Skip to main content
Log in

Association of methanogenic bacteria with flagellated protozoa from a termite hindgut

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Epifluorescence microscopy was used to examine hindgut contents ofZootermopsis angusticollis (Hagen) termites for the presence of methanogenic bacteria, which can be identified on the basis of the fluorescence of the novel cofactors F420 and F350. Small, autofluorescent, rod-shaped bacteria of theMethanobrevibacter sp. morphotype were observed associated with three flagellates tentatively identified asTrichomitopsis termopsidis (Cleveland),Tricercomitus termopsidis Kirby andHexamastix termopsidis Kirby. Methanogens were not observed associated with any other protozoal morphotypes and were not numerous in the free-living state inZ. angusticollis hindgut fluid. Electron micrographs of thin sections of hindgut protozoa suggest methanogens are endosymbionts in the small trichomonad protozoa. Our observations are consistent with the finding of Odelson and Breznak that methane is a minor endproduct of the metabolism of termite gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Breznak JA (1975) Symbiotic relationships between termites and their intestinal microbiota. In: Jennings DH, Lee DL (eds) Symbiosis (Soc Exper Biol Symp Ser no. 29). Cambridge, England: Cambridge Univ Press, pp 559–580

    Google Scholar 

  2. Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630

    Google Scholar 

  3. Cleveland LR (1925) The effects of oxygenation and starvation on the symbiosis between the termite,Termopsis and its intestinal flagellates. Biol Bull Mar Biol Lab Woods Hole 48:309–327

    Google Scholar 

  4. Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754

    Google Scholar 

  5. Eutick ML, Veivers P, O'Brien RW, Slaytor M (1978) Dependence of the higher termiteNaustitermes exitiosus and the lower termite,Coptotermes lacteus on their gut flora. J Insect Physiol 24:363–368

    Google Scholar 

  6. Hungate RE (1943) Quantitative analysis on the cellulose fermentation by termite protozoa. Ann Entomo Soc Am 36:730–739

    Google Scholar 

  7. Hungate RE (1966) The rumen and its microbes. New York: Academic Press

    Google Scholar 

  8. Kirby H (1930) Trichomonad flagellates from termites. I.Tricercomitus gen. nov. andHexamastix Alexeieff. Univ Calif Publ Zool 33:393–436

    Google Scholar 

  9. Kirby H (1941) Organisms living on and in protozoa. In: Calkins GN, Summers FM (eds) Protozoa in biological research. New York: Columbia University Press, pp 1009–1113

    Google Scholar 

  10. Lee JJ, Small EB, Lynn DH, Bovee EC (1985) Some techniques for collecting, cultivating, and observing protozoa. In: Lee JJ, Hutner SH, Bovee EC (eds) An illustrated guide to the protozoa. Lawrence Ks. Society of Protozoologists, pp 1–7

    Google Scholar 

  11. Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagus termites. Appl Environ Microbiol 45:1602–1613

    Google Scholar 

  12. Odelson DA, Breznak JA (1985) Nutrition and growth characteristics ofTrichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621

    Google Scholar 

  13. Odelson DA, Breznak JA (1985) Nutrition and growth characteristics ofTrichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621

    Google Scholar 

  14. Ryter A, Kellenberger E, Birch-Anderson A, Maaloe O (1958) Étude au microscope electronique de plasmas contenant de l'acide desoxyribonucleique. I. Les nucleoides des bacteries en croissance active. Z Naturforsch 13B:597–605

    Google Scholar 

  15. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Google Scholar 

  16. To LP, Margulis L, Chase D, Nutting WL (1980) The symbiotic microbial community of the Sonoran desert termite:Pterotermes occidentis. Biosystems 13:109–137

    Google Scholar 

  17. van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95

    Google Scholar 

  18. van Bruggen JJ, Zwart KB, van Assema RM, Stumm CK, Vogels GD (1984)Methanobacterium formicicum, an endosymbiont of the anaerobic ciliateMetopus striatus McMurrich. Arch Microbiol 139:1–7

    Google Scholar 

  19. Vogels G, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612

    Google Scholar 

  20. Whitman WB (1985) Methanogenic bacteria. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8: Archaebacteria. Orlando FL: Academic Press, pp 3–84

    Google Scholar 

  21. Yamin MA (1978) Axenic cultivation of the cellulolytic flagellateTrichomitopsis termopsidis (Cleveland) from the termiteZootermopsis. J. Protozool 25:535–538

    Google Scholar 

  22. Yamin MA (1978) Axenic cultivation of the flagellateTricercomitus divergens from the termiteCryptotermes califrons Banks. J Parasitol 64:1122–1123

    Google Scholar 

  23. Yamin MA (1980) Cellulose metabolism by the termite flagellateTrichomitopsis termopsidis. Appl Environ Microbiol 39:859–863

    Google Scholar 

  24. Yamin MA (1981) Cellulose metabolism by the flagellateTryichonympha from a termite is independent of endosymbiotic bacteria. Science 211:58–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M.J., Schreurs, P.J., Messer, A.C. et al. Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Current Microbiology 15, 337–341 (1987). https://doi.org/10.1007/BF01577591

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01577591

Keywords

Navigation