Skip to main content
Log in

On the elevated intestinal pH of higher termites (Isoptera: Termitidae)

  • Research Articles
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Summary

The pH of the gut contents was measured in 52 species of higher termites (Termitidae), representing 36 genera in all four subfamilies. A statistically significant trend was shown from lower termites with low mean gut pH through to the Termitinae with higher mean gut pHs. Elevation of the pH occurred principally in the first and third proctodaeal segments, reaching values as high as 10.5 in 8 soil-feeding genera and 1 wood-feeding genus of Termitinae. Elevation of gut pH within the Termitidae appears to be independent of the general nature of the feeding substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bignell, D. E., 1994. Soil-feeding and gut morphology in higher termites. In: J. H. Hunt and C. A. Nalepa (Eds.).Nourishment and Evolution in Insect Societies (pp. 131–157). Boulder: West- view Press.

    Google Scholar 

  • Bignell, D. E. and J. M. Anderson, 1980. Determination of pH and oxygen status in the guts of lower and higher termites.J. Insect Physiol. 26:183–188.

    Google Scholar 

  • Bignell, D. E., J. M. Anderson and R. Grosse, 1991. Isolation of facultatively aerobic actinomycetes from the gut, parent soil and mound materials of the termitesProcubitermes aburiensis andCubitermes severus.FEMS Microbiol. Ecol. 85:151–160.

    Google Scholar 

  • Bignell, D. E., H. Oskarsson and J. M. Anderson, 1980. Distribution and abundance of bacteria in the gut of a soil-feeding termiteProcubitermes aburiensis (Termitidae. Termitinae).J. Gen. Microbiol. 117:393–403.

    Google Scholar 

  • Bignell, D. E., H. Oskarsson, J. M. Anderson, P. Ineson and T. G. Wood, 1983. Structure, microbial associations and functions of the so-called “mixed segment” of the gut in two soil feeding termites,Procubitermes aburiensis Sjosted andCubitermes severus Silvestri (Termitidae, Termitinae).J. Zool. (London) 201:445–480.

    Google Scholar 

  • Czolij, R., M. Slaytor and R. W. O'Brien, 1985. Bacterial flora of the mixed segment and the hindgut of the higher termineNasutitermes exitiosus Hill (Termitidae, Nasutitermitinae).Appl. Envir. Microbiol. 49:1226–1236.

    Google Scholar 

  • Eggleton, P., D. E. Bignell, W. A. Sands, B. Waite, T. G. Wood and J. H. Lawton, 1994. The species richness of termites (Isoptera) under differing levels of forest disturbance in the Mbalmayo Forest Reserve, southern Cameroon.J. Tropic Ecol. in press.

  • Eutick, M. L., R. W. O'Brien, and M. Slaytor, 1976. Aerobic state of gut ofNasutitermes exitiosus andCoptotermes lacteus, high and low caste termites.J. Insect. Physiol. 22:1377–1380.

    Google Scholar 

  • Grassé, P. P. and C. Noirot, 1945. La transmission des flagelles symbiotiques et les aliments des termites.Bull. Biol. Fr. et Belg. 79:273–292.

    Google Scholar 

  • Greenberg, B., J. Kowalski and J. Karpus, 1970. Micropotentiometric pH determinations of the gut ofPeriplaneta americana fed three different diets.J. Econ. Entomol. 63:1795–1797.

    Google Scholar 

  • Guthrie, D. M. and A. R. Tindall, 1968.The biology of the cockroach. London: Edward Arnold Ltd.

    Google Scholar 

  • Kovoor, J., 1976. Le pH intestinal d'un termite supérieur,Microcerootermes edentatus (Was., Amitermitinae).Ins. Soc. 14:157–160.

    Google Scholar 

  • Miller, L. R., 1986. The phylogeny of the Nasutitermitinae (Isoptera: Termitidae).Sociobiology 11:203–214.

    Google Scholar 

  • Noirot, C., 1992. From wood- to humus-feeding: an important trend in termite evolution. In J. Billen (Ed.),Biology and Evolution of Social Insects (pp. 107–119). Leuven (Belgium): Leuven University Press.

    Google Scholar 

  • Noirot, C. and J. Kovoor, 1958. Anatomie compare du tube digestif des termites. 1. Sous-famille des Termitinae.Ins. Soc. 5:439–471.

    Google Scholar 

  • Noirot, C. and C. Noirot-Timothée, 1969. The digestive system. In: K. Krishna and F. M. Weesner (Eds.),Biology of Termites (pp. 49–88). New York: Academic Press.

    Google Scholar 

  • O'Brien, R. W. and M. Slaytor, 1982. Role of microorganisms in the metabolism of termites.Aust. J. Biol. Sci. 35:239–262.

    Google Scholar 

  • Randall, M. and T. C. Doody, 1934. Hydrogenion concentration in the termite intestine. In: C. A. Kofoid (Ed.),Termites and Termite Control (pp. 99–104). Berkeley: University of California Press.

    Google Scholar 

  • Sands, W. A., 1972. The soldierless termites of Africa (Isoptera: Termitidae).Bulletin of the British Museum (Natural history) (Entomology Supplement)18:1–224.

    Google Scholar 

  • Warhurst, R., 1964.Growth and survival in vitro and in vivo of Endolimax blatte, an entozoic amoeba of cockroaches. Ph. D. Thesis. University of Leicester, U. K.

    Google Scholar 

  • Wood, T. G. and R. A. Johnson, 1986. The biology, physiology and ecology of termites. In: V. S. Bradleigh (Ed.),Economic Impact and Control of Social Insects (pp. 1–68). New York: Praeger.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bignell, D.E., Eggleton, P. On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Ins. Soc 42, 57–69 (1995). https://doi.org/10.1007/BF01245699

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245699

Key words

Navigation