Skip to main content

Advertisement

Log in

Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models

  • Original Article
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate the landslide hazards at Selangor area, Malaysia, using Geographic Information System (GIS) and Remote Sensing. Landslide locations of the study area were identified from aerial photograph interpretation and field survey. Topographical maps, geological data, and satellite images were collected, processed, and constructed into a spatial database in a GIS platform. The factors chosen that influence landslide occurrence were: slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, land cover, vegetation index, and precipitation distribution. Landslide hazardous areas were analyzed and mapped using the landslide-occurrence factors by frequency ratio and logistic regression models. The results of the analysis were verified using the landslide location data and compared with probability model. The comparison results showed that the frequency ratio model (accuracy is 93.04%) is better in prediction than logistic regression (accuracy is 90.34%) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atkinson PM, Massari R (1998) Generalized linear modeling of susceptibility to land sliding in the central Apennines, Italy. Comput Geosci 24:373–385

    Article  Google Scholar 

  • Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Process Landf 26:1251–1263

    Article  Google Scholar 

  • Carro M, De Amicis, M Luzi, Marzorati S (2003) The application of predictive modeling techniques to landslides induced by earthquakes, the case study of the 26 September 1997 Umbria-Marche Earthquake (Italy). Eng Geol 69:139–159

    Article  Google Scholar 

  • Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

    Article  Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation: by the conditional analysis method. Geomorphology 48:349–364

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40:381–391

    Article  Google Scholar 

  • Donati L, Turrini MC (2002) An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology, application to an area of the Apennines (Valnerina; Perugia, Italy). Eng Geol 63:277–289

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone Area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730

    Article  Google Scholar 

  • Gokceoglu C, Sonmez H, Ercanoglu M (2000) Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey. Eng Geol 55:277–296

    Article  Google Scholar 

  • Guzzetti F, Carrarra A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Jibson WR, Edwin LH, John AM (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58:271–289

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Chwae U, Min K (2002a) Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geomorphology 46:149–162

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2002b) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43:120–131

    Article  Google Scholar 

  • Lee S, Ryu JH, Min K, Won JS (2003a) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Process Landf 27:1361–1376

    Article  Google Scholar 

  • Lee S, Ryu JH, Lee MJ, Won JS (2003b) Landslide susceptibility analysis using artificial neural network at Boun, Korea. Environ Geol 44:820–833

    Article  Google Scholar 

  • Lee S, Choi U (2003c) Development of GIS-based geological hazard information system and its application for landslide analysis in Korea. Geosci J 7:243–252

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004a) Determination and application of the weights for landslide susceptibility mapping: using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2004b) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Intl J Remote Sens 25:2037–2052

    Article  Google Scholar 

  • Luzi L, Pergalani F, Terlien MTJ (2000) Slope vulnerability to earthquakes at sub regional scale: using probabilistic techniques and geographic information systems. Eng Geol 58:313–336

    Article  Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansa, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Parise M, Jibson WR (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California Earthquake. Eng Geol 58:251–270

    Article  Google Scholar 

  • Pistocchi A, Luzi L, Napolitano P (2002) The use of predictive modeling techniques for optimal exploitation of spatial databases: a case study in landslide hazard mapping with expert system-like methods. Environ Geol 41:765–775

    Article  Google Scholar 

  • Rautelal P, Lakhera RC (2000) Landslide risk analysis between Giri and Tons rivers in Himachal Himalaya (India). International Journal of Applied Earth Observation and Geoinformation 2:153–160

    Article  Google Scholar 

  • Rece A, Capolongo D (2002) Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Comput Geosci 28:735–749

    Article  Google Scholar 

  • Remondo J, Gonzalez A, Diaz de Teran JR, Cendrero A, Fabbri AG, Chung CJF (2003) Validation of landslide susceptibility maps: examples and applications from a case study in Northern Spain. Nat Hazards 30:437–449

    Article  Google Scholar 

  • Romeo R (2000) Seismically induced landslide displacements: a predictive model. Eng Geol 58:337–351

    Article  Google Scholar 

  • Rowbotham D, Dudycha DN (1998) GIS Modeling of slope stability in Phewa Tal watershed, Nepal. Geomorphology 26:151–170

    Article  Google Scholar 

  • Shou KJ, Wang CF (2003) Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan. Eng Geol 68:237–250

    Article  Google Scholar 

  • Temesgen B, Mohammed MU, Korme T (2001) Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet area, Ethiopia. Phys Chem Earth 26:665–675

    Google Scholar 

  • Zhou G, Esaki T, Mitani Y, Xie M, Mori J (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Eng Geol 68:373–386

    Article  Google Scholar 

  • Zhou CH, Lee CF, Li J, Xu ZW (2002) On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology 43:197–207

    Article  Google Scholar 

Download references

Acknowledgement

Authors would like to thank Malaysian Center for Remote Sensing and Department of Surveying, Malaysia for providing various datasets for this research. Thanks are also due to the Malaysian Meteorological Service Department for providing rainfall data for the research. Authors also would like to thank anonymous reviewers from Landslides Journal for reviewing the paper, which has brought it into its present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saro Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4, 33–41 (2007). https://doi.org/10.1007/s10346-006-0047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-006-0047-y

Keywords

Navigation