Skip to main content

Microbial Fermentation in Insect Guts

  • Chapter
Gastrointestinal Microbiology

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

If biological success is measured either by numbers of individuals or diversity of species, insects are undoubtedly the most successful group of animals in the history of life on earth. There are more species of insects than all other animal species combined (Wilson 1992). This observation is especially remarkable in light of the fact that insects do not colonize marine habitats, a limitation that restricts them to approximately 30% of the planet’s surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JM, Rayner ADM, Walton DWH (1984) Invertebrate-Microbial Interactions. Cambridge: Cambridge University Press.

    Google Scholar 

  • Appel HM, Martin MM (1990) Gut redox conditions in herbivorous lepidopteran larvae. J Chem Ecol 16: 3277–3290.

    Article  CAS  Google Scholar 

  • Barbosa P, Krischik VA, Jones CG (1991) Microbial Mediation of Plant-Herbivore Interactions. New York: John Wiley and Sons.

    Google Scholar 

  • Bayon C (1980a) Transit des aliments et fermentations continues dans le tube digestif d’une larve xylphage d’ Insecte: Oryctes nasicornis (Coleoptera: Scarabaeidae). C R Acad Sci Paris 290: 1145–1148.

    Google Scholar 

  • Bayon C (1980b) Volatile fatty acids and methane production in relation to anaerobic carbohydrate fermentation in Oryctes nasicornis larvae (Coleoptera: Scarabaeidae). J Insect Physiol 26: 819–828.

    Article  CAS  Google Scholar 

  • Bayon C (1981a) Modifications ultrastructurales des parois végétales dans le tube digestif d’une larve xylophage Oryctes nasicornis (Coleoptera: Scarabaeidae): role des bactéries. Can J Zool 59: 220–229.

    Article  Google Scholar 

  • Bayon C (1981b) Ultrastructure del’epithelium intestinal et flore parietale chez larve xylophage d’ Oryctes nasicornis (Coleoptera: Scarabaeidae). Int J Insect Morphol Embryol 10: 359–371.

    Article  Google Scholar 

  • Bayon C, Etiévant P (1980) Methanic fermentation in the digestive tract of a xylophagous insect: Oryctes nasicornis L. larva (Coleoptera: Scarabaeidae). Experientia 36: 154–155.

    Article  CAS  Google Scholar 

  • Bayon C, Mathelin JA (1980) Carbohydrate fermentation and byproduct absorption studied with labeled cellulose in Oryctes nasicornis (Coleoptera, Scarabeidae). J Insect Physiol 26: 833–840.

    Article  CAS  Google Scholar 

  • Bermudes D, Chase D, Margulis L (1988) Morphology as a basis for taxonomy of large spirochetes symbiotic in wood-eating roaches and termites: Pillotina gen. nov., nom rev.; Pillotina calotermitidis sp. nov., nom rev.; Diplocalyx gen. nov., nom rev.; Diplocalyx calotermitidis sp. nov., nom rev.; Hollandina gen. nov., nom rev.; Hollandina pterotermitidis sp. nov., nom rev.; and Clevelandina reticulitermitidis gen. nov., sp. nov. Int J Syst Bacteriol 38: 291–302.

    Article  PubMed  CAS  Google Scholar 

  • Bignell DE (1984) The arthropod gut as an environment for microorganisms. In: Anderson JM, Rayner ADM, Walton DWH, eds. Invertebrate-Microbial Interactions, pp. 205–228. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bignell DE (1994) Soil-feeding and gut morphology in higher termites. In: Hunt JH, Nalepa CA, eds. Nourishment and Evolution in Insect Societies, pp. 131–158. Boulder: Westview Press.

    Google Scholar 

  • Bignell DE, Anderson JM, Crosse R (1991) Isolation of facultatively aerobic actinomycetes from the gut, parent soil and mound materials of the termites Procubitermes aburiensis and Cubitermes severus. FEMS Microbiol Ecol 85: 151–160.

    Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM (1980) Distribution and abundance of bacteria in the gut of a soil-feeding termite, Procubitermes aburiensis (Termitidae, Termitinae). J Gen Microbiol 117: 393–403.

    PubMed  CAS  Google Scholar 

  • Bignell DE Oskarsson H, Anderson JM, Ineson P, Wood TG (1983) Structure, microbial associations and function of the so-called “mixed segment” of the gut in two soilfeeding termites, Procubitermes aburiensis and Cubitermes severus (Termitidae, Termitinae). J Zool Lond 201: 445–480.

    Article  Google Scholar 

  • Boone DR, Mah RH (1988) Group I. Methanogenic archaeobacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG, eds. Bergey’s Manual of Systematic Bacteriology, Vol. 3. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Bracke JW, Cruden DL, Markovetz AJ (1978) Effect of metronidazole on the intestinal microflora of the American cockroach, Periplaneta americana L. Antimicrob Agents Chemother 13: 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Bracke JW Markovetz AJ (1980) Transport of bacterial endproducts from the colon of Periplaneta americana. J Insect Physiol 26: 85–89.

    Article  CAS  Google Scholar 

  • Brauman A, Kane MD, Labat M, Breznak JA (1990) Hydrogen metabolism by termite gut microbes. In: Belaich JP, Bruschi M, Garcia JL, eds. Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer, pp. 369–371. New York: Plenum Publishing.

    Chapter  Google Scholar 

  • Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257: 1384–1387.

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36: 323–343.

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA (1984a) Biochemical aspects of symbiosis between termites and their intestinal microbiota. In: Anderson JM, Rayner ADM, Walton DWH, eds. Invertebrate-Microbial Interactions, pp. 173–203. Cambridge: Cambridge University Press.

    Google Scholar 

  • Breznak JA (1984b) Hindgut spirochetes of termites and Cryptocercus punctulatus. In: Krieg NR, ed. Bergey’s Manual of Systematic Bacteriology, Vol. 1, pp. 68–70. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Breznak JA (1990) Metabolic activities of the microbial flora of termites. In: Lesel R, ed. Microbiology of Poecilotherms, pp. 63–68. Amsterdam: Elsevier.

    Google Scholar 

  • Breznak JA (1994) Acetogenesis from carbon dioxide in termite guts. In: Drake HL ed. Acetogenesis. pp. 303–330. New York: Chapman and Hall

    Google Scholar 

  • Breznak JA, Blum JS (1991) Mixotrophy in the termite gut acetogen, Sporomusa termitida. Arch Microbiol 156: 105–110.

    Article  CAS  Google Scholar 

  • Breznak JA, Brill WJ, Mertins, JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244: 577–580.

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39: 453–487.

    Article  CAS  Google Scholar 

  • Breznak JA, Kane MD (1990) Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol Rev 87: 309–314.

    Article  CAS  Google Scholar 

  • Breznak JA, Pankratz HS (1977) In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus (Shiraki)]. Appl Environ Microbiol 33: 406–426.

    PubMed  CAS  Google Scholar 

  • Breznak JA, Switzer JS (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52: 623–630.

    PubMed  CAS  Google Scholar 

  • Breznak JA, Switzer JM, Seitz H-J (1988) Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150: 282–288.

    Article  CAS  Google Scholar 

  • Brune A, Emerson D, Breznak JA (1995a) The termite microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61: 2681–2687.

    PubMed  CAS  Google Scholar 

  • Brune A, Miambi E, Breznak JA (1995b) Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Appl Environ Microbiol 61: 2688–2695.

    PubMed  CAS  Google Scholar 

  • Buchner P (1965) Endosymbiosis of Animals With Plant Microorganisms. New York: Interscience.

    Google Scholar 

  • Bull AT, Goodfellow M, Slater JH (1992) Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol 46: 219–252.

    Article  PubMed  CAS  Google Scholar 

  • Bull AT, Hardman DJ (1991) Microbial diversity. Curr Opin Biotechnol 2: 421–428.

    Article  CAS  Google Scholar 

  • Caetano FH (1989) Endosymbiosis of ants with intestinal and salivary gland bacteria. In: Schwemmler W, Gassner G, eds. Insect Endocytobiosis: Morphology, Physiology, Genetics, Evolution, pp. 57–76. Boca Raton, Fla: CRC Press.

    Google Scholar 

  • Cano RJ, Borucki MK, Higby-Schweitzer M, Poinar HN, Poinar GO, Pollard KJ (1994) Bacillus DNA in fossil bees: an ancient symbiosis? Appl Environ Microbiol 60: 2164–2167.

    PubMed  CAS  Google Scholar 

  • Chapman RF (1982) The Insects: Structure and Function. Cambridge: Harvard University Press.

    Google Scholar 

  • Chapman RF (1985) Structure of the digestive system. In: Kerkut GA, Gilbert LI, eds. Comprehenisive Insect Physiology, Biochemistry and Pharmacology, Vol. 4, pp. 165–212. Oxford: Pergamon Press.

    Google Scholar 

  • Charnley AK, Hun J, Dillon RJ (1985) The germ-free culture of desert locusts Schistoccerca gregaria. J Insect Physiol 31: 477–485.

    Article  Google Scholar 

  • Choe JC (1992) Zoraptera of Panama with a review of the morphology systematics and biology of the order. In: Quintero D Aiello A eds. Insects of Panama and Mesoamerica: Selected Studies pp. 249–346. Oxford: Oxford University Press

    Google Scholar 

  • Cleveland LR (1924) Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci USA 19: 424–428.

    Google Scholar 

  • Cleveland LR, Hall SR, Sanders EP, Collier J (1934) The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17: 184–342.

    Google Scholar 

  • Cochran DG (1985) Nitrogen excretion in cockroaches. Annu Rev Entomol 30: 29–49.

    Article  CAS  Google Scholar 

  • Collins NM (1983) The utilization of nitrogen resources by termites (Isoptera). In: Lee JA, McNeill S, Rorison IH, eds. Nitrogen as an Ecological Factor, pp. 381–412. Oxford: Blackwell.

    Google Scholar 

  • Conrad RB, Schink B, Phelps TJ (1986) Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiol Ecol 38: 353–360.

    Article  CAS  Google Scholar 

  • Conrad R, Bak F, Seitz H-J, Thebrath B, Mayer HP, Schutz H (1989) Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and ake sediment. FEMS Microbiol Ecol 62: 285–294.

    Article  CAS  Google Scholar 

  • Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149: 350–357.

    Article  CAS  Google Scholar 

  • Cruden DL, Markovetz AJ (1987) Microbial ecology of the cockroach gut. Annu Rev Microbiol 41: 617–643.

    Article  PubMed  CAS  Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10: 147–172.

    Article  Google Scholar 

  • Czolij RM, Slaytor M, O’Brien RW (1985) Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nautitermitinae). Appl Environ Microbiol 49: 1226–1236.

    Google Scholar 

  • Darlington JPEC (1994) Nutrition and evolution in fungus-growing termites. In: Hunt JA, Nalepa CA, eds. Nourishment and Evolution in Insect Societies, pp. 105–130. Boulder: Westview Press.

    Google Scholar 

  • Daser U, Brandi R (1992) Microbial gut floras of eight species of tephritids. Biol J Linn Soc 45: 155–165.

    Article  Google Scholar 

  • Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36: 752–754.

    PubMed  CAS  Google Scholar 

  • Dolfing J (1988) Acetogenic bacteria. In: Zehnder AJB, ed. Biology of Anaerobic Micro organsisms, pp. 417–468. New York: John Wiley and Sons.

    Google Scholar 

  • Douglas A (1989) Mycetocyte symbiosis in insects. Biol Rev 64: 409–434.

    Article  PubMed  CAS  Google Scholar 

  • Dowd PF (1991) Symbiont-mediated detoxification in insect herbivores. In: Barbosa P, Krischik VA, Jones CG, eds. Microbial Mediation of Plant-Herbivore Interactions, pp. 411–439. New York: John Wiley and Sons.

    Google Scholar 

  • Dowd PF (1992) Insect fungal symbionts: a promising source of detoxifying enzymes. J Indust Microbiol 9: 149–161.

    Article  CAS  Google Scholar 

  • Downer RGH (1982) Fat body and metabolism. In: Bell WJ, Adiyodi KG, eds. The American Cockroach, pp. 151–174. New York: Chapman and Hall.

    Google Scholar 

  • Drake HL (1994) Acetogenesis. New York: Chapman and Hall.

    Google Scholar 

  • Drew RAI, Lloyd AC (1991) Bacteria in the life cycle of tephritid fruit flies. In: Barbosa P, Krischik VA, Jones CG, eds. Microbial Mediation of Plant-Herbivore Interactions, pp. 441–465. New York: John Wiley and Sons.

    Google Scholar 

  • Dudley T, Anderson NH (1982) A survey of invertebrates asssociated with wood debris in aquatic habitats. Melanderia 39: 1–22.

    Google Scholar 

  • Edwards R, Mill AE (1986) Termites in Buildings. W. Sussex: Rentokil Ltd.

    Google Scholar 

  • Embly TM, Finlay BJ (1994) The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 140: 225–235.

    Article  Google Scholar 

  • Fenchel T (1987) Ecology of protozoa: the biology of free-living phagotrophic protists. Madison, Wisc: Science Tech, Inc.

    Google Scholar 

  • Ferry JG (ed) (1993) Methanogenesis. New York: Chapman and Hall.

    Book  Google Scholar 

  • Findlay S, Meyer JL, Smith PJ (1986) Incorporation off microbial biomass by Peltoperla sp. (Plecoptera) and Tipula sp. (Diptera). J North Am Benthol Soc 4: 306–310.

    Article  Google Scholar 

  • French JRJ, Turner GL, Bradbury JF (1976) Nitrogen fixation by bacteria from the hindgut of termites. J Gen Microbiol 95: 202–206.

    Article  CAS  Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev 39: 181–213.

    Article  CAS  Google Scholar 

  • Gijzen HJ, Broers CAM, Baragahare M, Stumm CK (1991) Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Appl Environ Microbiol 57: 1630–1634.

    PubMed  CAS  Google Scholar 

  • Gijzen HJ, Baragahare M (1992) Contribution of anaerobic protozoa and methanogens to hindgut metabolic activities of the american cockroach, Periplaneta americana. Appl Environ Microbiol 58: 2565–2570.

    PubMed  CAS  Google Scholar 

  • Gilliam M, Buchman SL, Lorenz BJ, Schmalzel RJ (1990) Bacteria belonging to the genus Bacillus associated with three species of solitary bees. Apidologie 21: 99–105.

    Article  Google Scholar 

  • Gilliam M, Taber S (1991) Diseases, pests, and normal microflora of honeybees, Apis mellifera, from feral colonies. J Invert Pathol 58: 286–289.

    Article  Google Scholar 

  • Guo L, Quilici DR, Chase J, Blomquist GJ (1991) Gut tract microorganisms supply the precursors for methyl-branched hydrocarbon biosynthesis in the termite Zootermopsis nevadensis. Insect Biochem 21: 327–333.

    Article  CAS  Google Scholar 

  • Hogan ME, Slaytor M, O’Brien RW (1985) Transport of volatile fatty acids across the hindgut of the cockroach, Panesthia cribrata Saussure and the termite, Mastotermes darwiniensis Froggatt. J Insect Physiol 31: 587–591.

    Article  CAS  Google Scholar 

  • Hogan M, Veivers PC, Slaytor M, Czolij RT (1988) The site of cellulose breakdown in higher termites (Nasutitermes walderi and Nasutitermes exitiosus). J Insect Physiol 34: 891–899.

    Article  CAS  Google Scholar 

  • Honigburg, BM (1970) Protozoa associated with termites and their role in digestion. In: Krishna K, Weesner FM, eds. Biology of Termites, Vol. 1, pp. 1–36. New York: Acedemic Press.

    Google Scholar 

  • Hungate RE (1939) Experiments on the nutrition of Zootermopsis. III. The anaerobic carbohydrate dissimilation by the intestinal protozoa. Ecology 20: 230–245.

    Article  CAS  Google Scholar 

  • Hungate RE (1943) Quantitative analyses on the cellulose fermentation by termite protozoa. Ann Entomol Soc Am 36: 730–739.

    CAS  Google Scholar 

  • Hungate RE (1946) The symbiotic utilization of cellulose. J Elisha Mitchell Soc 62: 9–24.

    CAS  Google Scholar 

  • Hungate RE (1985) Anaerobic biotransformations of organic matter. In: Leadbetter ER, Poindexter JS, eds. Bacteria in Nature, Vol. 1, pp. 39–95. New York: Plenum.

    Chapter  Google Scholar 

  • Hunt JH Nalepa CA (1994) Nourishment and Evolution in Insect Societies. Boulder: Westview Press.

    Google Scholar 

  • Jones JG, Simon BM (1985) Interactions of acetogens and methanogens in anaerobic freshwater sediments. Appl Environ Microbiol 49: 944–948.

    PubMed  CAS  Google Scholar 

  • Kane MD, Brauman, A Breznak JA (1991) Clostridium mayombeii, sp. nov. an acetogenic bacterium from the guts of the African soil-feeding termite, Cubitermes speciousus. Arch Microbiol 156: 99–104.

    Article  CAS  Google Scholar 

  • Kane MD, Breznak JA (1991a) Acetonema longum, gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch Microbiol 156: 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Kane MD, Breznak JA (1991b) Effect of host diet on the production of organic acids and methane by cockroach gut bacteria. Appl Environ Microbiol 57: 2628–2634.

    PubMed  CAS  Google Scholar 

  • Kane MD, Pierce NE (1994) Diversity within diversity: molecular approaches to studying microbial interactions with insects. In: Schierwater B, Streit B, Wagner G, DeSalle R, eds. Molecular Methods in Ecology and Evolution, pp. 509–524. Berlin: Berkhauser Verlag. In press.

    Google Scholar 

  • Kaufman MG, Klug MJ (1990) Microbial community metabolism in the digestive tract of crickets (Orthoptera: Gryllidae): Implications for omnivorous insects. In: Lesel R, ed. Microbiology of Poecilotherms, pp. 69–72. Amsterdam: Elsevier.

    Google Scholar 

  • Kaufman MG, Klug MJ (1991) The contribution of hindgut bacteria to dietary carbohydrate utilization by crickets (Orthoptera: Gryllidae). Comp Biochem Physiol 98: 117–123.

    Article  Google Scholar 

  • Kaufman MG, Klug MJ, Merrit RW (1989) Growth and food utilization parameters of germ-free house crickets, Acheta domesticus. J Insect Physiol 35: 957–967.

    Article  Google Scholar 

  • Kirby H, Margulis L (1994) Harold Kirby’s symbionts of termites: karymastigont reproduction and calonymphid taxonomy. Symbiosis 16: 7–16.

    PubMed  CAS  Google Scholar 

  • Klug MJ, Kotarski S (1980) Bacteria associated with the gut tract of larval stages of the aquatic cranefly Tipula abdominalis (Diptera; Tipulidae). Appl Environ Microbiol 40: 408–416.

    PubMed  CAS  Google Scholar 

  • Krishna K (1970) Taxonomy, phylogeny, and distribution of termites. In: Krishna K, Weesner FM, eds. Biology of Termites, Vol. 2, pp. 127–152. New York: Academic Press.

    Google Scholar 

  • Kuhnigk T, Borst E-M, Ritter A, et al. (1994) Degradation of lignin monomers by the hindgut flora of xylophagous termites. Sys Appl Microbiol 17: 76–85.

    Article  CAS  Google Scholar 

  • Kukor JJ, Martin MM (1983) Aquisition of digestive enzymes by siricid woodwasps from their fungal symbiont. Science 220: 1161–1163.

    Article  PubMed  CAS  Google Scholar 

  • Lajoie, SF, Bank S, Miller TL, Wolin MJ (1988) Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl Environ Microbiol 54: 2723–2727.

    PubMed  CAS  Google Scholar 

  • Lawson DL, Klug MJ (1989) Microbial fermentation in the hindguts of stream detritivores. J North Am Benthol Soc 8: 85–91.

    Article  Google Scholar 

  • Lawson DL, Klug MJ, Merrit RW (1984) The influence of the physical, chemical, and microbiological characteristics of decomposing leaves on the growth of the detritivore Tipula abdominalis (Diptera: Tipulidae). Can J Zool 62: 2339–2343.

    Article  Google Scholar 

  • Lee MJ, Schreurs PJ, Messer AC, Zinder SH (1987) Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Curr Microbiol 15: 337–341.

    Article  Google Scholar 

  • Lee MJ, Zinder SH (1988) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows autotropphically on H2-CO2. Appl Environ Microbiol 54: 124–129.

    PubMed  CAS  Google Scholar 

  • Liu S, Suflita JM (1993) H2-CO2-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium. Appl Environ Microbiol 59: 1325–1331.

    PubMed  CAS  Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40: 415–450.

    Article  PubMed  CAS  Google Scholar 

  • Martin MM (1987) Invertebrate-Microbial Interactions: Ingested Fungal Enzymes in Arthropod Biology. Ithaca: Cornell University Press.

    Google Scholar 

  • Martin MM (1991) The evolution of cellulose digestion in insects. Phil Trans R Soc Lond B 333: 281–288.

    Article  Google Scholar 

  • Mauldin JK, Rich NM, Cook DW (1978) Amino acid synthesis from 14C-acetate by normally and abnormally faunated termites, Coptotermes formosanus. Insect Biochem 8: 105–109.

    Article  CAS  Google Scholar 

  • McBee RH (1997) Fermentation in the hindgut. In: Clarke RTJ, Bauchop T, eds. Microbial Ecology of the Gut, pp. 185–222. London: Academic Press.

    Google Scholar 

  • McEwen SE, Slaytor M, Obrien RW (1980) Cellobiase activity in three species of Australian termites. Insect Biochem 10: 563–567.

    Article  CAS  Google Scholar 

  • Mead LJ, Khachatourians GG, Jones GA (1988) Microbial ecology of the gut in laboratory stocks of the migratory grasshopper, Melaoplus sanguinipes (Fab.) (Orthoptera: Acridae). Appl Environ Microbiol 54: 1174–1181.

    PubMed  CAS  Google Scholar 

  • Messer AC, Lee MJ (1989) Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticolis. Microb Ecol 18: 275–284.

    Article  CAS  Google Scholar 

  • Metcalf CL, Flint WP, Metcalf RL (1962) Destructive and Useful Insects, 4th ed. New York: McGraw-Hill.

    Google Scholar 

  • Mullins DE, Cochran DG (1972) Nitrogen excretion in cockroaches: uric acid is not a major product. Science 177: 699–701.

    Article  PubMed  CAS  Google Scholar 

  • Mullins DE, Cochran DG (1975a) Nitrogen metabolism in the American cockroach. I. An examination of positive nitrogen balance with respect to uric acid stores. Comp Biochem Physiol 50A: 489–500.

    Article  Google Scholar 

  • Mullins DE, Cochran DG (1975b) Nitrogen metabolism in the American cockroach. II. An examination of negative nitrogen balance with respect to mobilization of uric acid stores. Comp Biochem Physiol 50A: 501–510.

    Article  Google Scholar 

  • Nalepa CA (1984) Colony oviposition, protozoan transfer and some life history characteristics of the woodroach Cryptocercus punctulatus Scudder. Behav Ecol Sociobiol 14: 273–279.

    Article  Google Scholar 

  • Nalepa CA (1990) Early development of nymphs and establishment of the hindgut symbiosis in Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Ann Entomol Soc Am 81: 637–641.

    Google Scholar 

  • Nalepa CA (1991) Ancestral transfer of symbionts between cockroaches and termites: an unlikely scenario. Proc R Soc Lond B 246: 185–189.

    Article  CAS  Google Scholar 

  • Nalepa CA (1994) Nourishment and the origin of termite eusociality. In: Hunt JH, Nalepa CA, eds. Nourishment and Evolution in Insect Societies, pp. 57–104. Boulder: Westview Press.

    Google Scholar 

  • Noirot C (1992) From wood-to humus-feeding: an important trend in termite evolution. In: Billen J, ed. Biology and Evolution of Social Insects, pp. 107–119. Leuven, Belgium: Leuven University Press.

    Google Scholar 

  • O’Brien RW, Breznak JA (1984) Enzymes of acetate and glucose metabolism in termites. Insect Biochem 14: 639–643.

    Article  Google Scholar 

  • O’Brien GW, Veivers PC, McEwen SE, Slaytor M, O’Brien RG (1979) The origin and distribution of cellulase in the termites, Nasutitermes exitiosus and Coptotermes lacteus. Insect Biochem 9: 619–625.

    Article  Google Scholar 

  • Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45: 1602–1613.

    PubMed  CAS  Google Scholar 

  • Odelson DA, Breznak JA (1985a) Cellulase and other polymer-hydrolyzing activites of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Appl Environ Microbiol 49: 622–626.

    PubMed  CAS  Google Scholar 

  • Odelson DA, Breznak JA (1985b) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49: 614–621.

    PubMed  CAS  Google Scholar 

  • Pasti MB, Belli ML (1985) Celluloytic activity of actinomycetes isolated from termites (Termitidae) gut. FEMS Microbiol Lett 26: 107–112.

    Article  CAS  Google Scholar 

  • Pasti MB, Pometto ALM, Nuti MP, Crawford DL (1990) Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Appl Environ Microbiol 56: 2213–2218.

    PubMed  CAS  Google Scholar 

  • Pereira CRD, Anderson NH, Dudley T (1982) Gut content analysis of aquatic insects from wood substrates. Melanderia 39: 23–33.

    Google Scholar 

  • Phelps TJ, Zeikus JG (1984) Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl Environ Microbiol 48: 1088–1095.

    PubMed  CAS  Google Scholar 

  • Potrikus CJ, Breznak JA (1977) Nitrogen-fixing Enterobacter agglomerons isolated from the guts of wood-eating termites. Appl Environ Microbiol 33: 392–399.

    PubMed  CAS  Google Scholar 

  • Potrikus CJ, Breznak JA (1980) Uric acid in wood-eating termites. Insect Biochem 10: 19–27.

    Article  CAS  Google Scholar 

  • Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen: a strategy for nutrient conservation. Proc Natl Acad Sci USA 78: 4601–4605.

    Article  PubMed  CAS  Google Scholar 

  • Prestwich GD, Bentley BL (1982) Ethylene production by the fungus comb of Macrotermitines (Isoptera, Termitidae): a caveat for the use of the acetylene reduction assay for nitrogenase activity. Sociobiology 7: 145–152.

    Google Scholar 

  • Prins RA, Kreulen DA (1991) Comparative aspects of plant cell wall digestion in insects. Anim Feed Sci Technol 32: 101–118.

    Article  Google Scholar 

  • Prins RA, Lankhorst A (1977) Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol Lett 1: 255–258.

    Article  CAS  Google Scholar 

  • Radek R, Hausmann K, Breunig A (1992) Ectobiotic and endycytobiotic bacteria associated with the termite flagellate Joenia annectens. Acta Prorozool 31: 93–107.

    Google Scholar 

  • Rouland C, Civas A, Renoux J, Petek F (1988a) Purification and properties of cellulases from the termite Macrotermes mulleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp. Comp Biochem Physiol 91B: 449–458.

    CAS  Google Scholar 

  • Rouland C, Civas A, Renoux J, Petek F (1988b) Synergistic activities of the enzymes involved in cellulose degradation, purified from Macrotermes mulleri and from its symbiotic fungus Termitomyces sp. Comp Biochem Physiol 91B: 459–465.

    CAS  Google Scholar 

  • Rohrmann GF Rossman AY (1980) Nutrient strategies of Macrotermes ukuzii (Isoptera: Termitidae). Pedobiologia 20: 61–73.

    CAS  Google Scholar 

  • Sands WA (1969) The association of termites and fungi. In: Krishna K, Weesner FM, eds. Biology of Termites, Vol. 1, pp. 495–524. New York: Academic Press.

    Google Scholar 

  • Scrivener AM, Slaytor M, Rose HA (1989) Symbiont-independent digestion of cellulose and starch in Panesthia cribrata Saussure, an Australian wood-eating roach. J Insect Biochem 35: 935–941.

    Google Scholar 

  • Sharak Genthner BR, Davis CL, Bryant MP (1981) Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol-and H2-CO2-utilizing species. Appl Environ Microbiol 42: 12–19.

    Google Scholar 

  • Sinsabaugh RL, Linkins AE, Benfield EF (1985) Cellulose digestion and assimilation by three leaf-shredding aquatic insects. Ecology 66: 1464–1471.

    Article  CAS  Google Scholar 

  • Slansky F, Rodriguez JG (1987) Nutritional Fxology of Insects, Mites, Spiders and Related Invertebrates. New York: John Wiley and Sons.

    Google Scholar 

  • Slaytor M (1992) Cellulose digestion in termites and cockroaches: what role do symbionts play? Comp Biochem Physiol 103B: 775–784.

    CAS  Google Scholar 

  • Snipes BT, Tauber OE (1937) Time required for food passage through the alimentary tract of the cockroach, Periplaneta americana Linn. Ann Entomol Soc Am 30: 277–284.

    CAS  Google Scholar 

  • Taguchi F, Chang JD, Takiguchi S, Morimoto M (1992) Efficient hydrogen production from starch by a bacterium isolated from termites. J Ferment Bioeng 73: 244–245.

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann KK, Decker K (1977) Energy conservation in chemolithotrophic bacteria. Bacteriol Rev 41: 100–180.

    PubMed  CAS  Google Scholar 

  • Thorne BL (1990) A case for ancestral transfer of symbionts between cockroaches and termites. Proc R Soc Lond B 241: 37–41.

    Article  CAS  Google Scholar 

  • Thorne BL (1991) Ancestral transfer of symbionts between cockroaches and termites: an alternative hypothesis. Proc R Soc Lond B 246: 191–195.

    Article  CAS  Google Scholar 

  • Thorne BL, Carpenter JM (1992) Phylogeny of the Dictyoptera. Syst Entomol 17: 253–268.

    Article  Google Scholar 

  • To L, Margulis L, Cheung ATW (1978) Pillotinas and hollandinas: distribution and behavior of large spirochaetes symbiotic in termites. Microbios 22: 103–133.

    PubMed  CAS  Google Scholar 

  • To LP, Margulis L, Chase D, Nutting WL (1980) The symbiotic microbial community of the sonoran desert termite: Pterotermes occidentis. BioSystems 13: 109–137.

    Article  PubMed  CAS  Google Scholar 

  • Treves DS, Martin MM (1994) Cellulose digestion in primitive hexapods: effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat, Thermobia domestica (Zygentoma, Lepismatidae). J Chem Ecol 20: 2003–2020.

    Article  CAS  Google Scholar 

  • Ulrich RG, Buthala DA, Klug MJ (1981) Microbiota associated with the gastrointestinal tract of the common house cricket, Acheta domestica. Appl Environ Microbiol 41: 246–254.

    PubMed  CAS  Google Scholar 

  • Veivers PC, Muhlemann R, Slaytor M, Leuthold RH, Bignell DE (1991) Digestion, diet and polytheism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M. michaelseni Sjostedt. J Insect Physiol 37: 675–682.

    Article  CAS  Google Scholar 

  • Waller DA, La Fage JP (1987) Nutritional ecology of termites. In: Slansky F, Rodriguez J, eds. Nutritional Ecology of Insects, Mites, Spiders and Related Invertebrates, pp. 487–532. New York: John Wiley and Sons.

    Google Scholar 

  • Whitman WB 1985 Methagenic bacteria. In Woese CR Wolfe RS eds. The Bacteria A Treatise on Structure and Function VIII Archaebacteria pp. 3–84. New YorkAcademic Press

    Google Scholar 

  • Williams CM, Veivers PC, Slaytor M, Cleland SV (1994) Atmospheric carbon dioxide and acetogenesis in the termite Nasutitermes walkeri (Hill). Comp Biochem Physiol 107A: 113–118.

    Article  CAS  Google Scholar 

  • Wilmarth KR, Boone DR, Man RH (1985) Hydrogen utilizing bacteria in the colon of cetaceans. Abstr Ann Mtg Am Soc Microbiol, p. 164.

    Google Scholar 

  • Wilson EO (1971) The Insect Societies. Cambridge: Harvard University Press.

    Google Scholar 

  • Wilson EO (1992) The Diversity of Life. Cambridge: Harvard University Press.

    Google Scholar 

  • Wolin MJ (1974) Metabolic interactions among intestinal microbes. Am J Clin Nutr 27: 1320–1328.

    PubMed  CAS  Google Scholar 

  • Wolin MJ (1982) Hydrogen transfer in microbial communities. In: Bull AT, Slater JH, eds. Microbial Interactions and Communities, pp. 323–356. London: Academic Press.

    Google Scholar 

  • Wood HG, Ragsdale SW, Pezacka E. (1986a) The acetyl-CoA pathway a newly discovered pathway of autotrophic growth. Trends Biochem Sci 11: 1–5.

    Article  Google Scholar 

  • Wood, HG, Ragsdale SW, Pezacka E (1986b) The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol Rev 39: 345–362.

    Article  CAS  Google Scholar 

  • Wood TG (1978) Food and feeding habits of termites. In: Brian MV, ed. Production Ecology of Ants and Termites, pp. 55–80. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wood TG, Johnson RA (1986) The biology, physiology, and ecology of termites. In: Vinson SB, ed. Economic Impact and Control of Social Insects, pp. 1–68. New York: Praeger.

    Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV, ed. Production Ecology of Ants and Termites, pp. 245–293. Cambridge: Cambridge University Press.

    Google Scholar 

  • Yamin MA (1979) Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grassä, and Hypermastigida Grassi and Foa reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae). Sociobiology 4: 1–120.

    Google Scholar 

  • Yamin MA (1980) Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis. Appl Environ Microbiol 39: 859–863.

    PubMed  CAS  Google Scholar 

  • Yamin MA (1981) Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211: 58–59.

    Article  PubMed  CAS  Google Scholar 

  • Yamin MA, Trager W (1979) Cellulolytic activity of an axenically-cultivated termite flagellate, Trichomitopsis termopsidis. J Gen Microbiol 113: 417–420.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kane, M.D. (1997). Microbial Fermentation in Insect Guts. In: Mackie, R.I., White, B.A. (eds) Gastrointestinal Microbiology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4111-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4111-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6843-4

  • Online ISBN: 978-1-4615-4111-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics