Skip to main content
Log in

Newly Isolated Lactic Acid Bacteria with Probiotic Features for Potential Application in Food Industry

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Five newly isolated lactic acid bacteria were identified as Weissella cibaria, Enterococcus faecium, and three different strains of Lactobacillus plantarum by 16S rRNA sequencing. Essential probiotic requirements of these isolates such as tolerance to phenol, low pH, high sodium chloride, and bile salt concentration were checked. Efficiency in adherence to mucin and hydrophobicity of the bacterial cell were also evaluated by in vitro studies. Antimicrobial activities against some pathogens were tried, and the sensitivity of these strains against 25 different antibiotics was also checked. Further studies revealed Weissella and Enterococcus as substantial producers of folic acid. Folate is involved as a cofactor in many metabolic reactions, and it has to be an essential component in the human diet. The folate level in the fermented samples was determined by microbiological assay using Lactobacillus casei NCIM 2364 as indicator strain. The three strains of L. plantarum showed significant inhibitory activity against various fungi that commonly contaminate food stuffs indicating their potential as a biopreservative of food material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Briand, V. R., Buffet, P., Genty, S., Lacombe, K., Godineau, N., Salomon, J., Vandemelbrouck, E., Ralaimazava, P., Goujon, C., Matheron, S., Fontanet, A., & Bouchaud, O. (2006). Clinical Infectious Diseases, 43, 1170–1175.

    Article  Google Scholar 

  2. Myllyluoma, E., Ahlroos, T., Veijola, L., & Rautelin, H. (2007). International Journal of Antimicrobial Agents, 29, 66–72.

    Article  CAS  Google Scholar 

  3. Madden, J. A. J., Plummer, S. F., Tang, J., Garaiova, I., Plummer, N. T., Herbison, M., Hunter, J. O., Shimada, T., Cheng, L., & Shirakawa, T. (2005). International Immunopharmacology, 5, 1091–1097.

    Article  CAS  Google Scholar 

  4. Camilleri, M. (2006). Journal of Clinical Gastroenterology, 40, 264–269.

    Article  Google Scholar 

  5. Baken, K. A., Ezendam, J., Gremmer, E. R., De Klerk, A., Pennings, J. L. A., Matthee, B., Peijnenburg, A. C. M., & Van Loveren, H. (2006). International Journal of Food Microbiology, 112, 8–18.

    Article  CAS  Google Scholar 

  6. Zanini, K., Marzotto, M., Castellazzi, A., Borsari, A., Dellaglio, F., & Torriani, S. (2007). International Dairy Journal, 17, 1332–1343.

    Article  CAS  Google Scholar 

  7. Chen, C., Chan, H. M., & Kubow, S. (2007). Journal of Medicinal Food, 10, 416–422.

    Article  CAS  Google Scholar 

  8. Linsalata, M., Cavallini, A., Messa, C., Orlando, A., Refolo, M. G., & Russo, F. (2010). Current Pharmaceutical Design, 16, 847–853.

    Article  CAS  Google Scholar 

  9. Hsieh, M. L., & Chou, C. C. (2006). International Journal of Food Microbiology, 111, 43–47.

    Article  CAS  Google Scholar 

  10. Xiao, J. Z., Kondo, S., Takahashi, N., Miyaji, K., Oshida, K., Hiramatsu, A., Iwatsuki, K., Kokubo, S., & Hosono, A. (2003). Journal of Dairy Science, 86, 2452–2461.

    Article  CAS  Google Scholar 

  11. Liong, M. T., & Shah, N. P. (2005). Journal of Dairy Science, 88, 55–66.

    Article  CAS  Google Scholar 

  12. Barker, S. B., & Summerson, W. H. (1941). Journal of Biological Chemistry, 138, 535–554.

    CAS  Google Scholar 

  13. Horne, D. W. (1997). Methods in Enzymology, 281, 38–43.

    Article  CAS  Google Scholar 

  14. Wilson, S., & Horne, D. W. (1982). Clinical Chemistry, 28, 1198–1200.

    CAS  Google Scholar 

  15. Horne, D. W., & Patterson, D. (1988). Clinical Chemistry, 34, 2357–2359.

    CAS  Google Scholar 

  16. Schillinger, U., & Villarreal, J. V. (2008). Food Control, 21, 107–111.

    Article  Google Scholar 

  17. Magnusson, J., Strom, K., Roos, S., Sjogren, J., & Schnurer, J. (2003). FEMS Microbiology Letters, 219, 129–135.

    Article  CAS  Google Scholar 

  18. Thapa, P. B., Gideon, P., Cost, T. W., Milam, A. B., & Ray, W. A. (1998). The New England Journal of Medicine, 339, 875–882.

    Article  CAS  Google Scholar 

  19. Roos, S., & Jonsson, H. (2002). Microbiology, 148, 433–442.

    CAS  Google Scholar 

  20. Del Re, B., Sgorbati, B., Miglioli, M., & Palenzona, D. (2000). Letters in Applied Microbiology, 31, 438–442.

    Article  Google Scholar 

  21. Handley, P. S., Harty, D. W. S., Wyatt, J. E., Brown, C. R., Doran, J. P., & Gibbs, A. C. C. (1987). Journal of General Microbiology, 133, 3207–3217.

    CAS  Google Scholar 

  22. Institute of Medicine. (1998). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, panthothenic acid, biotin, and choline. Washington, DC: National Academies Press.

    Google Scholar 

  23. FAO/WHO (2002). Human vitamin and mineral requirements, Bangkok, Thailand.

  24. Sybesma, W., Starrenburg, M., Tisseling, L., Hoefnagel, M. H. N., & Hugenholtz, J. (2003). Applied and Environmental Microbiology, 69, 4542–4548.

    Article  CAS  Google Scholar 

  25. Rao, D. R., Reddy, A. V., Pulusani, S. R., & Cornwell, P. E. (1984). Journal of Dairy Science, 67, 1169–1174.

    Article  CAS  Google Scholar 

  26. Cabo, M. L., Braber, A. F., & Koenraad, P. M. F. J. (2002). Journal of Food Protection, 65, 1309–1316.

    CAS  Google Scholar 

  27. Strom, K., Sjogren, J., Broberg, A., & Schnurer, J. (2002). Applied and Environmental Microbiology, 68, 4322–4327.

    Article  CAS  Google Scholar 

  28. Dalie, D. K. D., Deschamps, A. M., & Richard-Forget, F. (2009). Food Control, 21, 370–380.

    Article  Google Scholar 

  29. Talarico, T. L., & Dobrogosz, W. J. (1989). Antimicrobial Agents and Chemotherapy, 33, 674–679.

    Article  CAS  Google Scholar 

  30. Vollenweider, S., & Lacroix, C. (2004). Applied Microbiology and Biotechnology, 64, 16–27.

    Article  CAS  Google Scholar 

  31. Dunne, C. L., Mahony, M., Thornton, G., Morrisey, D., Hallorans, S., Feeney, M., Flynn, S., Kiely, B., Daly, C., & Collins, K. (2001). American Journal of Clinical Nutrition, 73, 386–392.

    Google Scholar 

  32. Gomez-Zavaglia, A., Kociubinski, G., Perez, P., & De Antoni, G. (1998). Journal of Food Protection, 61, 865–873.

    CAS  Google Scholar 

  33. Akhiar, N. S. A. M. (2010). Basic Biotechnology eJournal, 6.

  34. Suskovic, J., Brkic, B., Matosic, S., & Maric, V. (1997). Milchwissenschaft, 52, 430–435.

    CAS  Google Scholar 

  35. Cavin, J. F., Andioc, V., Etievant, P. X., & Divies, C. (1993). American Journal of Enology and Viticulture, 44, 76–80.

    CAS  Google Scholar 

  36. Aswathy, R. G., Ismail, B., John, R. P., & Nampoothiri, K. M. (2008). Applied Biochemistry and Biotechnology, 151, 244–255.

    Article  CAS  Google Scholar 

  37. Adnan, A. F. M., & Tan, I. K. P. (2007). Bioresource Technology, 98, 1380–1385.

    Article  Google Scholar 

  38. Vinderola, C. G., & Reinheimer, J. A. (2003). Food Research International, 36, 895–904.

    Article  CAS  Google Scholar 

  39. Orlowski, A., & Bielecka, M. (2006). Polish Journal of Food and Nutrition Sciences, 15, 269–276.

    Google Scholar 

  40. Otero, M. C., Ocana, V. S., & Macias, E. N. M. (2004). Methods in Molecular Biology, 268, 435–440.

    Google Scholar 

  41. Martin, R., Olivares, M., Marin, M. L., & Fernandez, L. (2005). Journal of Human Lactation, 21, 8–17.

    Article  Google Scholar 

  42. Jankovic, I., Ventura, M., Meylan, V., Rouvet, M., Elli, M., & Zink, R. (2003). Journal of Bacteriology, 185, 3288–3296.

    Article  CAS  Google Scholar 

  43. Nikolic, M., Jovcic, B., Kojic, M., & Topisirovic, L. (2010). European Food Research and Technology, 231, 925–931.

    Article  CAS  Google Scholar 

  44. Majhenic, A. C., & Matijasic, B. B. (2001). Mljekarstvo, 51, 119–134.

    Google Scholar 

  45. Zhou, J. S., Shu, Q., Rutherfurd, K. J., Prasad, J., Birtles, M., Gopal, P. K., & Gill, H. S. (2000). International Journal of Food Microbiology, 56, 87–96.

    Article  CAS  Google Scholar 

  46. Tambekar, D. H., & Bhutad, S. A. (2010). Recent Research in Science and Technology, 2, 82–88.

    Google Scholar 

  47. EI-Naggar, M. Y. M. (2004). Biotechnology, 3, 173–180.

    Article  Google Scholar 

Download references

Acknowledgments

Research fellowships from the Council of Scientific and Industrial Research (CSIR), New Delhi, India, Department of Science and Technology (DST), New Delhi, India, and Kerala State Council for Science, Technology and Environment (KSCSTE), India, were greatly acknowledged. The research grant from the Department of Biotechnology (DBT), New Delhi, to initiate probiotic research is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesavan Madhavan Nampoothiri.

Additional information

Jayakumar Beena Divya and Kontham Kulangara Varsha contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divya, J.B., Varsha, K.K. & Nampoothiri, K.M. Newly Isolated Lactic Acid Bacteria with Probiotic Features for Potential Application in Food Industry. Appl Biochem Biotechnol 167, 1314–1324 (2012). https://doi.org/10.1007/s12010-012-9561-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9561-7

Keywords

Navigation