Skip to main content

Advertisement

Log in

Forest cover change trajectories and their impact on landslide occurrence in the tropical Andes

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Tropical mountain regions are prone to landslide hazards. Given the current land pressure with increasing occupation of steep uplands, landslide hazards are expected to increase in the near future. Understanding the factors that control landslide hazards is therefore essential. Rare event logistic regression allows us to perform a robust detection of landslide controlling factors. This technique is here applied to the tropical Andes to evaluate the impact of dynamic land cover changes on landslide occurrences. Land cover change trajectories (i.e. dynamic evolution of land cover through time) were specifically included in the probabilistic landslide analysis. While natural physical processes such as slope undercutting by rivers and failure of oversteepened slopes are important in this tropical mountainous site, landslides are increasingly associated with human activities. The data show that land cover trajectories are associated with landslide patterns. In this humid mountainous site, forest degradation does not lead to a measurable increase in landslide occurrence. However, few years after forests are converted to pastures, a rapid decline of slope stability is observed. Land cover conversion from forest to pasture permanently reduces slope stability. It is assumed that major changes in soil properties and hydrology induced by the vegetation conversion play a role in accelerating landslide hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcántara-Ayala I, Esteban-Chávez O, Parrot JF (2006) Landsliding related to land-cover change: A diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla, Mexico. CATENA 65(2):152–165. doi:10.1016/j.catena.2005.11.006

    Article  Google Scholar 

  • Andresen MA (2009) Testing for similarity in area-based spatial patterns: a nonparametric Monte Carlo approach. Appl Geogr 29:333–345. doi:10.1016/j.apgeog.2008.12.004

    Article  Google Scholar 

  • Bai S, Lü G, Wang J, Zhou P, Ding L (2011) GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environ Earth Sci 62(1):139–149. doi:10.1007/s12665-010-0509-3

    Article  Google Scholar 

  • Basabe P (1998) Prevención de desastres naturales en la Cuenca del Paute—Informe final: Proyecto Precupa. Swiss Disaster Relief Unit (SDR/CSS), Cuenca, Ecuador

  • Beguería S (2006) Changes in land cover and shallow landslide activity: a case study in the Spanish Pyrenees. Geomorphology 74(1–4):196–206. doi:10.1016/j.geomorph.2005.07.018

    Article  Google Scholar 

  • BGS, CODIGEM (1994) Geological and metal ocurrences maps of the southern Cordillera Real and El Oro metamorphic belts, Ecuador

  • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5:853–862

    Article  Google Scholar 

  • Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soils for the trees? Agric Ecosyst Environ 104:185–228. doi:10.1016/j.agee.2004.01.015

    Article  Google Scholar 

  • Burbank DW (2002) Rates of erosion and their implications for exhumation. Miner Mag 66(1):25–52. doi:10.1180/0026461026610014

    Article  Google Scholar 

  • Burbank DW, Leland J (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379(6565):505

    Article  Google Scholar 

  • Claessens L, Knapen A, Kitutu M, Poesen J, Deckers J (2007) Modelling landslide hazard, soil redistribution and sediment yield of landslides on the Ugandan footslopes of Mount Elgon. Geomorphology 90(1–2):23–35. doi:10.1016/j.geomorph.2007.01.007

    Article  Google Scholar 

  • Condo Jácome M (2004) Consejo de programación de obras de emergencia de la cuenca del Rio Paute y sus afluente—COPOE, Proyecto de Desarrollo de la Cuenca del Paute. Componente Geológico, Quito

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board, National Research Council, Washington, p 673

    Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • DeFries RS, Rudel T, Uriarte M, Hansen M (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3(3):178-181. http://www.nature.com/ngeo/journal/v3/n3/suppinfo/ngeo756_S1.html

  • Demoulin A, Chung C (2007) Mapping landslide susceptibility from small datasets: a case study in the Pays de Herve (E Belgium). Geomorphology 89(3–4):391–404. doi:10.1016/j.geomorph.2007.01.008

    Article  Google Scholar 

  • Donati L, Turrini MC (2002) An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Apennines (Valnerina; Perugia, Italy). Eng Geol 63:277–289

    Article  Google Scholar 

  • Dörner J, Dec D, Zúñiga F, Sandoval P, Horn R (2011) Effect of land use change on Andosol’s pore functions and their functional resilience after mechanical and hydraulic stresses. Soil Tillage Res 115–116:71–79. doi:10.1016/j.still.2011.07.002

    Article  Google Scholar 

  • FAO, ISRIC, ISSS (1998) World reference base for soil resources. World Soil Resources Report, vol 84, Rome

  • Gagnmon H (1974) La photo aérienne son interprétation dans les études de l’environnement et de l’aménagement du territoire. Montréal, Canada

    Google Scholar 

  • García-Ruiz JM, Beguería S, Alatorre LC, Puigdefábregas J (2010) Land cover changes and shallow landsliding in the flysch sector of the Spanish Pyrenees. Geomorphology 124(3–4):250–259. doi:10.1016/j.geomorph.2010.03.036

    Article  Google Scholar 

  • Glade T (2003) Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena 51:297–314

    Article  Google Scholar 

  • Grau HR, Aide M (2008) Globalization and land-use transitions in Latin America. Ecol Soc 13(2):16

    Google Scholar 

  • Guns M, Vanacker V (2012) Logistic regression applied to natural hazards: rare event logistic regression with replications. Nat Hazards Earth Syst Sci 12(6). doi:10.5194/nhess-12-1937-2012

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184. doi:10.1016/j.geomorph.2006.04.007

    Article  Google Scholar 

  • Huabin W, Gangjun L, Weiya X, Gonghui W (2005) GIS-based landslide hazard assessment: an overview. Prog Phys Geogr 29(4):548–567

    Article  Google Scholar 

  • Imai K, King G, Lau O (2007) Zelig: everyone’s statistical software. http://GKing.harvard.edu/zelig. Accessed 23 May 2011

  • INAMHI (2009) Anuario hidrologico y meteorológico 1970–2009. Instituto Nacional de Meteorología en Hidrología, Quito

  • Instituto Geográfico Militar (1992) Mapa topografica Taday (Cola de S. Pablo), Ñ V-C4, escala 1:50 000, 2nd edn. Instituto Geográfico Militar, Ecuador

  • Jokisch BD, Lair BM (2002) One last stand? Forests and change on Ecuador’s Eastern Cordillera. Geogr Rev 92(2):235–256. doi:10.1111/j.1931-0846.2002.tb00006.x

    Article  Google Scholar 

  • King G, Zeng L (2001a) Explaining rare events in international relations. Int Org 55(03):693–715. doi:10.1162/00208180152507597

    Article  Google Scholar 

  • King G, Zeng L (2001b) Logistic regression in rare events data. Polit Anal 9(2):137–163

    Article  Google Scholar 

  • Kleinbaum DG, Klein M (2010) Introduction to logistic regression. In: Logistic regression. Statistics for biology and health. Springer, New York, pp 1–39 (doi:10.1007/978-1-4419-1742-3_1)

  • Konz N, Baenninger D, Konz M, Nearing M, Alewell C (2010) Process identification of soil erosion in steep mountain regions. Hydrol Earth Syst Sci 14(4) doi:10.5194/hess-14-675-2010

  • Korup O, Densmore AL, Schlunegger F (2010) The role of landslides in mountain range evolution. Geomorphology 120(1–2):77–90. doi:10.1016/j.geomorph.2009.09.017

    Article  Google Scholar 

  • Larsen MC, Torres-Sánchez AJ (1998) The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology 24:309–331

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4(1):33–41. doi:10.1007/s10346-006-0047-y

    Article  Google Scholar 

  • Lillesand TM, Keifer JW (1994) Remote sensing and image interpretation. John Wiley, New York

    Google Scholar 

  • Luteyn JL (1999) Páramos : a checklist of plant diversity, geographical distribution, and botanical literature, vol 84. Memoirs of the New York Botanical Garden, The New York Botanical Garden, Bronx

    Google Scholar 

  • McCalpin J (1974) Preliminary age classification of landslides for inventory mapping. In: Proceedings of 21st annual symposium on engineering geology and soils engineering, Pocatello, Idaho, pp 99–111

  • Molina A, Vanacker V, Balthazar V, Mora D, Govers G (2012) Complex land cover change, water and sediment yield in a degraded Andean environment. J Hydrol 472–473:25–35. doi:10.1016/j.jhydrol.2012.09.012

    Article  Google Scholar 

  • Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201(3–4):481–489. doi:10.1016/s0012-821x(02)00725-2

    Article  Google Scholar 

  • Montgomery DR, Schmidt KM, Dietrich WE, Greenberg HM (2000) Forest clearing and regional landsliding in the Pacific northwest. Geology 28:311–314

    Article  Google Scholar 

  • Poulenard J, Podwojewski P, Herbillon AJ (2003) Characteristics of non-allophanic Andisols with hydric properties from the Ecuadorian páramos. Geoderma 117(3–4):267–281. doi:10.1016/s0016-7061(03)00128-9

    Article  Google Scholar 

  • Roering JJ, Schmidt KM, Stock JD, Dietrich WE, Montgomery DR (2003) Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon coast range. Can Geotech J 40(2):237–253. doi:10.1139/t02-113

    Article  Google Scholar 

  • Rogers NW, Selby MJ (1980) Mechanisms of shallow translational landsliding during summer rainstorms: North Island, New Zeland. Geografiska Annaler Ser A Phys Geogr 62(1/2):11–21

    Article  Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas. Landslides 2(1):61–69. doi:10.1007/s10346-004-0039-8

    Article  Google Scholar 

  • Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T (2001) The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon coast range. Can Geotech J 38(5):995–1024. doi:10.1139/cgj-38-5-995

    Article  Google Scholar 

  • Schwarz M, Lehmann P, Or D (2010) Quantifying lateral root reinforcement in steep slopes—from a bundle of roots to tree stands. Earth Surf Proc Land 35(3):354–367. doi:10.1002/esp.1927

    Article  Google Scholar 

  • Sidle RC, Ochiai H (2006) Landslides: processes, prediction, and land use. Water Resour Monogr 18

  • Sitzia T, Semenzato P, Trentanovi G (2010) Natural reforestation is changing spatial patterns of rural mountain and hill landscapes: a global overview. For Ecol Manag 259(8):1354–1362. doi:10.1016/j.foreco.2010.01.048

    Article  Google Scholar 

  • Tabachnick BG, Fidell LS (1996) Using multivariate statistics. HarperCollins, New York

    Google Scholar 

  • van Beers WFJ (1983) The auger hole method. International Institute for land reclamation and improvement, ILRI edn. Wageningen, The Netherlands

  • Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76(3–4):392–410. doi:10.1016/j.geomorph.2005.12.003

    Article  Google Scholar 

  • Van Ranst E, Utami SR, Verdoodt A, Qafoku NP (2008) Mineralogy of a perudic Andosol in central Java, Indonesia. Geoderma 144(1–2):379–386. doi:10.1016/j.geoderma.2007.12.007

    Article  Google Scholar 

  • Vanacker V, Govers G, Tacuri E, Poesen J, Dercon G, Cisneros F (2000) Using sequential aerial photographs to detect land-use changes in the Austro Ecuadoriano. Revue de Géographie Alpine 88(3):65–75

    Article  Google Scholar 

  • Vanacker V, Vanderschaeghe M, Govers G, Willems E, Poesen J, Deckers J, De Bievre B (2003) Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds. Geomorphology 52(3–4):299–315

    Article  Google Scholar 

  • Vanacker V, Molina A, Govers G, Poesen J, Deckers J (2007) Spatial variation of suspended sediment concentrations in a tropical Andean river system: the Paute river, southern Ecuador. Geomorphology 87(1–2):53–67. doi:10.1016/j.geomorph.2006.06.042

    Article  Google Scholar 

  • Vanwalleghem T, Van Den Eeckhaut M, Poesen J, Govers G, Deckers J (2008) Spatial analysis of factors controlling the presence of closed depressions and gullies under forest: application of rare event logistic regression. Geomorphology 95(3–4):504–517. doi:10.1016/j.geomorph.2007.07.003

    Article  Google Scholar 

  • Winckell A, Zebrowski C, Sourdat M (1997) Las regiones y paisages del Ecuador, vol 2. Geografía básica del Ecuador, Quito

    Google Scholar 

  • Zhou CH, Lee CF, Li J, Xu ZW (2002) On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology 43(3–4):197–207. doi:10.1016/s0169-555x(01)00130-1

    Article  Google Scholar 

Download references

Acknowledgments

Data collection and logistic support for this project was provided through the Belgian Science Policy grant SR/00/133 FOMO and the CUD-PIC project ‘Strengthening the scientific and technological capacities to implement spatially integrated land and water management schemes adapted to local socio-economic and physical settings’. M. Guns was funded through a Ph.D. fellowship from the Fonds National de la Recherche Scientifique (FRS-FNRS, Belgium), and the Fund for Tropical Geography Yola Verhasselt of the Royal Academy for Overseas Sciences (Belgium). The authors would like to thank Pr. D. Alvarado and Ing. P. Borja (Universidad de Cuenca, Ecuador), the engineers of CGPaute (Ecuador), Ing. L. Jerves (Celec, Hidropaute, Ecuador) and Dr. A. Molina (KULeuven, Belgium) for their precious help on the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Guns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guns, M., Vanacker, V. Forest cover change trajectories and their impact on landslide occurrence in the tropical Andes. Environ Earth Sci 70, 2941–2952 (2013). https://doi.org/10.1007/s12665-013-2352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2352-9

Keywords

Navigation