Skip to main content

Advertisement

Log in

Landslide susceptibility delineation in the Ar-Rayth area, Jizan, Kingdom of Saudi Arabia, using analytical hierarchy process, frequency ratio, and logistic regression models

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Mountain areas in the southern western corner of the Kingdom of Saudi Arabia (KSA) frequently suffer from various types of landsides induced by rainstorms and anthropogenic activities. To mitigate these problems, landslide susceptibility mapping and classification is important to develop quick and safe mitigation or remediation measures and to help the decision making in future planning by identifying the most vulnerable areas. This paper summarizes the findings of a landslide susceptibility analysis in the Ar-Rayth area, Jizan, KSA, using an analytical hierarchy process (AHP), frequency ratio (FR), and logistic regression (LR) models with the aid of GIS tools and remote sensing data. The landslide inventory map was prepared according to historical data, interpretation of high-resolution satellite images (Geo-Eye 0.5 m resolution and QuickBird 0.6 m resolution), topographic maps (1:10,000), and verified by field investigations. An inventory map with 253 landslides locations was extracted from many sources. The landslide inventory was randomly divided into two datasets: 75 % for training the models and 25 % for validation. An enhanced thematic mapper plus 15 m satellite image acquired in 2006 was used for determining the Normalized Difference Vegetation Index. A contour map (1:10,000 with a 10 m contour interval) was converted to digital elevation model 10 m resolution and subsequently converted to slope, slope aspect, curvature, elevation, and drainage networks. Geological data obtained with the help of satellite images were used to prepare lithological units and lineaments. Roads were digitized from the high-resolution image and a rainfall map was prepared from the rainfall gauges distributed throughout the study area. All these data were used to construct a spatial database using GIS and image processing. Three landslide susceptibility maps were constructed; one on the basis of a heuristic method using an AHP, the other two on the basis of landslide inventories and causative factors, using FR and LR. Furthermore, each causative factor’s weight was determined according to these three models and landslide susceptibility indices were calculated. For verification, receiver operating characteristic curves were calculated and the areas under the curve (AUC) for success rate are 0.755, 0.828, and 0.749 and for prediction rate are 0.708, 0.781, and 0.727 for the AHP, FR, and LR, respectively. In addition, the percentage of existing training landslides data in high and very high zones of the susceptibility maps is of 73.2, 85.31, and 88.59 % and for the validation landslides data is 73.2, 85.31, and 88.59 % for the AHP, FR, and LR, respectively. The findings indicated that the values of AUC are above 0.7 for both success and prediction rate which indicate these three models are suitable for susceptibility analysis. Also, percent of training and validation landslides data of high and very high zones indicate that LR model is more accurate followed by FR model and AHP model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akgun A, Bulut F (2007) GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environ Geol 51:1377–1387

    Article  Google Scholar 

  • Akgun A, Sezer EA, Nefesliogl HA, Gokceoglu C, Pradhan B (2012) An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput Geosci 38:23–34

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Armas I (2014) Diagnosis of landslide risk for individual buildings: insights from Prahova Subcarpathians, Romania. Environ Earth Sci 71(11):4637–4646. doi:10.1007/s12665-013-2854-5

    Article  Google Scholar 

  • Atkinson P, Massari R (1998) Generalised linear modelling of susceptibility for landsliding in the Central Apennines, Italy. Comput Geosci 24(4):373–385

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Bai SB, Wang J, Thiebes B, Cheng C, Chang ZY (2014) Susceptibility assessments of the Wenchuan earthquake-triggered landslides in Longnan using logistic regression. Environ Earth Sci 71(2):731–743. doi:10.1007/s12665-013-2475-z

    Article  Google Scholar 

  • Bathrellos GD, Gaki-Papanastassiou K, Skilodimou HD, Papanastassiou D, Chousianitis KG (2012) Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters. Environ Earth Sci 66:537–548. doi:10.1007/s12665-011-1263-x

    Article  Google Scholar 

  • Berhane G, Walraevens K (2013) Geological and geotechnical constraints for urban planning and natural environment protection: a case study from Mekelle City, Northern Ethiopia. Environ Earth Sci 69(3):783–798. doi:10.1007/s12665-012-1963-x

    Article  Google Scholar 

  • Brown CE (1998) Applied multiple statistics in geohydrology and related sciences. Springer, Berlin, p 248

    Book  Google Scholar 

  • Bui TD, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 96:28–40

    Article  Google Scholar 

  • Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Landslide hazard map for the upper Tiber river basin. CNR Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche Publication n. 2116, scale 1:100,000

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15(3):403–426

    Article  Google Scholar 

  • Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44(8):949–962

    Article  Google Scholar 

  • Chen YR, Ni PN, Tsai KJ (2013a) Construction of a sediment disaster risk assessment model. Environ Earth Sci 70(1):115–129. doi:10.1007/s12665-012-2108-y

    Article  Google Scholar 

  • Chen WT, Li XJ, Wang YX, Liu SW (2013b) Landslide susceptibility mapping using LiDAR and DMC data: a case study in the Three Gorges area, China. Environ Earth Sci 70(2):673–685. doi:10.1007/s12665-012-2151-8

    Article  Google Scholar 

  • Chi KH, Park NW, Chung CJ (2002) Fuzzy logic integration for landslide hazard mapping using spatial data from Boeun, Korea. In: Symposium on geospatial theory, processing and applications, Ottawa

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364

    Article  Google Scholar 

  • Committee on the Review of the National Landslide Hazards Mitigation Strategy (2004) Partnerships for reducing landslide risk. Assessment of the National landslide hazards mitigation strategy. Board on Earth Sciences and Resources, Division on earth and life studies, The National Academic Press, Washington, D.C

  • Conforti M, Pascale S, Robustelli G, Sdao F (2014) Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena 113(1):236–250

    Article  Google Scholar 

  • Conoscenti C, Agnesi V, Angileri S, Cappadonia C, Rotigliano E, Marker M (2013) A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily, Italy. Environ Earth Sci 70(3):1179–1195. doi:10.1007/s12665-012-2205-y

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2004) Parametric evaluation of 3D dispersion of rockfall trajectories. Nat Hazards Earth Syst Sci 4:583–598

    Article  Google Scholar 

  • Dahal RK (2014) Regional-scale landslide activity and landslide susceptibility zonation in the Nepal Himalaya. Environ Earth Sci 71(12):5145–5164. doi:10.1007/s12665-013-2917-7

    Article  Google Scholar 

  • Dahal RK, Bhandary NP, Hasegawa S, Yatabe R (2014) Topo-stress based probabilistic model for shallow landslide susceptibility zonation in the Nepal Himalaya. Environ Earth Sci 71(9):3879–3892. doi:10.1007/s12665-013-2774-4

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Dai FC, Lee CF, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40(3):381–391

    Article  Google Scholar 

  • De La Ville N, Diaz AC, Ramirez D (2002) Remote sensing and GIS technologies as tools to support sustainable management of areas devastated by landslides. Environ Dev Sustain 4(2):221–229

    Article  Google Scholar 

  • Dietrich WE, Bellugi D, Real de Asua R (2001) Validation of the shallow landslide model, SHALSTAB, for forest management. In: Wigmosta MS, Burges SJ (eds) Land use and watersheds: human influence on hydrology and geomorphology in urban and forest areas, vol 2. American Geophysical Union: Water Science and Application, pp 195–227

  • Duman T, Çan T, Emre Ö, Keçer M, Doğan A, Ateş Ş, Durmaz S (2005) Landslide inventory of southwestern Anatolia, Turkey. Eng Geol 77:99–114

    Article  Google Scholar 

  • Elkadiri R, Sultan M, Youssef AM, Elbayoumi T, Chase R, Bulkhi AB, Al-Katheeri MM (2014) A remote sensing-based approach for debris-flow susceptibility assessment using artificial neural networks and logistic regression modeling. IEEE J Sel Top Appl Earth Obs Remote Sens. doi:10.1109/JSTARS.2014.2337273

    Google Scholar 

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (North of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730

    Article  Google Scholar 

  • Glade T (2001) Landslide hazard assessment and historical landslide data—an inseparable couple? In: Glade T, Albini P, Francés F (eds) The use of historical data in natural hazard assessments. Kluwer, Dordrecht, pp 153–168

    Chapter  Google Scholar 

  • Gokceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44:147–161

    Article  Google Scholar 

  • Gorsevski PV, Gessler PE, Jankowski P (2003) Integrating a fuzzy k means classification and a Bayesian approach for spatial prediction of landslide hazard. J Geogr Syst 5(3):223–251

    Article  Google Scholar 

  • Guns M, Vanacker V (2013) Forest cover change trajectories and their impact on landslide occurrence in the tropical Andes. Environ Earth Sci 70(7):2941–2952. doi:10.1007/s12665-013-2352-9

    Article  Google Scholar 

  • Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58:89–107

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4):181–216

    Article  Google Scholar 

  • Guzzetti F, Crosta GB, Detti R, Agliardi F (2002) STONE: a computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28(9):1079–1093

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Landslide hazard assessment in the Staffora basin, Northern Italian Apennines. Geomorphology 72:272–299

    Article  Google Scholar 

  • He YP, Xie H, Cui P, Wei FQ, Zhong DL, Gardner JS (2003) GIS-based hazard mapping and zonation of debris flows in Xiaojiang Basin, southwestern China. Environ Geol 45:286–293

    Article  Google Scholar 

  • Honda K, Phillipps GP, Yokoyama GP (2002) Identifying the threat of debris flow to major arterial roads using Landsat ETM+ imagery and GIS modeling-an example from Catanduanes island, Republic of the Philippines. In: Proceedings of the Asian conference on remote sensing. http://www.gisdevelopment.net/aars/acrs/2002/

  • Huang HP, Yang KC, Lin BW (2013) Statistical evaluation of the effect of earthquake with other related factors on landslide susceptibility: using the watershed area of Shihmen reservoir in Taiwan as a case study. Environ Earth Sci 69(7):2151–2166. doi:10.1007/s12665-012-2044-x

    Article  Google Scholar 

  • Igwe O, Mode W, Nnebedum O, Okonkwo I, Oha I (2014) The analysis of rainfall-induced slope failures at Iva Valley area of Enugu State, Nigeria. Environ Earth Sci 71(5):2465–2480. doi:10.1007/s12665-013-2647-x

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Article  Google Scholar 

  • Jaafari A, Najafi A, Pourghasemi HR, Rezaeian J, Sattarian A (2013) GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int J Environ Sci Technol. doi:10.1007/s13762-013-0464-0

    Google Scholar 

  • Klimes J (2013) Landslide temporal analysis and susceptibility assessment as bases for landslide mitigation, Machu Picchu, Peru. Environ Earth Sci 70(2):913–925. doi:10.1007/s12665-012-2181-2

    Article  Google Scholar 

  • Lan HX, Zhou CH, Wang LJ, Zhang HY, Li RH (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng Geol 76:109–128

    Article  Google Scholar 

  • Lee S (2005a) Application and cross-validation of spatial logistic multiple regression for landslide susceptibility analysis. Geosciences 9(1):63–71

    Article  Google Scholar 

  • Lee S (2005b) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26:1477–1491

    Article  Google Scholar 

  • Lee S (2013) Landslide detection and susceptibility mapping in the Sagimakri area, Korea using KOMPSAT-1 and weight of evidence technique. Environ Earth Sci 70(7):3197–3215. doi:10.1007/s12665-013-2385-0

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Pradhan B (2006) Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Earth Syst Sci 115(6):661–672

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41

    Article  Google Scholar 

  • Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50:847–855

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using a Bayesian probability model. Environ Geol 43:120–131

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2004) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int J Remote Sens 25:2037–2052

    Article  Google Scholar 

  • Mathew JA, Brunsden D, Frenzel B, Gläser B, Weiß MM (1997) Rapid mass movement as a source of climatic evidence for the Holocene, vol 19. Publisher Paläoklimaforschung–Palaeoclimate Research

  • McFadden D (1974) Conditional logit analysis of qualitative choice analysis. In: Zarembka P (ed) Frontiers in econometrics. Academic Press, New York, pp 105–142

    Google Scholar 

  • Michie D, Spiegelhalter DJ, Taylor CC (1994) Machine learning, neural and statistical classification. Ellis Horwood, New York, p 289

    Google Scholar 

  • Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province Iran: a comparison between frequency ratio, Dempster–Shafer, and weights-of evidence models. J Asian Earth Sci 61:221–236

    Article  Google Scholar 

  • Moreiras SM (2005) Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina. Geomorphology 66:345–357

    Article  Google Scholar 

  • Nagarajan R, Mukherjee A, Roy A, Khire MV (1998) Temporal remote sensing data and GIS application in landslide hazard zonation of part of Western Ghat, India. Int J Remote Sens 19(4):573–585

    Article  Google Scholar 

  • Nagarajan R, Roy A, Vinod Kumar R, Mukherjee A, Khire MV (2000) Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull Eng Geol Environ 58:275–287

    Article  Google Scholar 

  • Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94:401–418

    Article  Google Scholar 

  • Neuhäuser B, Terhorst B (2007) Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86:12–24

    Article  Google Scholar 

  • Oh HJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci-UK 37(9):1264–1276

    Article  Google Scholar 

  • Ohlmacher CG, Davis CJ (2003) Using multiple regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci 64:180–197

    Article  Google Scholar 

  • Oztekin B, Topal T (2005) GIS-based detachment susceptibility analyses of a cut slope in limestone, Ankara-Turkey. Environ Geol 49:124–132

    Article  Google Scholar 

  • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68(5):1443–1464. doi:10.1007/s12665-012-1842-5

    Article  Google Scholar 

  • Petley DN (2008) The global occurrence of fatal landslides in 2007. In: Geophysical research abstracts, vol 10. EGU General Assembly

  • Pourghasemi HR (2008) Landslide hazard assessment using fuzzy logic (case study: a part of Haraz Watershed), M.Sc. thesis, Tarbiat Modares University International Campus, Iran

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz Watershed, Iran. Nat Hazards 63(2):965–996

    Article  Google Scholar 

  • Pourghasemi HR, Moradi HR, Fatemi Aghda SM (2013) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards 69:749–779

    Article  Google Scholar 

  • Pradhan B (2011) Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environ Ecol Stat 18(3):471–493

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci-UK 51(1):350–365

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Delineation of landslide hazard areas using frequency ratio, logistic regression and artificial neural network model at Penang Island, Malaysia. Environ Earth Sci 60:1037–1054

    Article  Google Scholar 

  • Pradhan B, Youssef AM, Varathrajoo R (2010) Approaches for delineating landslide hazard areas using different training sites in an advanced neural network model. Geo-Spat Inf Sci 13(2):93–102. doi:10.1007/s11806-010-0236-2

    Article  Google Scholar 

  • Rozos D, Skilodimou HD, Loupasakis C, Bathrellos GD (2013) Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environ Earth Sci 70(7):3255–3266. doi:10.1007/s12665-013-2390-3

  • Saaty TL (1980) The analytical hierarchy process. McGraw Hill, New York

    Google Scholar 

  • Saaty TL (2000) The fundamentals of decision making and priority theory with the analytic hierarchy process, vol VI, 2nd edn. RWS Publications, Pittsburg

    Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides 2:61–69

    Article  Google Scholar 

  • Santacana N, Baeza B, Corominas J, De Paz A, Marturiá J (2003) A GIS-Based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees, Spain). Nat Hazards 30(3):281–295

    Article  Google Scholar 

  • Schleier M, Bi RN, Rohn J, Ehret D, Xiang W (2014) Robust landslide susceptibility analysis by combination of frequency ratio, heuristic GIS-methods and ground truth evaluation for a mountainous study area with poor data availability in the Three Gorges Reservoir area, PR China. Environ Earth Sci 71(7):3007–3023. doi:10.1007/s12665-013-2677-4

    Article  Google Scholar 

  • Süzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  • Tangestani HM (2004) Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kakan catchment area, southwest Iran. Aust J Earth Sci 51(3):439–450

    Article  Google Scholar 

  • Temesgen B, Mohammed MU, Korme T (2001) Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet area, Ethiopia. Phys Chem Earth Part C 26(9):665–667

    Google Scholar 

  • Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92(1):18

    Google Scholar 

  • Uromeihy A, Mahdavifar MR (2000) Landslide hazard zonation of the Khorshrostam area, Iran. Bull Eng Geol Environ 58(3):207–213

    Article  Google Scholar 

  • van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86(2):404–414

    Article  Google Scholar 

  • van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movements, types and processes. In: Schuster RL, Krizek RJ (eds) Landslide analysis and control. National Academy Sciences, Washington, D.C., pp 11–33

    Google Scholar 

  • Wan SA (2013) Entropy-based particle swarm optimization with clustering analysis on landslide susceptibility mapping. Environ Earth Sci 68(5):1349–1366. doi:10.1007/s12665-012-1832-7

    Article  Google Scholar 

  • Wu XL, Niu RQ, Ren F, Peng L (2013) Landslide susceptibility mapping using rough sets and back-propagation neural networks in the Three Gorges, China. Environ Earth Sci 70(3):1307–1318. doi:10.1007/s12665-013-2217-2

    Article  Google Scholar 

  • Wu XL, Ren F, Niu RQ (2014) Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China. Environ Earth Sci 71(11):4725–4738. doi:10.1007/s12665-013-2863-4

    Article  Google Scholar 

  • Yalcin A (2005) An investigation on Ardesen (Rize) region on the basis of landslide susceptibility. KTU, PhD thesis (in Turkish)

  • Yamaguchi Y, Tanaka S, Odajima T, Kamai T, Tsuchida S (2003) Detection of a landslide movement as geometric misregistration in image matching of SPOT HRV data of two different dates. Int J Remote Sens 24(18):3523–3534

    Article  Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79(3–4):251–266

    Article  Google Scholar 

  • Youssef AM, Pradhan B, Gaber AFD, Buchroithner MF (2009) Geomorphological hazards analysis along the Egyptian Red Sea coast between Safaga and Quseir. Nat Hazards Earth Syst Sci 9:751–766

    Article  Google Scholar 

  • Youssef AM, Pradhan B, Tarabees E (2010) Integrated evaluation of urban development suitability based on remote sensing and GIS techniques: contribution from analytic hierarchy process. Arab J Geosci 4(3–4):463–473. doi:10.1007/sl2517-009-0118-1

    Google Scholar 

  • Youssef AM, Maerz HN, Al-Otaibi AA (2012) Stability of rock slopes along Raidah escarpment road, Asir Area, Kingdom of Saudi Arabia. J Geogr Geol. doi:10.5539/jgg.v4n2p48

  • Youssef AM, Pradhan B, Maerz NH (2013) Debris flow impact assessment caused by 14 April 2012 rainfall along the Al-Hada Highway, Kingdom of Saudi Arabia using high-resolution satellite imagery. Arab J Geosci. doi:10.1007/s12517-013-0935-0

    Google Scholar 

  • Youssef AM, Al-kathery M, Pradhan B (2014a) Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosci J. doi:10.1007/s12303-014-0032-8

  • Youssef AM, Al-kathery M, Pradhan B, Elsahly T (2014b) Debris flow impact assessment along the Al-Raith Road, Kingdom of Saudi Arabia, using remote sensing data and field investigations. Geomat Nat Hazards Risk. doi:10.1080/19475705.2014.933130

    Google Scholar 

  • Youssef AM, Pradhan B, Jebur MN, El-Harbi HM (2014c) Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environ Earth Sci doi:10.1007/s12665-014-3661-3

Download references

Acknowledgments

Thanks to Dr. Norbert H. Maerz for the review of the paper as well as for the three anonymous reviewers for their valuable comments on the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Youssef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, A.M. Landslide susceptibility delineation in the Ar-Rayth area, Jizan, Kingdom of Saudi Arabia, using analytical hierarchy process, frequency ratio, and logistic regression models. Environ Earth Sci 73, 8499–8518 (2015). https://doi.org/10.1007/s12665-014-4008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-4008-9

Keywords

Navigation