Skip to main content
Log in

Probiotic Properties of Leuconostoc mesenteroides Isolated from Aguamiel of Agave salmiana

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Four lactic acid bacteria, Leuconostoc mesenteroides subsp. mesenteroides, were isolated from aguamiel the sap obtained from Agave salmiana from México and identified by 16S rRNA gene sequence analysis. The probiotic potential of these strains was evaluated and compared with a commercial probiotic (Lactobacillus plantarum 299v) from human origin. All the strains survived the in vitro gastrointestinal simulation conditions: the stomach simulation (3 h, pH 2, 37 °C) and the intestinal simulation (4 h, bile salts 0.5 %, 37 °C). All the strains showed a strong hydrophilic character with n-hexadecane and chloroform assays, and all the strains showed a mucin adhesion rate similar to that of L. plantarum 299v. The strains of L. mesenteroides subsp. mesenteroides exhibited similar antimicrobial activity against some pathogens in comparison with L. plantarum 299v. Some antibiotics inhibited the growth of the strains. L. mesenteroides subsp. mesenteroides exhibited in vitro probiotic potential, and it could be better characterized through future in vivo tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Douglas LC, Sanders ME (2008) Probiotics and prebiotics in dietetics practice. J Am Diet Assoc 108(3):510–521. doi:10.1016/j.jada.2007.12.009

    Article  Google Scholar 

  2. Correia MITD, Liboredo JC, Consoli MLD (2012) The role of probiotics in gastrointestinal surgery. Nutrition 28(3):230–234. doi:10.1016/j.nut.2011.10.013

    Article  Google Scholar 

  3. Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, Krabshuis J, Le Mair T (2009) World Gastroenterology Organisation practice guideline: probiotics and prebiotics. Arab J Gastroenterol 10(1):33–42. doi:10.1016/j.ajg.2009.03.001

    Article  Google Scholar 

  4. Geier MS, Butler RN, Howarth GS (2007) Inflammatory bowel disease: current insights into pathogenesis and new therapeutic options; probiotics, prebiotics and synbiotics. Int J Food Microbiol 115(1):1–11. doi:10.1016/j.ijfoodmicro.2006.10.006

    Article  CAS  Google Scholar 

  5. Kaur IP, Chopra K, Saini A (2002) Probiotics: potential pharmaceutical applications. Eur J Pharm Sci 15(1):1–9. doi:10.1016/S0928-0987(01)00209-3

    Article  CAS  Google Scholar 

  6. Conway PL, Gorbach SL, Goldin BR (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J Dairy Sci 70(1):1–12. doi:10.3168/jds.S0022-0302(87)79974-3

    Article  CAS  Google Scholar 

  7. Fooks LJ, Fuller R, Gibson GR (1999) Prebiotics, probiotics and human gut microbiology. Int Dairy J 9(1):53–61. doi:10.1016/S0958-6946(99)00044-8

    Article  Google Scholar 

  8. Neef A, Sanz Y (2013) Future for probiotic science in functional food and dietary supplement development. Curr Opin Clin Nutr Metab Care 16(6):679–687. doi:10.1097/MCO.0b013e328365c258

    Article  CAS  Google Scholar 

  9. Argyri AA, Zoumpopoulou G, Karatzas K-AG, Tsakalidou E, Nychas G-JE, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33(2):282–291. doi:10.1016/j.fm.2012.10.005

    Article  CAS  Google Scholar 

  10. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in foods. FAO/WHO, London

  11. Lilly DM, Stillwell RH (1965) Probiotics: growth-promoting factors produced by microorganisms. Science 147(3659):747–748. doi:10.1126/science.147.3659.747

    Article  CAS  Google Scholar 

  12. Stanton C, Gardiner G, Meehan H, Collins K, Fitzgerald G, Lynch PB, Ross RP (2001) Market potential for probiotics. Am J Clin Nutr 73(2):476s–483s

    CAS  Google Scholar 

  13. Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O’Sullivan GC, Shanahan F, Collins JK (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73(2):386s–392s

    CAS  Google Scholar 

  14. Kailasapathy K, Chin J (2000) Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol 78(1):80–88. doi:10.1046/j.1440-1711.2000.00886.x

    Article  CAS  Google Scholar 

  15. Gomes AMP, Malcata FX (1999) Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci Technol 10(4–5):139–157. doi:10.1016/S0924-2244(99)00033-3

    Article  CAS  Google Scholar 

  16. Mathara JM, Schillinger U, Guigas C, Franz C, Kutima PM, Mbugua SK, Shin HK, Holzapfel WH (2008) Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int J Food Microbiol 126(1–2):57–64. doi:10.1016/j.ijfoodmicro.2008.04.027

    Article  CAS  Google Scholar 

  17. Moraes PM, Perin LM, Todorov SD, Silva A, Franco BDGM, Nero LA (2012) Bacteriocinogenic and virulence potential of Enterococcus isolates obtained from raw milk and cheese. J Appl Microbiol 113(2):318–328. doi:10.1111/j.1365-2672.2012.05341.x

    Article  CAS  Google Scholar 

  18. Ranadheera RDCS, Baines SK, Adams MC (2010) Importance of food in probiotic efficacy. Food Res Int 43(1):1–7. doi:10.1016/j.foodres.2009.09.009

    Article  CAS  Google Scholar 

  19. Sanders ME, Klaenhammer TR (2001) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 84(2):319–331. doi:10.3168/jds.S0022-0302(01)74481-5

    Article  CAS  Google Scholar 

  20. Schillinger U, Guigas C, Heinrich Holzapfel W (2005) In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. Int Dairy J 15(12):1289–1297. doi:10.1016/j.idairyj.2004.12.008

    Article  CAS  Google Scholar 

  21. Todorov S, LeBlanc J, Franco BGM (2012) Evaluation of the probiotic potential and effect of encapsulation on survival for Lactobacillus plantarum ST16 Pa isolated from papaya. World J Microbiol Biotechnol 28(3):973–984. doi:10.1007/s11274-011-0895-z

    Article  CAS  Google Scholar 

  22. Melgar-Lalanne G, Rivera-Espinoza Y, Reyes Méndez A, Hernández-Sánchez H (2013) In vitro evaluation of the probiotic potential of halotolerant lactobacilli isolated from a ripened tropical Mexican cheese. Probiotics Antimicro Prot 5(4):239–251. doi:10.1007/s12602-013-9144-0

    Article  CAS  Google Scholar 

  23. de Paula A, Jeronymo-Ceneviva A, Silva L, Todorov S, Franco BM, Penna A (2014) Leuconostoc mesenteroides SJRP55: a potential probiotic strain isolated from Brazilian water buffalo mozzarella cheese. Ann Microbiol. doi:10.1007/s13213-014-0933-9

    Google Scholar 

  24. Turchi B, Mancini S, Fratini F, Pedonese F, Nuvoloni R, Bertelloni F, Ebani V, Cerri D (2013) Preliminary evaluation of probiotic potential of Lactobacillus plantarum strains isolated from Italian food products. World J Microbiol Biotechnol 29(10):1913–1922. doi:10.1007/s11274-013-1356-7

    Article  Google Scholar 

  25. Ortiz-Basurto RI, Pourcelly G, Doco T, Williams P, Dornier M, Belleville M-P (2008) Analysis of the main components of the aguamiel produced by the maguey-pulquero (Agave mapisaga) throughout the harvest period. J Agric Food Chem 56(10):3682–3687. doi:10.1021/jf072767h

    Article  CAS  Google Scholar 

  26. Murray RGE, Doetsch DR, Robinow CF (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 21–41

  27. Persing DH (1993) In vitro nucleic acid amplification techniques. In: Persing DH, Smith TF, Tenover FC (eds) Diagnostic molecular microbiology: principles and applications. American Society for Microbiology, Washington, DC, pp 51–87

  28. Jang J, Kim B, Lee J, Han H (2003) A rapid method for identification of typical Leuconostoc species by 16S rDNA PCR-RFLP analysis. J Microbiol Methods 55(1):295–302. doi:10.1016/S0167-7012(03)00162-3

    Article  CAS  Google Scholar 

  29. Nishioka M, Mizuguchi H, Fujiwara S, Komatsubara S, Kitabayashi M, Uemura H, Takagi M, Imanaka T (2001) Long and accurate PCR with a mixture of KOD DNA polymerase and its exonuclease deficient mutant enzyme. J Biotechnol 88(2):141–149. doi:10.1016/S0168-1656(01)00275-9

    Article  CAS  Google Scholar 

  30. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  Google Scholar 

  31. Vizoso Pinto MG, Franz CMAP, Schillinger U, Holzapfel WH (2006) Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int J Food Microbiol 109(3):205–214. doi:10.1016/j.ijfoodmicro.2006.01.029

    Article  CAS  Google Scholar 

  32. Brink M, Todorov SD, Martin JH, Senekal M, Dicks LMT (2006) The effect of prebiotics on production of antimicrobial compounds, resistance to growth at low pH and in the presence of bile, and adhesion of probiotic cells to intestinal mucus. J Appl Microbiol 100(4):813–820. doi:10.1111/j.1365-2672.2006.02859.x

    Article  CAS  Google Scholar 

  33. Panyarachun B, Sobhon P, Tinikul Y, Chotwiwatthanakun C, Anupunpisit V, Anuracpreeda P (2010) Paramphistomum cervi: surface topography of the tegument of adult fluke. Exp Parasitol 125(2):95–99. doi:10.1016/j.exppara.2009.12.020

    Article  CAS  Google Scholar 

  34. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9(1):29–33. doi:10.1111/j.1574-6968.1980.tb05599.x

    Article  CAS  Google Scholar 

  35. Doyle RJ, Rosenberg M (1995) Measurement of microbial adhesion to hydrophobic substrata. In: Doyle RJ, Ofek I (eds) Methods in enzymology, vol 253. Academic Press, Waltham, pp 542–550. doi:10.1016/S0076-6879(95)53046-0

    Google Scholar 

  36. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36(9–10):895–904. doi:10.1016/S0963-9969(03)00098-X

    Article  CAS  Google Scholar 

  37. Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49(11):1749–1755. doi:10.1086/647952

    Article  Google Scholar 

  38. Jeronymo-Ceneviva A, de Paula A, Silva L, Todorov S, Franco BM, Penna A (2014) Probiotic properties of lactic acid bacteria isolated from water-buffalo mozzarella cheese. Probiotics Antimicro Prot 6(3–4):141–156. doi:10.1007/s12602-014-9166-2

    Article  CAS  Google Scholar 

  39. Zhang W, Liu M, Dai X (2013) Biological characteristics and probiotic effect of Leuconostoc lactis strain isolated from the intestine of black porgy fish. Braz J Microbiol 44(3):685–691. doi:10.1590/s1517-83822013005000053

    Article  CAS  Google Scholar 

  40. Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16(3):189–199. doi:10.1016/j.idairyj.2005.02.009

    Article  CAS  Google Scholar 

  41. Allameh SKDH, Yusoff FM, Saad CR, Ideris A (2012) Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa striatus). Afr J Biotechnol 11(16):3810–3816. doi:10.5897/AJB11.1871

    CAS  Google Scholar 

  42. Divya J, Varsha K, Nampoothiri K (2012) Newly isolated lactic acid bacteria with probiotic features for potential application in food industry. Appl Biochem Biotechnol 167(5):1314–1324. doi:10.1007/s12010-012-9561-7

    Article  CAS  Google Scholar 

  43. Mishra V, Prasad DN (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol 103(1):109–115. doi:10.1016/j.ijfoodmicro.2004.10.047

    Article  Google Scholar 

  44. Koseki S, Mizuno Y, Sotome I (2011) Modeling of pathogen survival during simulated gastric digestion. Appl Environ Microbiol 77(3):1021–1032. doi:10.1128/aem.02139-10

    Article  CAS  Google Scholar 

  45. Charteris Kelly, Morelli Collins (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84(5):759–768. doi:10.1046/j.1365-2672.1998.00407.x

    Article  CAS  Google Scholar 

  46. Zavaglia AG, Kociubinski G, Pérez P, De Antoni G (1998) Isolation and characterization of Bifidobacterium strains for probiotic formulation. J Food Prot 61(7):865–873

    CAS  Google Scholar 

  47. Collado MC, Meriluoto J, Salminen S (2007) Development of new probiotics by strain combinations: is it possible to improve the adhesion to intestinal mucus? J Dairy Sci 90(6):2710–2716. doi:10.3168/jds.2006-456

    Article  CAS  Google Scholar 

  48. Gueimonde M, Salminen S (2006) New methods for selecting and evaluating probiotics. Dig Liver Dis 38:S242–S247. doi:10.1016/s1590-8658(07)60003-6

    Article  Google Scholar 

  49. Collado MC, Gueimonde M, Salminen S (2010) Chapter 23—probiotics in adhesion of pathogens: mechanisms of action. In: Preedy RRWR (ed) Bioactive Foods in Promoting Health. Academic Press, Boston, pp 353–370. doi:10.1016/B978-0-12-374938-3.00023-2

    Chapter  Google Scholar 

  50. Izquierdo E, Horvatovich P, Marchioni E, Aoude-Werner D, Sanz Y, Ennahar S (2009) 2-DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers. Electrophoresis 30(6):949–956. doi:10.1002/elps.200800399

    Article  CAS  Google Scholar 

  51. Haller D, Colbus H, Gänzle MG, Scherenbacher P, Bode C, Hammes WP (2001) Metabolic and functional properties of lactic acid bacteria in the gastro-intestinal ecosystem: a comparative in vitro studybetween bacteria of intestinal and fermented food origin. Syst Appl Microbiol 24(2):218–226. doi:10.1078/0723-2020-00023

    Article  CAS  Google Scholar 

  52. Ouwehand AC, Parhiala R, Salminen S, Rantala A, Huhtinen H, Sarparanta H, Salminen E (2004) Influence of the endogenous mucosal microbiota on the adhesion of probiotic bacteria in vitro. Microb Ecol Health Dis 16(4):202–204. doi:10.1080/08910600410021774

    Article  Google Scholar 

  53. Ouwehand AC, Tuomola EM, Tölkkö S, Salminen S (2001) Assessment of adhesion properties of novel probiotic strains to human intestinal mucus. Int J Food Microbiol 64(1–2):119–126. doi:10.1016/S0168-1605(00)00440-2

    Article  CAS  Google Scholar 

  54. Shobharani P, Agrawal R (2011) A potent probiotic strain from cheddar cheese. Indian J Microbiol 51(3):251–258. doi:10.1007/s12088-011-0072-y

    Article  CAS  Google Scholar 

  55. Aswathy R, Ismail B, John R, Nampoothiri K (2008) Evaluation of the probiotic characteristics of newly isolated lactic acid bacteria. Appl Biochem Biotechnol 151(2–3):244–255. doi:10.1007/s12010-008-8183-6

    Article  CAS  Google Scholar 

  56. Raghavendra P, Halami PM (2009) Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. Int J Food Microbiol 133(1–2):129–134. doi:10.1016/j.ijfoodmicro.2009.05.006

    Article  CAS  Google Scholar 

  57. Ofek I, Hasty DL, Sharon N (2003) Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol 38(3):181–191. doi:10.1016/s0928-8244(03)00228-1

    Article  CAS  Google Scholar 

  58. Sánchez B, Bressollier P, Urdaci MC (2008) Exported proteins in probiotic bacteria: adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. FEMS Immunol Med Microbiol 54(1):1–17. doi:10.1111/j.1574-695X.2008.00454.x

    Article  Google Scholar 

  59. Ripamonti B, Agazzi A, Bersani C, De Dea P, Pecorini C, Pirani S, Rebucci R, Savoini G, Stella S, Stenico A, Tirloni E, Domeneghini C (2011) Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts. Anaerobe 17(3):97–105. doi:10.1016/j.anaerobe.2011.05.001

    Article  Google Scholar 

  60. Tejero-Sariñena S, Barlow J, Costabile A, Gibson GR, Rowland I (2012) In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids. Anaerobe 18(5):530–538. doi:10.1016/j.anaerobe.2012.08.004

    Article  Google Scholar 

  61. Ouwehand AC, Salminen SJ (1998) The health effects of cultured milk products with viable and non-viable bacteria. Int Dairy J 8(9):749–758. doi:10.1016/S0958-6946(98)00114-9

    Article  Google Scholar 

  62. Gänzle MG, Weber S, Hammes WP (1999) Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Int J Food Microbiol 46(3):207–217. doi:10.1016/S0168-1605(98)00205-0

    Article  Google Scholar 

  63. Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29(4):625–651. doi:10.1016/j.femsre.2004.09.003

    Article  CAS  Google Scholar 

  64. Senbagam D, Gurusamy R, Senthilkumar B (2013) Physical chemical and biological characterization of a new bacteriocin produced by Bacillus cereus NS02. Asian Pac J Trop Med 6(12):934–941. doi:10.1016/S1995-7645(13)60167-4

    Article  CAS  Google Scholar 

  65. Gueimonde M, Sánchez B, de los Reyes-Gavilán CG, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol. doi:10.3389/fmicb.2013.00202

    Google Scholar 

  66. Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R (2014) Antibiotic resistance among commercially available probiotics. Food Res Int 57:176–195. doi:10.1016/j.foodres.2014.01.025

    Article  CAS  Google Scholar 

  67. Courvalin P (2006) Antibiotic resistance: the pros and cons of probiotics. Dig Liver Dis 38:S261–S265. doi:10.1016/s1590-8658(07)60006-1

    Article  Google Scholar 

  68. Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119(6, Supplement 1):S3–S10. doi:10.1016/j.amjmed.2006.03.011

    Article  CAS  Google Scholar 

  69. Hummel AS, Hertel C, Holzapfel WH, Franz CMAP (2007) Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 73(3):730–739. doi:10.1128/aem.02105-06

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from CONACyT (435894/267594), the Instituto Politecnico Nacional (IPN-UPIBI) of Mexico, and the Central de Microscopía of ENCB, Mexico.

Conflict of interest

Castro-Rodríguez Diana, Hernández-Sánchez Humberto and Yáñez Fernández Jorge declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yáñez Fernández Jorge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diana, CR., Humberto, HS. & Jorge, Y.F. Probiotic Properties of Leuconostoc mesenteroides Isolated from Aguamiel of Agave salmiana . Probiotics & Antimicro. Prot. 7, 107–117 (2015). https://doi.org/10.1007/s12602-015-9187-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-015-9187-5

Keywords

Navigation