Skip to main content

Acetogenesis from Carbon Dioxide in Termite Guts

  • Chapter
Acetogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Since the isolation of Clostridium aceticum (Wieringa, 1940), the first bacterium ever shown to derive energy for growth by acetate synthesis from H2 + CO2, the phenomenon of acetogenesis from C1 compounds has been of intrinsic interest to microbiologists and biochemists. As seen from other chapters in this volume, work in various laboratories over the years has now led to the isolation of over two dozen different species of such acetogens and to the recognition that these bacteria, united by their unique metabolism, are actually quite diverse phenotypically and phylogenetically. Likewise, detailed studies on the biochemistry of acetogenesis from CO2, conducted mainly with Clostridium thermoaceticum by H. G. Wood and his students, have identified each step in the pathway and resulted in the purification and characterization of the relevant enzymes, and in some cases the genes encoding them. Nevertheless, the ecological significance of acetogenesis from CO2 has remained obscure. Certainly, the ability of most acetogens to use H2 as a reductant suggests that they might function as terminal or subterminal “electron sink” organisms in anaerobic microbial food webs, and they are often included in that position in diagrams depicting such webs (e.g., Zinder, 1984). Yet, rarely have habitats been identified in which acetogens outprocess, or are strongly competitive with, other potential H2 consumers such as methanogens and sulfate-reducing bacteria. Hence, their significance in the flow of carbon and reducing equivalents during anoxic decomposition processes has been debatable. In recent years, however, it has been found that the gastrointestinal tract of vertebrates and invertebrates is one type of habitat in which acetogens often appear to be major H2 consumers (Breznak and Kane, 1990; also see Wolin and Miller Chapter 13). During microbial fermentation in the gut of certain termites, in particular, acetogens not only appear to constitute the primary H2 sink, but their production of acetate from H2 + CO2 makes a major contribution to termite nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bentley, B. L. 1984. Nitrogen fixation in termites: fate of newly fixed nitrogen. J. Insect Physiol. 30:653–655.

    Article  CAS  Google Scholar 

  • Bignell, D. E. 1984. Direct potentiometric determination of redox potentials of the gut contents in the termites Zootermopsis nevadensis and Cubitermes severus and in three other arthropods. J. Insect Physiol 30:169–174.

    Article  Google Scholar 

  • Bignell, D. E., and J. M. Anderson. 1980. Determination of pH and oxygen status in the guts of lower and higher termites. J. Insect Physiol. 26:183–188.

    Article  CAS  Google Scholar 

  • Bignell, D. E., H. Oskarsson, and J. M. Anderson. 1980. Specialization of the hindgut wall for the attachment of symbiotic micro-organisms in a termite Procubitermes aburiensis (Isoptera, Termitidae, Termitinae). Zoomorphology 96:103–112.

    Article  Google Scholar 

  • Bignell, D. E., H. Oskarsson, J. M. Anderson, and P. Ineson. 1983. Structure, microbial associations and function of the so-called “mixed segment” of the gut in two soil-feeding termites, Procubitermes aburiensis and Cubitermes severus (Termitidae, Termitinae). J. Zool. Lond. 201:445–480.

    Article  Google Scholar 

  • Blomquist, G. J., R. W. Howard, and C. A. McDaniel. 1979. Biosynthesis of cuticular hydrocarbons of the termite Zootermopsis angusticollis (Hagen). Incorporation of propionate into dimethylalkanes. Insect Biochem. 9:371–374.

    Article  CAS  Google Scholar 

  • Blomquist, G. J., L. A. Dwyer, A. J. Chu, R. O. Ryan, and M. de Renobales. 1982. Biosynthesis of linoleic acid in a termite, cockroach and cricket. Insect Biochem. 12:349–353.

    Article  CAS  Google Scholar 

  • Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak. 1990. Hydrogen metabolism by termite gut microbes. In: Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer, J.-P. Belaich, M. Bruschi, and J.-L. Garcia. eds., pp. 369–371. Plenum Press, New York.

    Chapter  Google Scholar 

  • Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak. 1992. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387.

    Article  PubMed  CAS  Google Scholar 

  • Braun, K., and G. Gottschalk. 1981. Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum. Arch. Microbiol. 128:294–298.

    Article  PubMed  CAS  Google Scholar 

  • Breznak, J. A. 1982. Intestinal microbiota of termites and other xylophagous insects. Annu. Rev. Microbiol 36:323–343.

    Article  PubMed  CAS  Google Scholar 

  • Breznak, J. A. 1984a. Biochemical aspects of symbiosis between termites and their intestinal microbiota. In: Invertebrate-Microbial Interactions, J. M. Anderson, A. D. M. Rayner, and D. W. H. Walton (eds.), pp. 173–203. Cambridge University Press, Cambridge.

    Google Scholar 

  • Breznak, J. A. 1984b. Hindgut spirochetes of termites and Cryptocercus punctulatus. In: Bergey’s Manual of Systematic Bacteriology, N. R. Krieg and J. G. Holt (eds.), Vol. 1, pp. 67–70. Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • Breznak, J. A. 1990. Metabolic activities of the microbial flora of termites. In: Microbiology in Poecilotherms, R. Lesel (ed.), pp. 63–68. Elsevier, Amsterdam.

    Google Scholar 

  • Breznak, J. A. 1992. The genus Sporomusa. In: The Prokaryotes, Vol. II, 2nd ed., A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.), pp. 2014–2021. Springer-Verlag, New York.

    Google Scholar 

  • Breznak, J. A., and H. S. Pankratz. 1977. In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]. Appl. Environ. Microbiol. 33:406–426.

    PubMed  CAS  Google Scholar 

  • Breznak, J. A., and J. M. Switzer. 1986. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol. 52:623–630.

    PubMed  CAS  Google Scholar 

  • Breznak, J. A., J. M. Switzer, H.-J. Seitz. 1988. Sporomusa termitida sp. nov., an H2/ CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.

    Article  CAS  Google Scholar 

  • Breznak, J. A., and M. D. Kane. 1990. Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol Rev. 87:309–314.

    Article  CAS  Google Scholar 

  • Breznak, J. A., and J. S. Blum. 1991. Mixotrophy in the termite gut acetogen, Sporomusa termitida. Arch. Microbiol. 156:105–110.

    Article  CAS  Google Scholar 

  • Breznak, J. A., and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39:453–487.

    Article  CAS  Google Scholar 

  • Brock, T. D. 1987. The study of microorganisms in situ: progress and problems. In: Ecology of Microbial Communities, M. Fletcher, T. R. G. Gray, and J. G. Jones, (eds.), pp. 1–20. Cambridge University Press, New York.

    Google Scholar 

  • Canale-Parola, E. 1984. Order I. Spirochaetales Buchanan 1917, 163AL. In: Bergey’s Manual of Systematic Bacteriology, N. R. Krieg, and J. G. Holt (eds.), Vol. 1, pp. 38–39. Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • Cato, E. P., W. L. George, and S.M. Finegold. 1986. Genus Clostridium Prazmowski 1880, 23AL. In: Bergey’s Manual of Systematic Bacteriology, P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (eds.), Vol. 2. pp. 1141–1200. Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • Cleveland, L. R. 1924. The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to Reticulitermes flavipes Kollar. Biol. Bull. 46:178–227.

    Article  Google Scholar 

  • Cleveland, L. R. 1925. The effects of oxygenation and starvation on the symbiosis between the termite Termopsis, and its intestinal flagellates. Biol. Bull. 48:309–326.

    Article  CAS  Google Scholar 

  • Collins, N.M., and T. G. Wood. 1984. Termites and atmospheric gas production. Science 224:84–86.

    Article  PubMed  CAS  Google Scholar 

  • Cord-Ruwisch, R., H.-J. Seitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350–357.

    Article  CAS  Google Scholar 

  • Czolij, R., M. Slaytor, and R. W. O’Brien. 1985. Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitosus Hill (Termitidae, Nasutitermitinae). Appl. Environ. Microbiol. 49:1226–1236.

    Google Scholar 

  • Dolfing, J. 1988. Acetogenesis. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 417–468. Wiley, New York.

    Google Scholar 

  • Greening, R. C., and J. A. Z. Leedle. 1989. Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol. 151:399–406.

    Article  PubMed  CAS  Google Scholar 

  • Guo, L., D. R. Quilici, J. Chase, and G. J. Blomquist. 1991. Gut tract microorganisms supply the precursors for methyl-branched hydrocarbon biosynthesis in the termite, Zootermopsis nevadensis. Insect Biochem. 21:327–333.

    Article  CAS  Google Scholar 

  • Hogan, M. E., M. Slaytor, and R. W. O’Brien. 1985. Transport of volatile fatty acids across the hindgut of the cockroach Panesthia cribrata Saussure and the termite Mastotermes darwiniensis Froggatt. J. Insect Physiol. 31:587–591.

    Article  CAS  Google Scholar 

  • Honigberg, B. M. 1970. Protozoa associated with termites and their role in digestion. In: Biology of Termites, K. Krishna and F. M. Weesner. (eds.), Vol. II, pp. 1–36. Academic Press, New York.

    Google Scholar 

  • Hungate, R. E. 1939. Experiments on the nutrition of Zootermopsis. III. The anaerobic carbohydrate dissimilation by the intestinal protozoa. Ecology 20:230–245.

    Article  CAS  Google Scholar 

  • Hungate, R. E. 1943. Quantitative analyses on the cellulose fermentation by termite protozoa. Ann. Entomol. Soc. Am. 36:730–739.

    CAS  Google Scholar 

  • Hungate, R. E. 1946. The symbiotic utilization of cellulose. J. Elisha Mitchell Sci Soc. 62:9–24.

    CAS  Google Scholar 

  • Jones, J. G., and B. M. Simon. 1985. Interaction of acetogens and methanogens in anaerobic freshwater sediments. Appl. Environ. Microbiol. 49:944–948.

    PubMed  CAS  Google Scholar 

  • Kane, M. D., and J. A. Breznak. 1991a. Effect of host diet on production of organic acids and methane by cockroach gut bacteria. Appl. Environ. Microbiol. 57:2628–2634.

    PubMed  CAS  Google Scholar 

  • Kane, M. D., and J. A. Breznak. 1991b. Acetonema longum gen. nov. sp. nov., an H2/ CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol. 156:91–98.

    Article  PubMed  CAS  Google Scholar 

  • Kane, M. D., A. Brauman, and J. A. Breznak. 1991. Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch. Microbiol. 156:99–104.

    Article  CAS  Google Scholar 

  • Katzin, L. I., and H. Kirby. 1939. The relative weights of termites and their protozoa. J. Parasitol. 25:444–445.

    Article  Google Scholar 

  • Khalil, M. A. K., R. A. Rasmussen, J. R. J. French, and J. A. Holt. 1990. The influence of termites on atmospheric trace gases: CH4, CO2, CHC13, N2O, CO, H2, and light hydrocarbons, J. Geophys. Res. 95:3619–3634.

    Article  Google Scholar 

  • Kovoor, J. 1967. Presence d’acides gras volatils dans la panse d’un termite superieur (Microcerotermes edentatus Was., Amitermitidae). CR Acad. Sci. (Paris) 264:486–488.

    CAS  Google Scholar 

  • Krishna, K. 1969. Introduction. In: Biology of Termites, K. Krishna and F. M. Weesner (eds.), Vol. I, pp. 1–17. Academic Press, New York.

    Google Scholar 

  • Krishna, K. 1970. Taxonomy, phylogeny and distribution of termites. In: Biology of Termites, K. Krishna and F. M. Weesner (eds.), Vol. II, pp. 127–152. Academic Press, New York.

    Google Scholar 

  • La Fage, J. P., and W. L. Nutting. 1978. Nutrient dynamics of termites. In: Production Ecology of Ants and Termites, M. V. Brian (ed.), pp. 165–232. Cambridge University Press, New York.

    Google Scholar 

  • Lajoie, S. F., S. Bank, T. L. Miller, and M. J. Wolin. 1988. Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54:2723–2727.

    PubMed  CAS  Google Scholar 

  • Lee, K. E., and T. G. Wood. 1971. Termites and Soils. Academic Press, New York.

    Google Scholar 

  • Ljungdahl, L. G., and K.-E. Eriksson. 1985. Ecology of microbial cellulose degradation. Adv. Microb. Ecol. 8:237–299.

    Article  CAS  Google Scholar 

  • Lovell, C. R., and Y. Hui. 1991. Design and testing of a functional group-specific DNA probe for the study of natural populations of acetogenic bacteria. Appl. Environ. Microbiol. 57:2602–2609.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R. 1985. Minimum threshold for hydrogen metabolism in methanogenic bacteria Appl. Environ. Microbiol. 49:1530–1531.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., R. C. Greening, and J. G. Ferry. 1984. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl. Environ. Microbiol. 48:81–87.

    PubMed  CAS  Google Scholar 

  • Margulis, L., and G. Hinkle. 1992. Large symbiotic spirochetes: Clevelandina, Cristispira, Diplocalyx, Hollandina, and Pillotina. In: The Prokary otes, 2nd ed., Vol. IV, A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.), pp. 3965–3978. Springer-Verlag, New York.

    Google Scholar 

  • Martin, M. M. 1987. Invertebrate-Microbial Interactions: Ingested Fungal Enzymes in Arthropod Biology. Comstock Publishing Assoc, Ithaca, N.Y.

    Google Scholar 

  • Mauldin, J. K. 1982. Lipid synthesis from [14C]-acetate by two subterranean termites, Reticulitermes flavipes and Coptotermes formosanus. Insect Biochem. 12:193–199.

    Article  CAS  Google Scholar 

  • Mclnerney, M. J. 1988. Anaerobic hydrolysis and fermentation of fats and proteins. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 373–415. Wiley, New York.

    Google Scholar 

  • Messer, A. C., and M. J. Lee. 1989. Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Microb. Ecol. 18:275–284.

    Article  CAS  Google Scholar 

  • Möller, B., R. Oßmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984. Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch. Microbiol. 139:388–396.

    Article  Google Scholar 

  • Neidhardt, F. C., J. L. Ingraham, and M. Schaechter. 1990. Physiology of the Bacterial Cell. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Noirot, C., and C. Noirot-Timothée. 1969. The digestive system. In: Biology of Termites, K. Krishna and F. M. Weesner (eds.), Vol. I, pp. 49–88. Academic Press, New York.

    Google Scholar 

  • O’Brien, R. W., and M. Slaytor. 1982. Role of microorganisms in the metabolism of termites. Aust. J. Biol. Sci. 35:239–262.

    Google Scholar 

  • O’Brien, R. W., and J. A. Breznak. 1984. Enzymes of acetate and glucose metabolism in termites. Insect. Biochem. 14:639–643.

    Article  Google Scholar 

  • Odelson, D. A., and J. A. Breznak. 1983. Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl. Environ. Microbiol. 45:1602–1613.

    PubMed  CAS  Google Scholar 

  • Odelson, D. A., and J. A. Breznak. 1985. Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl. Environ. Microbiol. 49:614–621.

    PubMed  CAS  Google Scholar 

  • Parkes, R. J., and E. Senior. 1987. Multi-stage chemostats and other models for studying anoxic ecosystems. In: Handbook of Laboratory Model Systems for Microbial Ecosystem Research, J. W. T. Wimpenny (ed.), CRC Press, Boca Raton, FL.

    Google Scholar 

  • Phelps, T. J., and J. G. Zeikus. 1984. Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl. Environ. Microbiol. 48:1088–1095.

    PubMed  CAS  Google Scholar 

  • Potrikus, C. J., and J. A. Breznak. 1981. Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc. Natl. Acad. Sci. USA 78:4601–4605.

    Article  PubMed  CAS  Google Scholar 

  • Prestwich, G. D., R. W. Jones, and M. S. Collins. 1981. Terpene biosynthesis by nasute termite soldiers (Isoptera: Nasutitermitinae). Insect Biochem. 11:331–336.

    Article  CAS  Google Scholar 

  • Prins, R. A., and A. Lankhorst. 1977. Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol. Lett. 1:255–258.

    Article  CAS  Google Scholar 

  • Schultz, J. E., and J. A. Breznak. 1978. Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl. Environ. Microbiol. 35:930–936.

    PubMed  CAS  Google Scholar 

  • Slaytor, M. 1993. Cellulose digestion in termites and cockroaches: what role do symbionts play? Comp. Biochem. Physiol. 103B:775–784.

    Google Scholar 

  • Smolenski, W. J., and J. A. Robinson. 1988. In situ rumen hydrogen concentrations in steers fed eight times daily measured using a mercury reduction detector. FEMS Microbiol. Ecol. 53:95–100.

    Article  CAS  Google Scholar 

  • Stupperich, E., H. J. Elsinger, and B. Kräutler. 1989. Identification of phenolyl cobamide from the homoacetogenic bacterium Sporomusa ovata. Euro. J. Biochem. 186:657–661.

    Article  CAS  Google Scholar 

  • Stupperich, E., H. J. Elsinger, and S. P. J. Albracht. 1990. Evidence for a super-reduced cobamide as the major corrinoid fraction in vivo and a histidine residue as a cobalt ligand of the p-cresolyl cobamide in the acetogenic bacterium Sporomusa ovata. Euro. J. Biochem. 193:105–109.

    Article  CAS  Google Scholar 

  • Stupperich, E. 1993. Recent advances in elucidation of biological corrinoid functions. FEMS Microbiol Rev. 12:349–366.

    Article  PubMed  CAS  Google Scholar 

  • Stupperich, E., and R. Konle. 1993. Corrinoid-dependent methyl transfer reactions are involved in methanol and 3,4-dimethoxybenzoate metabolism by Sporomusa ovata. Appl. Environ. Microbiol 59:3110–3116.

    PubMed  CAS  Google Scholar 

  • To, L., L. Margulis, and A. T. W. Cheung. 1978. Pillotinas and höllandinas: distribution and behaviour of large spirochaetes symbiotic in termites. Microbios 22:103–133.

    PubMed  CAS  Google Scholar 

  • Veivers, P. C., R. W. O’Brien, and M. Slaytor. 1980. The redox state of the gut of termites. J. Insect Physiol. 26:75–77.

    Article  Google Scholar 

  • Veivers, P. C., R. W. O’Brien, and M. Slaytor. 1982. Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing entry of foreign bacteria. J. Insect Physiol. 28:947–951.

    Article  Google Scholar 

  • Veivers, P. C., R. Mühlemann, M. Slaytor, R. H. Leuthold, and D. E. Bignell. 1991. Digestion, diet and polyethism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M. michaelseni Sjostedt. J. Insect Physiol. 37:675–682.

    Article  CAS  Google Scholar 

  • Wakayama, E. J., J. W. Dillwith, R. W. Howard, and G. J. Blomquist. 1984. Vitamin B12 levels in selected insects. Insect Biochem. 14:175–179.

    Article  CAS  Google Scholar 

  • Wang, C. H., D. L. Willis, and W. D. Loveland. 1975. Radiotracer Methodology in the Biological, Environmental, and Physical Sciences. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Whitman, W. B., T. L. Bowen, and D. R. Boone. 1992. The methanogenic bacteria. In: The Prokaryotes, 2nd ed., Vol. I, A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, (eds.), pp. 719–767. Springer-Verlag, New York.

    Google Scholar 

  • Wieringa, K. T. 1940. The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie van Leeuwenhoek J. Microbiol. Serol. 6:251–262.

    Article  Google Scholar 

  • Wolin, M. J. 1981. Fermentation in the rumen and human large intestine. Science 213:1463–1468.

    Article  PubMed  CAS  Google Scholar 

  • Wood, T. G., and W. A. Sands. 1978. The role of termites in ecosystems. In: Production Ecology of Ants and Termites, M. V. Brian (ed.), pp. 245–292. Cambridge University Press, New York.

    Google Scholar 

  • Wood, T. G., and R. A. Johnson. 1986. The biology, physiology and ecology of termites. In: Economic Impact and Control of Social Insects, S. B. Vinson (ed.), pp. 1–68. Praeger, New York.

    Google Scholar 

  • Yamin, M. A. 1978. Axenic cultivation of the cellulolytic flagellate Trichomitopsis termopsidis (Cleveland) from the termite Zootermopsis. J. Protozool. 25:535–538.

    Google Scholar 

  • Yamin, M. A. 1980. Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis. Appl. Environ. Microbiol. 39:859–863.

    PubMed  CAS  Google Scholar 

  • Yamin, M. A. 1981. Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211:58–59.

    Article  PubMed  CAS  Google Scholar 

  • Yamin, M. A., and W. Trager. 1979. Cellulolytic activity of an axenically-cultivated termite flagellate, Trichomitopsis termopsidis. J. Gen. Microbiol. 113:417–420.

    CAS  Google Scholar 

  • Zehnder, A. J. B., B. Huser, and T. D. Brock. 1979. Measuring radioactive methane with the liquid scintillation counter. Appl. Environ. Microbiol. 37:897–899.

    PubMed  CAS  Google Scholar 

  • Zeikus, J. G. 1983. Metabolic communication between biodegradative populations in nature. In: Microbes in Their Natural Environments, J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny (eds.), pp. 423–462. Cambridge University Press, Cambridge.

    Google Scholar 

  • Zinder, S. H. 1984. Microbiology of anaerobic conversion of organic wastes to methane: recent developments. Am. Soc. Microbiol. News 50:294–298.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Breznak, J.A. (1994). Acetogenesis from Carbon Dioxide in Termite Guts. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics