Skip to main content

Advertisement

Log in

F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cell suspensions of Methanobrevibacter arboriphilus catalyzed the reduction of O2 with H2 at a maximal specific rate of 0.4 U (μmol/min) per mg protein with an apparent K m for O2 of 30 μM. The reaction was not inhibited by cyanide. The oxidase activity was traced back to a coenzyme F420-dependent enzyme that was purified to apparent homogeneity and that catalyzed the oxidation of 2 F420H2 with 1 O2 to 2 F420 and 2 H2O. The apparent K m for F420 was 30 μM and that for O2 was 2 μM with a V max of 240 U/mg at 37°C and pH 7.6, the pH optimum of the oxidase. The enzyme did not use NADH or NADPH as electron donor or H2O2 as electron acceptor and was not inhibited by cyanide. The 45-kDa protein, whose gene was cloned and sequenced, contained 1 FMN per mol and harbored a binuclear iron center as indicated by the sequence motif H–X–E–X–D–X62H–X18D–X60H. Sequence comparisons revealed that the F420H2 oxidase from M. arboriphilus is phylogenetically closely related to FprA from Methanothermobacter marburgensis (71% sequence identity), a 45-kDa flavoprotein of hitherto unknown function, and to A-type flavoproteins from bacteria (30–40%), which all have dioxygen reductase activity. With heterologously produced FprA from M. marburgensis it is shown that this protein is also a highly efficient F420H2 oxidase and that it contains 1 FMN and 2 iron atoms. The presence of F420H2 oxidase in methanogenic archaea may explain why some methanogens, e.g., the Methanobrevibacter species in the termite hindgut, cannot only tolerate but thrive under microoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FprA :

Flavoproteins belonging to the type-A flavoproteins family

Frh :

F420-reducing hydrogenase

Hmd :

H2-forming methylenetetrahydromethanopterin dehydrogenase

Mtd :

F420-dependent methylenetetrahydromethanopterin dehydrogenase

Hrb :

High-molecular-mass rubredoxin

Roo :

Rubredoxin:oxygen oxidoreductase

References

  • Abreu IA, Xavier AV, LeGall J, Cabelli DE, Teixeira M (2002) Superoxide scavenging by neelaredoxin: dismutation and reduction activities in anaerobes. J Biol Inorg Chem 7:668–674

    Article  CAS  PubMed  Google Scholar 

  • Adams MW, Jenney FE Jr, Clay MD, Johnson MK (2002) Superoxide reductase: fact or fiction? J Biol Inorg Chem 7:647–652

    Article  CAS  PubMed  Google Scholar 

  • Asakawa S, Morii H, Akagawa-Matsushita M, Koga Y, Hayano K (1993) Characterization of Methanobrevibacter arboriphilicus SA isolated from a paddy field soil and DNA–DNA hybridization among M. arboriphilicus strains. Int J Syst Bacteriol 43:683–686

    Google Scholar 

  • Aufhammer S, Warkentin E, Berk H, Shima S, Thauer RK, Ermler U (2004) Coenzyme-binding in F420-dependent alcohol dehydrogenase, a member of the bacterial luciferase family. Structure 12:361–370

    Article  CAS  PubMed  Google Scholar 

  • Baughn AD, Malamy MH (2004) The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427:441–444

    Article  CAS  PubMed  Google Scholar 

  • Baumer S, Ide T, Jacobi C, Johann A, Gottschalk G, Deppenmeier U (2000) The F420H2 dehydrogenase from Methanosarcina mazei is a Redox-driven proton pump closely related to NADH dehydrogenases. J Biol Chem 275:17968–17973

    Article  CAS  PubMed  Google Scholar 

  • Baumgarten A, Redenius I, Kranczoch J, Cypionka H (2001) Periplasmic oxygen reduction by Desulfovibrio species. Arch Microbiol 176:306–309

    Article  CAS  PubMed  Google Scholar 

  • Berk H, Thauer RK (1998) F420H2:NADP oxidoreductase from Methanobacterium thermoautotrophicum: Identification of the encoding gene via functional overexpression in Escherichia coli. FEBS Lett 438:124–126

    Article  CAS  PubMed  Google Scholar 

  • Boone DR, Whitman WB, Rouvière P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman, New York, pp 35–80

  • Brioukhanov A, Netrusov A, Sordel M, Thauer RK, Shima S (2000) Protection of Methanosarcina barkeri against oxidative stress: identification and characterization of an iron superoxide dismutase. Arch Microbiol 174:213–216

    Article  CAS  PubMed  Google Scholar 

  • Briukhanov AL, Thauer RK, Netrusov AI (2002) Catalase and superoxide dismutase in the cells of strictly anaerobic microorganisms. Mikrobiologiia 71:330–335

    CAS  PubMed  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG et al (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    CAS  PubMed  Google Scholar 

  • Carugo O, Argos P (1997a) NADP-dependent enzymes. I. Conserved stereochemistry of cofactor binding. Proteins 28:10–28

    Article  CAS  PubMed  Google Scholar 

  • Carugo O, Argos P (1997b) NADP-dependent enzymes. II. Evolution of the mono- and dinucleotide binding domains. Proteins 28:29–40

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman P, Toms-Wood A, Wolfe RS (1972) Isolation and properties of a fluorescent compound, factor 420, from Methanobacterium strain M.o.H. J Bacteriol 112:527–531

    CAS  PubMed  Google Scholar 

  • Chen L, Liu MY, LeGall J, Fareleira P, Santos H, Xavier AV (1993) Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the “strict anaerobe” Desulfovibrio gigas. Biochem Biophys Res Commun 193:100–105

    Article  CAS  PubMed  Google Scholar 

  • Coulter ED, Kurtz DM Jr (2001) A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Arch Biochem Biophys 394:76–86

    Article  CAS  PubMed  Google Scholar 

  • Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848

    Article  CAS  PubMed  Google Scholar 

  • Elias DA, Juck DF, Berry KA, Sparling R (2000) Purification of the NADP+:F420 oxidoreductase of Methanosphaera stadtmanae. Can J Microbiol 46:998–1003

    Article  CAS  PubMed  Google Scholar 

  • Emerson JP, Coulter ED, Phillips RS, Kurtz DM Jr (2003) Kinetics of the superoxide reductase catalytic cycle. J Biol Chem 278:39662–39668

    Article  CAS  PubMed  Google Scholar 

  • Fetzer S, Bak F, Conrad R (1993) Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol Ecol 12:107–115

    Article  CAS  Google Scholar 

  • Fish WW (1988) Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. In: Riordan JF, Vallee BL (eds) Methods enzymol. Academic, New York, pp 357–364

  • Fournier M, Zhang Y, Wildschut JD, Dolla A, Voordouw JK, Schriemer DC et al. (2003) Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris hildenborough. J Bacteriol 185:71–79

    Article  PubMed  Google Scholar 

  • Fox JA, Livingston DJ, Orme-Johnson WH, Walsh CT (1987) 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. 1. Purification and characterization. Biochemistry 26:4219–4227

    CAS  PubMed  Google Scholar 

  • Frazao C, Silva G, Gomes CM, Matias P, Coelho R, Sieker L et al (2000) Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nat Struct Biol 7:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201(Pt 8):1203–1209

    CAS  PubMed  Google Scholar 

  • Gomes CM, Silva G, Oliveira S, LeGall J, Liu MY, Xavier AV et al. (1997) Studies on the redox centers of the terminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin. J Biol Chem 272:22502–22508

    Article  CAS  PubMed  Google Scholar 

  • Gomes CM, Vicente JB, Wasserfallen A, Teixeira M (2000) Spectroscopic studies and characterization of a novel electron-transfer chain from Escherichia coli involving a flavorubredoxin and its flavoprotein reductase partner. Biochemistry 39:16230–16237

    Article  CAS  PubMed  Google Scholar 

  • Gomes CM, Giuffre A, Forte E, Vicente JB, Saraiva LM, Brunori M et al. (2002) A novel type of nitric-oxide reductase. Escherichia coli flavorubredoxin. J Biol Chem 277:25273–25276

    Article  CAS  PubMed  Google Scholar 

  • Gorris LG, van der Drift C (1994) Cofactor contents of methanogenic bacteria reviewed. Biofactors 4:139–145

    CAS  PubMed  Google Scholar 

  • Hagemeier CH, Shima S, Warkentin E, Thauer RK, Ermler U (2003) Coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase from Methanopyrus kandleri: the selenomethionine-labelled and non-labelled enzyme crystallized in two different forms. Acta Crystallogr D Biol Crystallogr 59:1653–1655

    Article  PubMed  Google Scholar 

  • Hausinger RP, Orme-Johnson WH, Walsh C (1985) Factor 390 chromophores: phosphodiester between AMP or GMP and methanogen factor 420. Biochemistry 24:1629–1633

    CAS  PubMed  Google Scholar 

  • Herren CD, Rocha ER, Smith CJ (2003) Genetic analysis of an important oxidative stress locus in the anaerobe Bacteroides fragilis. Gene 316:167–175

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Kurtz DM, Jr., Liu ZJ, Rose J, Wang BC (2002) X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase. J Am Chem Soc 124:9845–9855

    Article  CAS  PubMed  Google Scholar 

  • Jouanneau Y, Meyer C, Asso M, Guigliarelli B, Willison JC (2000) Characterization of a nif-regulated flavoprotein (FprA) from Rhodobacter capsulatus. Redox properties and molecular interaction with a [2Fe–2S] ferredoxin. Eur J Biochem 267:780–787

    Article  CAS  PubMed  Google Scholar 

  • Jussofie A, Gottschalk G (1986) Further studies on the distribution of cytochromes in methanogenic bacteria. FEMS Microbiol Lett 37:15–18

    Article  CAS  Google Scholar 

  • Kengen SW, von den Hoff HW, Keltjens JT, van der Drift C, Vogels GD (1991) Hydrolysis and reduction of factor 390 by cell extracts of Methanobacterium thermoautotrophicum(strain ΔH). J Bacteriol 173:2283–2288

    CAS  PubMed  Google Scholar 

  • Kiener A, Leisinger T (1983) Oxygen sensitivity of methanogenic bacteria. Syst Appl Microbiol 4:305–312

    Google Scholar 

  • Kirby TW, Lancaster JRJ, Fridovich I (1981) Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch Biochem Biophys 210:140–148

    CAS  PubMed  Google Scholar 

  • Kiener A, Husain I, Sancar A, Walsh C (1989) Purification and properties of Methanobacterium thermoautotrophicum DNA photolyase. J Biol Chem 264:13880–13887

    CAS  PubMed  Google Scholar 

  • Klein AR, Hartmann GC, Thauer RK (1995) Hydrogen isotope effects in the reactions catalyzed by H2-forming N 5,N 10-methylenetetrahydromethanopterin dehydrogenase from methanogenic Archaea. Eur J Biochem 233:372–376

    CAS  PubMed  Google Scholar 

  • Klein AR, Berk H, Purwantini E, Daniels L, Thauer RK (1996) Si-face stereospecificity at C5 of coenzyme F420 for F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis and F420-dependent alcohol dehydrogenase from Methanoculleus thermophilicus. Eur J Biochem 239:93–97

    Article  CAS  PubMed  Google Scholar 

  • Komori H, Masui R, Kuramitsu S, Yokoyama S, Shibata T, Inoue Y et al. (2001) Crystal structure of thermostable DNA photolyase: pyrimidine-dimer recognition mechanism. Proc Natl Acad Sci USA 98:13560–13565

    Article  CAS  PubMed  Google Scholar 

  • Kunow J, Schwörer B, Setzke E, Thauer RK (1993) Si-face stereospecificity at C5 of coenzyme F420 for F420-dependent N 5,N 10-methylenetetrahydromethanopterin dehydrogenase, F420-dependent N 5,N 10-methylenetetrahydromethanopterin reductase and F420H2: dimethylnaphthoquinone oxidoreductase. Eur J Biochem 214:641–646

    CAS  PubMed  Google Scholar 

  • Kunow J, Schwörer B, Stetter KO, Thauer RK (1993) A F420-dependent NADP reductase in the extremely thermophilic sulfate reducing Archaeoglobus fulgidus. Arch Microbiol 160:199–205

    CAS  Google Scholar 

  • Kurtz DM Jr, Coulter ED (2002) The mechanism(s) of superoxide reduction by superoxide reductases in vitro and in vivo. J Biol Inorg Chem 7:653–658

    Article  CAS  PubMed  Google Scholar 

  • Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    CAS  PubMed  Google Scholar 

  • Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292

    Article  CAS  PubMed  Google Scholar 

  • Lyon EJ, Shima S, Buurman G, Chowdhuri S, Batschauer A, Steinbach K et al (2004) UV-A/blue-light inactivation of the ’metal-free’ hydrogenase (Hmd) from methanogenic archaea. Eur J Biochem 271:195–204

    CAS  PubMed  Google Scholar 

  • McCready S, Marcello L (2003) Repair of UV damage in Halobacterium salinarum. Biochem Soc Trans 31:694–698

    Article  CAS  PubMed  Google Scholar 

  • Michel R, Massanz C, Kostka S, Richter M, Fiebig K (1995) Biochemical characterization of the 8-hydroxy-5-deazaflavin-reactive hydrogenase from Methanosarcina barkeri Fusaro. Eur J Biochem 233:727–735

    CAS  PubMed  Google Scholar 

  • Miller TL, Lin C (2002) Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Int J Syst Evol Microbiol 52:819–822

    Article  CAS  PubMed  Google Scholar 

  • Nölling J, Ishii M, Koch J, Pihl TD, Reeve JN, Thauer RK et al. (1995) Characterization of a 45-kDa flavoprotein and evidence for a rubredoxin, two proteins that could participate in electron transport from H2 to CO2 in methanogenesis in Methanobacterium thermoautotrophicum. Eur J Biochem 231:628–638

    PubMed  Google Scholar 

  • Nölling J, Pihl TD, Vriesema A, Reeve JN (1995) Organization and growth phase-dependent transcription of methane genes in two regions of the Methanobacterium thermoautotrophicum genome. J Bacteriol 177:2460–2468

    PubMed  Google Scholar 

  • O’Connor KA, McBride MJ, West M, Yu H, Trinh L, Yuan K et al (1996) Photolyase of Myxococcus xanthus, a Gram-negative eubacterium, is more similar to photolyases found in Archaea and “higher” eukaryotes than to photolyases of other eubacteria. J Biol Chem 271:6252–6259

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Kluber HD, Conrad R (1997) Early initiation of methane production inaxic rice soil despite the presence of oxidants. FEMS Microbiol Ecol 24:311–320

    Article  CAS  Google Scholar 

  • Schauer NL, Ferry JG, Honek JF, Orme-Johnson WH, Walsh C (1986) Mechanistic studies of the coenzyme F420 reducing formate dehydrogenase from Methanobacterium formicicum. Biochemistry 25:7163–7168

    CAS  PubMed  Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K S, μ max, Y S) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Google Scholar 

  • Schönheit P, Keweloh H, Thauer RK (1981) Factor F420 degradation in Methanobacterium thermoautotrophicum during exposure to oxygen. FEMS Microbiol Lett 12:347–349

    Article  Google Scholar 

  • Shima S, Netrusov A, Sordel M, Wicke M, Hartmann GC, Thauer RK (1999) Purification, characterization, and primary structure of a monofunctional catalase from Methanosarcina barkeri. Arch Microbiol 171:317–323

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Warkentin E, Grabarse W, Sordel M, Wicke M, Thauer RK et al (2000) Structure of coenzyme F-420 dependent methylenetetrahydromethanopterin reductase from two methanogenic archaea. J Mol Biol 300:935–950

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Sordel-Klippert M, Brioukhanov A, Netrusov A, Linder D, Thauer RK (2001) Characterization of a heme-dependent catalase from Methanobrevibacter arboriphilus. Appl Environ Microbiol 67:3041–3045

    Article  CAS  PubMed  Google Scholar 

  • Silaghi-Dumitrescu R, Coulter ED, Das A, Ljungdahl LG, Jameson GN, Huynh BH et al. (2003) A flavodiiron protein and high molecular weight rubredoxin from Moorella thermoacetica with nitric oxide reductase activity. Biochemistry 42:2806–2815

    Article  CAS  PubMed  Google Scholar 

  • Silva G, Oliveira S, LeGall J, Xavier AV, Rodrigues-Pousada C (2001) Analysis of the Desulfovibrio gigas transcriptional unit containing rubredoxin (rd) and rubredoxin-oxygen oxidoreductase (roo) genes and upstream ORFs. Biochem Biophys Res Commun 280:491–502

    Article  CAS  PubMed  Google Scholar 

  • Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155

    CAS  PubMed  Google Scholar 

  • Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194

    Article  CAS  PubMed  Google Scholar 

  • Takao M, Yasui A, Oikawa A (1991) Unique characteristics of superoxide dismutase of a strictly anaerobic archaebacterium Methanobacterium thermoautotrophicum. J Biol Chem 266:14151–14154

    CAS  PubMed  Google Scholar 

  • Teshima T, Nakaji A, Shiba T, Tsai L, Yamazaki S (1985) Elucidation of stereospecificity of a selenium-containing hydrogenase from Methanococcus vannielii—syntheses of (R)- and (S)-[4-2H1]-3,4-dihydro-7-hydroxy-1-hydroxyethylquinolinone. Tetrahedron Lett 26:351–354

    Article  CAS  Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    CAS  PubMed  Google Scholar 

  • Vermeij P, Detmers FJ, Broers FJ, Keltjens JT, Van der Drift C (1994) Purification and characterization of coenzyme F390 synthetase from Methanobacterium thermoautotrophicum (strain ΔH). Eur J Biochem 226:185–191

    CAS  PubMed  Google Scholar 

  • Vermeij P, Vinke E, Keltjens JT, Van der Drift C (1995) Purification and properties of coenzyme F390 hydrolase from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 234:592–597

    CAS  PubMed  Google Scholar 

  • Vermeij P, van der Steen RJ, Keltjens JT, Vogels GD, Leisinger T (1996) Coenzyme F390 synthetase from Methanobacterium thermoautotrophicum Marburg belongs to the superfamily of adenylate-forming enzymes. J Bacteriol 178:505–510

    CAS  PubMed  Google Scholar 

  • Vicente JB, Gomes CM, Wasserfallen A, Teixeira M (2002) Module fusion in an A-type flavoprotein from the cyanobacterium Synechocystis condenses a multiple-component pathway in a single polypeptide chain. Biochem Biophys Res Commun 294:82–87

    Article  CAS  PubMed  Google Scholar 

  • Walsh C (1985) Naturally occurring 5-deazaflavin coenzymes: Biological redox roles. Acc Chem Res 19:216–221

    Google Scholar 

  • Warkentin E, Mamat B, Sordel-Klippert M, Wicke M, Thauer RK, Iwata M et al (2001) Structures of F420H2:NADP+ oxidoreductase with and without its substrates bound. EMBO J 20:6561–6569

    Article  CAS  PubMed  Google Scholar 

  • Wasserfallen A, Huber K, Leisinger T (1995) Purification and structural characterization of a flavoprotein induced by iron limitation in Methanobacterium thermoautotrophicum Marburg. J Bacteriol 177:2436–2441

    CAS  PubMed  Google Scholar 

  • Wasserfallen A, Ragettli S, Jouanneau Y, Leisinger T (1998) A family of flavoproteins in the domains Archaea and Bacteria. Eur J Biochem 254:325–332

    Article  CAS  PubMed  Google Scholar 

  • Wolfe RS (1996) 1776-1996: Alessandro Volta’s combustible air. 220 years after Volta’s experiments, the microbial formation of methane approaches an understanding. ASM News 62:529–534

    Google Scholar 

  • Yamazaki S, Tsai L, Stadtman TC, Jacobson FS, Walsh C (1980) Stereochemical studies of 8-hydroxy-5-deazaflavin-dependent NADP+reductase from Methanococcus vannielii. J Biol Chem 255:9025–9027

    CAS  PubMed  Google Scholar 

  • Yamazaki S, Tsai L, Stadtman TC (1982) Analogues of 8-hydroxy-5-deazaflavin cofactor: relative activity as substrates for 8-hydroxy-5-deazaflavin-dependent NADP+ reductase from Methanococcus vannielii. Biochemistry 21:934–939

    CAS  PubMed  Google Scholar 

  • Yamazaki S, Tsai L, Stadtman TC, Teshima T, Nakaji A, Shiba T (1985) Stereochemical studies of a selenium-containing hydrogenase from Methanococcus vannielii: determination of the absolute configuration of C-5 chirally labeled dihydro-8-hydroxy-5-deazaflavin cofactor. Proc Natl Acad Sci USA 82:1364–1366

    CAS  PubMed  Google Scholar 

  • Yasui A, Eker AP, Yasuhira S, Yajima H, Kobayashi T, Takao M et al (1994) A new class of DNA photolyases present in various organisms including aplacental mammals. EMBO J 13:6143–6151

    CAS  PubMed  Google Scholar 

  • Zehnder AJB, Wuhrmann K (1977) Physiology of a Methanobacterium strain AZ. Arch Microbiol 111:199–205

    CAS  Google Scholar 

  • Zeikus JG, Henning DL (1975) Methanobacterium arbophilicum sp. nov. An obligate anaerobe isolated from wetwood of living trees. A v Leeuwenhoek 41:543–552

    CAS  Google Scholar 

  • Zhilina TN (1972) Death of Methanosarcina in the air. Mikrobiologiia 41:1105–1106

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max-Planck-Gesellschaft, by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie. We thank Dr D. Linder (Gieβen) for N-terminal amino acid sequence determinations via Edman degradation and Dr D.M. Kurtz (Athens, Georgia, USA) for providing purified FprA and Hrb from M. thermoacetica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf K. Thauer.

Additional information

Dedicated to Hans Schlegel on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seedorf, H., Dreisbach, A., Hedderich, R. et al. F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch Microbiol 182, 126–137 (2004). https://doi.org/10.1007/s00203-004-0675-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0675-3

Keywords

Navigation