Skip to main content

Bacteria in Food and Beverage Production

  • Reference work entry
The Prokaryotes

Abstract

Foods typically contain a variety of bacteria of which some may be beneficial, such as those preserving foods through products of fermentation, and others may be harmful by causing human illness or food spoilage. Lactic acid bacteria are among the most important groups of microorganisms used in food fermentations and are largely included in the genera Carnobacterium, Enterococcus, Lactobacillus, Lactococcus , Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus, and Weissella. The essential feature of lactic acid bacteria metabolism is efficient carbohydrate fermentation coupled to substrate-level phosphorylation. These bacteria can degrade a variety of carbohydrates, with lactic acid being the predominant end product. Many lactic acid bacteria also produce bacteriocins that have antimicrobial activity that is antagonistic to other bacteria, especially toward bacteria closely related to the bacteriocin-producing strain. Bacteriocins are peptides that are produced ribosomally by bacteria and released extracellularly.

Starter cultures, which are largely comprised of lactic acid bacteria, are food-grade microorganisms that are used to produce fermented foods of desirable appearance, body, texture, and flavor. Types of fermented foods for which commercial starter cultures are currently used include dairy products (cheese, sour cream, yogurt), meat products (sausages), and vegetable products (pickles, sauerkraut, olives). For starter cultures to be effective during food fermentations, they must dominate over naturally occurring microflora and produce the desired end products of fermentation. Many of the activities essential for food fermentations, including lactose metabolism, proteinase activity, oligopeptide transport, bacteriophage-resistance mechanisms, bacteriocin production and immunity, bacteriocin resistance, exopolysaccharide production, and citrate utilization, are encoded on plasmids harbored by lactic acid bacteria. Advances in molecular technology have enabled the construction of superior strains of starter cultures for food fermentations. Improved features of these strains include bacteriophage resistance, genetic stability, and reduced variation and unpredictability in performance.

Another application for beneficial microbes used in foods is adding probiotic microorganisms to provide a health benefit to consumers. Many beneficial health effects for probiotics have been reported and include protection against enteric pathogens, improved digestion by means of enzymes to metabolize otherwise indigestible food nutrients (e.g., lactase to hydrolyze lactose in lactose intolerant consumers), stimulation of the intestinal immune system, and improvement of intestinal peristaltic activity. Lactic acid bacteria are the most common types of probiotic microbes being used. Probiotics have been largely delivered in fermented foods such as yogurt and fermented milk products; however, growing consumer interest in probiotics is leading to using other types of foods such as fruit and vegetable juices, cereal-based products, and even ice cream, as delivery vehicles.

Fermented foods are an important part of the food processing industry and of many consumers’ diets and are largely produced by lactic acid bacteria that have been selected for their ability to produce desired products or changes in the food. Many advances have been made during the past decade in developing improved bacterial strains for starter culture application, which largely have been made possible through advances in molecular technology. The use of lactic acid bacteria to enhance the quality and safety of foods is a rapidly evolving field. With the discovery of new bacteriocins and the development of more efficient approaches to deliver them to foods, the importance of lactic acid bacteria in preserving and providing enhanced safety of food will continue to increase for the foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Ishibashi N, Shimamura (1995) Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglet. J Dairy Sci 78:2838–2846

    Google Scholar 

  • Aho M, Nuotio L, Nurmi E, Kiiskinen T (1992) Competitive exclusion of campylobacters from poultry with K-bacteria and Broilact. Int J Food Microbiol 15:265–275

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (2002) Guidelines for the evaluation of probiotics in food. Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. http://www.who.int/foodsafety/publications/fs_management/probiotics2/en/

  • Axelsson L (1998) Lactic acid bacteria: classification and physiology. In: Salminen S, von Wright A (eds) Lactic acid bacteria—microbiology and functional aspects. Marcel Dekker, New York, pp 1–72

    Google Scholar 

  • Beuchat LR (1997) Traditional fermented foods. In: Doyle M, Beuchat L, Montville T (eds) Food microbiology—fundamentals and frontiers. ASM Press, Washington, DC, pp 629–648

    Google Scholar 

  • Breidt F Jr, McFeeters RF, DĂ­az-Muñiz I (2007) Fermented vegetables. In: Doyle M, Beuchat L (eds) Food microbiology—fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC, pp 783–794

    Google Scholar 

  • Breukink E, de Kruiff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5:321–333

    Article  PubMed  CAS  Google Scholar 

  • Buckenhuskes H (1993) Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol Rev 12:253–272

    Article  Google Scholar 

  • Chandan R, Shahani K (1993) Yoghurt. In: Hui Y (ed) Dairy science technology handbook. VCH, New York, pp 2–53

    Google Scholar 

  • Chebbi NB, Chander H, Ranganathan B (1977) Casein degradation and amino acid liberation in milk by two highly proteolytic strains of lactic acid bacteria. Acta Microbiol Pol 26:281–284

    PubMed  CAS  Google Scholar 

  • Cogan T, Accolas J (1996) Dairy starter cultures. VCH, New York

    Google Scholar 

  • Collins-Thompson DL, Slade PJ, Goethals M (1991) Use of low molecular mass RNA profiles to identify lactic acid bacteria and related organisms associated with foods. Int J Food Microbiol 14:135–143

    Article  PubMed  CAS  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  PubMed  CAS  Google Scholar 

  • Daeschel M, Fleming H (1984) Selection of lactic acid bacteria for use in vegetable fermentations. Food Microbiol 1:303–313

    Article  Google Scholar 

  • Daly C, Fitzgerald GF, Davis R (1996) Biotechnology of lactic acid bacteria with special reference to bacteriophage resistance. Antonie Van Leeuwenhoek 70:99–110

    Article  PubMed  CAS  Google Scholar 

  • De Ambrosini VM, Gonzalez S, Perdigon G, de Ruiz Holgado AP, Oliver G (1996) Chemical composition of the cell wall of lactic acid bacteria and related species. Chem Pharm Bull (Tokyo) 44:2263–2267

    Article  Google Scholar 

  • De Vos WM (1999) Gene expression systems for lactic acid bacteria. Curr Opin Microbiol 2:289–295

    Article  PubMed  Google Scholar 

  • Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16:1058–1071

    Article  CAS  Google Scholar 

  • Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69:193–202

    Article  PubMed  CAS  Google Scholar 

  • Dinsmore PK, Klaenhammer TR (1995) Bacteriophage resistance in Lactococcus. Mol Biotechnol 4:297–314

    Article  PubMed  CAS  Google Scholar 

  • Early R (1998) In: Early R (ed) The technology of dairy products, 2nd edn. Blackie, London

    Google Scholar 

  • Egan AF (1983) Lactic acid bacteria of meat and meat products. Antonie Van Leeuwenhoek 49:327–336

    Article  PubMed  CAS  Google Scholar 

  • El-Nezami H, Ahokas J (1998) Lactic acid bacteria: an approach for detoxification of alfatoxins. In: Salminen S, von Wright A (eds) Lactic acid bacteria—microbiology and functional aspects. Marcel Dekker, New York, pp 359–368

    Google Scholar 

  • Galvez A, Abriouel H, Lopez RL, Omar NB (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  PubMed  CAS  Google Scholar 

  • Gasson MJ (1990) In vivo genetic systems in lactic acid bacteria. FEMS Microbiol Rev 7:43–60

    PubMed  CAS  Google Scholar 

  • Geisen R, Holzapfel WH (1996) Genetically modified starter and protective cultures. Int J Food Microbiol 30:315–324

    Article  PubMed  CAS  Google Scholar 

  • Gilarova R, Voldrich M, Demnerova K, Cerovsky M, Dobias J (1994) Cellular fatty acids analysis in the identification of lactic acid bacteria. Int J Food Microbiol 24:315–319

    Article  PubMed  CAS  Google Scholar 

  • Gilliland SE (1990) Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol Rev 7:175–188.

    Article  PubMed  CAS  Google Scholar 

  • Hammes WP, Tichaczek PS (1994) The potential of lactic acid bacteria for the production of safe and wholesome food. Z Lebensm Unters Forsch 198:193–201

    Article  PubMed  CAS  Google Scholar 

  • Heng NCK, Tagg JR (2006) What’s in a name? Class distinction for bacteriocins. Nat Rev Microbiol 4(2). doi:10.1038/nrmicro1273-c1

    Google Scholar 

  • Henick-Kling T (1995) Control of malo-lactic fermentation in wine: energetics, flavour modification and methods of starter culture preparation. J Appl Bacteriol 79(Suppl):29S–37S

    Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  PubMed  CAS  Google Scholar 

  • Jay J, Loessner MJ, Golden DA (2007) Modern food microbiology, 7th edn. Chapman & Hall, New York, 790 pp

    Google Scholar 

  • Jeppesen VF, Huss HH (1993) Antagonistic activity of two strains of lactic acid bacteria against Listeria monocytogenes and Yersinia enterocolitica in a model fish product at 5 degrees C. Int J Food Microbiol 19:179–186

    Article  PubMed  CAS  Google Scholar 

  • Johnson M, Steele J (2007) Fermented dairy products. In: Doyle M, Beuchat L (eds) Food microbiology—fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC, pp 767–782

    Google Scholar 

  • Jones RJ, Wescombe PA, Tagg JR (2011) Identifying new protective cultures and culture components for food biopreservation. In: Lacroix C (ed) Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. Woodhead, Cambridge, UK, pp 3–26

    Chapter  Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49:209–224

    Article  PubMed  CAS  Google Scholar 

  • Klaenhammer TR (1991) Development of bacteriophage-resistant strains of lactic acid bacteria. Biochem Soc Trans 19:675–681

    PubMed  CAS  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86

    PubMed  CAS  Google Scholar 

  • Klein G, Pack A, Bonaparte C, Reuter G (1998) Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 41:103–125

    Article  PubMed  CAS  Google Scholar 

  • Kuipers OP, de Ruyter PG, Kleerebezem M, de Vos WM (1997) Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol 15:135–140

    Article  PubMed  CAS  Google Scholar 

  • Lee B (1996) Bacteria-based processes and products. In: Lee B (ed) Fundamentals of food biotechnology. VEH, New York, pp 219–290

    Google Scholar 

  • Lee JH, Li X, O’Sullivan DJ (2011) Transcription analysis of a lantibiotic gene cluster from Bifidobacterium longum DJO10A. Appl Environ Microbiol 77:5879–5887

    Article  PubMed  CAS  Google Scholar 

  • Leroy F, De Vuyst L (2010) Bacteriocins of lactic acid bacteria to combat undesirable bacteria in dairy products. Aust J Dairy Technol 65:143–149

    CAS  Google Scholar 

  • Lewus CB, Kaiser A, Montville TJ (1991) Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl Environ Microbiol 57:1683–1688

    PubMed  CAS  Google Scholar 

  • Luche F (1994) Fermented meat products. Food Res Int 27:299–308

    Article  Google Scholar 

  • Makela P, Schillinger U, Korkeala H, Holzapfel WH (1992) Classification of ropy slime-producing lactic acid bacteria based on DNA-DNA homology, and identification of Lactobacillus sake and Leuconostoc amelibiosum as dominant spoilage organisms in meat products. Int J Food Microbiol 16:167–172

    Article  PubMed  CAS  Google Scholar 

  • Mayo B (1993) The proteolytic system of lactic acid bacteria. Microbiologia 9:90–106

    PubMed  CAS  Google Scholar 

  • McKay LL, Baldwin KA (1990) Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol Rev 7:3–14

    PubMed  CAS  Google Scholar 

  • Morelli L, Vogensen FK, von Wright A (2004) Genetics of lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic Acid Bacteria: microbiological and functional aspects. Marcel Dekker, New York, pp 249–293

    Google Scholar 

  • Naidu AS, Bidlack WR, Clemens RA (1999) Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr 39:13–126

    Article  PubMed  CAS  Google Scholar 

  • Nurmi E, Rantala M (1973) New aspects of Salmonella infection in broiler production. Nature 241:210–211

    Article  PubMed  CAS  Google Scholar 

  • Nurmi E, Nuotio L, Schneitz C (1992) The competitive exclusion concept: development and future. Int J Food Microbiol 15:237–240

    Article  PubMed  CAS  Google Scholar 

  • Okereke A, Montville TJ (1991) Bacteriocin-mediated inhibition of Clostridium botulinum spores by lactic acid bacteria at refrigeration and abuse temperatures. Appl Environ Microbiol 57:3423–3428

    PubMed  CAS  Google Scholar 

  • Ouwehand AC, Sondberg Svendsen L, Leyer G (2011) Probiotics: from strain to product. In: Kniebel W, Salminen S (eds) Probiotics and health claims. Wiley, W. Sussex, pp 37–47

    Google Scholar 

  • Poolman B, Kunji E, Hagting A, Juillard V, Konings W (1995) The proteolytic pathway of Lactococcus lactis. J Appl Bacteriol 79:65S–75S

    Google Scholar 

  • Pritchard GG, Coolbear T (1993) The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol Rev 12:179–206

    Article  PubMed  CAS  Google Scholar 

  • Rafter JJ (1995) The role of lactic acid bacteria in colon cancer prevention. Scand J Gastroenterol 30:497–502

    Article  PubMed  CAS  Google Scholar 

  • Ray B (1996) Fundamental food microbiology. CRC Press, Boca Raton

    Google Scholar 

  • Ricke S, Zabala Diaz I, Keeton JT (2007) Fermented meat, poultry, and fish products. In: Doyle M, Beuchat L (eds) Food microbiology—fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC, pp 795–816

    Google Scholar 

  • Rodriguez A, Vidal DR (1990) Genetics of lactic acid bacteria with special reference to lactococci. Microbiologia 6:51–64

    PubMed  CAS  Google Scholar 

  • Rodriguez E, Tomillo J, Nunez M, Medina M (1997) Combined effect of bacteriocin-producing lactic acid bacteria and lactoperoxidase system activation on Listeria monocytogenes in refrigerated raw milk. J Appl Microbiol 83:389–395

    Article  PubMed  CAS  Google Scholar 

  • Saarela MH (2011) Probiotic functional foods. In: Saarela M (ed) Functional foods: concept to product. Woodhead, Cambridge, UK, pp 425–488

    Chapter  Google Scholar 

  • Salminen S, Deighton M (1992) Lactic acid bacteria in the gut in normal and disordered states. Dig Dis 10:227–238

    Article  PubMed  CAS  Google Scholar 

  • Salminen S, Salminen E (1997) Lactulose, lactic acid bacteria, intestinal microecology and mucosal protection. Scand J Gastroenterol Suppl 222:45–48

    PubMed  CAS  Google Scholar 

  • Sanders ME (1988) Phage resistance in lactic acid bacteria. Biochimie 70:411–422

    Article  PubMed  CAS  Google Scholar 

  • Schoeni JL, Doyle MP (1992) Reduction of Campylobacter jejuni colonization of chicks by cecum-colonizing bacteria producing anti-C. jejuni metabolites. Appl Environ Microbiol 58:664–670

    PubMed  CAS  Google Scholar 

  • Sievers M, Teuber M (1995) The microbiology and taxonomy of Acetobacter europaeus in commercial vinegar production. J Appl Bacteriol (Suppl) 79:85S–95S

    Google Scholar 

  • Stackebrandt E, Teuber M (1988) Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie 70:317–324

    Article  PubMed  CAS  Google Scholar 

  • Steele JL (1995) Contribution of lactic acid bacteria to cheese ripening. Adv Exp Med Biol 367:209–220

    Article  PubMed  CAS  Google Scholar 

  • Steinkraus KH (1983) Handbook of indigenous fermented foods. Marcel Dekker, New York

    Google Scholar 

  • Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29

    Article  PubMed  CAS  Google Scholar 

  • Svetoch EA, Stern NJ (2010) Bacteriocins to control Campylobacter spp. in poultry – a review. Poult Sci 89:1763–1768

    Article  PubMed  CAS  Google Scholar 

  • Thompson J (1988) Lactic acid bacteria: model systems for in vivo studies of sugar transport and metabolism in gram-positive organisms. Biochimie 70:325–336

    Article  PubMed  CAS  Google Scholar 

  • Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    PubMed  CAS  Google Scholar 

  • Verrips CT, van den Berg DJ (1996) Barriers to application of genetically modified lactic acid bacteria. Antonie Van Leeuwenhoek 70:299–316

    Article  PubMed  CAS  Google Scholar 

  • Weber G, Steenson L, Delves-Broughton J (2008) Antimicrobial fermentate technology. In: Havkin-Frenkel D, Dudai N, van der Mheen H (eds) II International symposium on natural preservatives in food, feed, and cosmetics, vol 778, Acta Hort. International Society for Horticultural Science, Belgium, pp 79–84

    Google Scholar 

  • Whitehead HR, Cox GA (1935) The occurrence of bacteriophage in cultures of lactic streptococci. N Z J Sci Technol 16:319–320

    Google Scholar 

  • Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779

    PubMed  CAS  Google Scholar 

  • Yan F, Polk DB (2010) Probiotics: progress toward novel therapies for intestinal diseases. Curr Opin Gastroenterol 26:95–101

    Article  PubMed  Google Scholar 

  • Zhao S, Meng J, Zhao T, Doyle M (1995) Use of vaccine and biological control techniques to control pathogens in animals used for food. J Food Safety 15:193–199

    Article  Google Scholar 

  • Zhao T, Doyle MP, Harmon BG, Brown CA, Mueller PO, Parks AH (1998) Reduction of carriage of enterohemorrhagic Escherichia coli O157:H7 in cattle by inoculation with probiotic bacteria. J Clin Microbiol 36:641–647

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Doyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Doyle, M.P., Steenson, L.R., Meng, J. (2013). Bacteria in Food and Beverage Production. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31331-8_27

Download citation

Publish with us

Policies and ethics