inamori Y (1990) Purification and properties of three types of xylanases produced by an alkalophilic actinomycete. J. Appl. Bacteriol. 69: 398–405.

    Article  CAS  Google Scholar 

  • Tuohy MG and Coughlan MP (1992) Production of thermostable xylan-degrading enzymes by Talaromyces emersonii. Bioresource Technol. 39: 131–137.

    Article  CAS  Google Scholar 

  • Utt EA, Eddy CK, Keshav KF and Ingram LO (1991) Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with β-D-xylosidase and αlpha-L-arabinofuranosidase activities. Appl. Environ. Microbiol. 57: 1227–1234.

    PubMed  CAS  Google Scholar 

  • Waldner R, Leisola MSA and Fiechter A (1988) Comparison of ligninolytic activities of selected white-rot fungi. Appl. Microbiol. Biotechnol. 29: 400–407.

    Article  CAS  Google Scholar 

  • Wallace G, Chesson A, Lomax JA and Jarvis MC (1991) Lignin-carbohydrate complexes in graminaceous cell walls in relation to digestibility. Animal Feed Sci. Technol. 32: 193–199.

    Article  CAS  Google Scholar 

  • Wang PY, Bolker HI and Purves CB (1967) Uronic acid ester groups in some softwoods and hardwoods. Tappi 50(3): 123–124.

    CAS  Google Scholar 

  • Wariishi H, Valli K and Gold MH (1991) In vitro depolymerization by manganese peroxidase of Phanerochaete chrysosporium. Biochem. Biophys. Res. Comm. 176: 269–275.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T and Koshijima T (1988) Evidence for an ester linkage between lignin and glucuronic acid in lignin-carbohydrate complexes by DDQ-oxidation. Agric. Biol. Chem. 52: 2953–2955.

    Article  CAS  Google Scholar 

  • Watanabe T, Azma J and Koshijima T (1985) Isolation of lignin-carbohydrate complex fragments by adsorption chromatography. Mokuzai Gakkaishi 31: 52–53.

    CAS  Google Scholar 

  • Watanabe TJ, Ohnishi Y, Kaizu YS and Koshijima T (1989) Binding site analysis of the ether linkages between lignin and hemicelluloses in lignin-carbohydrate complexes by DDQ-oxidation. Agric. Biol. Chem. 53: 2233–2252.

    Article  CAS  Google Scholar 

  • Westermark U and Ericksson KE (1974a) Carbohydrate-dependent enzymic quinone reduction during lignin degradation. Acta Chem. Scand. B 28: 204–208.

    Article  CAS  Google Scholar 

  • Westermark U and Ericksson KE (1974b) Cellobiose-quinone oxidoreductase, a new wood-degrading enzyme from white-rot fungi. Acta Chem. Scand. B 28: 209–214.

    Article  CAS  Google Scholar 

  • Wilkie KCB (1979) The hemicelluloses of grasses and cereals. Adv. Carbohyd. Chem. Biochem 36: 215–264.

    Article  CAS  Google Scholar 

  • Wong KKY, Tan LUL and Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol. Rev. 52: 305–317.

    PubMed  CAS  Google Scholar 

  • Woodward J (1984) Xylanases: Functions, properties and applications. In: A Wiseman (ed) Topics in Enzyme and Fermentation Biotechnology V. 8 (pp 9–30). Wiley, New York.

    Google Scholar 

  • Yamasaki TS, Hosoya CL, Chen JS, Gratzl JS and Chang HM (1981) Characterization of residual lignin in kraft pulp, Vol 2, June 9–12. The Eckman-Days Int. Symp. on Wood and Pulping Chem., Stockholm, Sweden, pp 34–42.

    Google Scholar 

  • Zimmerman W (1989) Hemicellulolytic enzyme systems from Actinomycetes. In: MP Coughlan (ed) Production, Characterization and Application of Cellulose, Hemicellulose and Lignin Degrading Enzyme Systems (pp 161–175). Elsevier, Amsterdam.

    Google Scholar 

  • Zimmerman W and Broda P (1989) Utilization of lignocellulose from barley straw by actinomycetes. Appl. Microbiol. Biotechnol. 30: 103–109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jeffries, T.W. (1994). Biodegradation of lignin and hemicelluloses. In: Ratledge, C. (eds) Biochemistry of microbial degradation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1687-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1687-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4738-8

  • Online ISBN: 978-94-011-1687-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics