Skip to main content
Log in

In Vitro Evaluation of the Probiotic Potential of Halotolerant Lactobacilli Isolated from a Ripened Tropical Mexican Cheese

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Three halotolerant lactobacilli (Lactobacillus plantarum, L. pentosus, and L. acidipiscis) isolated from a ripened Mexican tropical cheese (double cream Chiapas cheese) were evaluated as potential probiotics and compared with two commercial probiotic strains (L. casei Shirota and L. plantarum 299v) from human origin. All the strains survived the in vitro gastrointestinal simulation from the oral cavity to the ileum. During the stomach simulation, all the strains survived in satiety conditions (60 min, pH 3.0, 3 g/L pepsin, 150 rpm) and only L. pentosus could not survive under fasting conditions (60 min, pH 2.0, 3 g/L pepsin, 150 rpm). All the strains showed a strong hydrophilic character with low n-hexadecane and a variable chloroform affinity. L. plantarum showed a mucin adhesion rate similar to that of L. plantarum 299v and L. casei Shirota, while L. pentosus and L. acidipiscis had a lower mucin adhesion. The isolated halotolerant lactobacilli exhibited similar antimicrobial activity against some gram-positive and gram-negative pathogens in comparison with the two commercial strains. In addition, the proteinaceous character of the antimicrobial agents against the most pathogenic strains was demonstrated. The compounds showed a low molecular weight (less than 10 kDa). Besides, L. plantarum and L. acidipiscis were able to produce the enzyme β-galactosidase. Finally, L. pentosus was able to deconjugate taurocholic, taurodeoxycholic, glycocholic, and glycodeoxycholic acids better than the two commercial strains analyzed. All these results suggest that the halotolerant lactobacilli isolated from this ripened Mexican cheese could be potentially probiotic. This is the first time that halotolerant lactic acid bacteria have been shown to have probiotic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ambalam PS, Prajapati JB, Dave JM, Nair BM, Ljungh Å, Vyas BRM (2009) Isolation and characterization of antimicrobial proteins produced by a potential probiotic strain of human Lactobacillus rhamnosus 231 and its effect on selected human pathogens and food spoilage organisms. Microb Ecol Health Dis 21(3–4):211–220

    Article  CAS  Google Scholar 

  2. Amerongen AVN, Veerman ECI (2002) Saliva—the defender of the oral cavity. Oral Dis 8:12–22

    Article  Google Scholar 

  3. Balciunas EM, Castillo Martinez FA, Todorov SD, Gombossy de Melo Franco BD, Converti A, Pinheiro de Souza Oliveira R (2012) Novel biotechnological applications of bacteriocins: a review. Food Control 32:134–142

    Google Scholar 

  4. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738

    Article  CAS  Google Scholar 

  5. Bellon-Fontaine MN, Rault J, Van Oss CJ (1996) Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid–base properties of microbial cells. Colloids Surf B 7(1):47–53

    Article  CAS  Google Scholar 

  6. Bucio A, Hartemink R, Schrama JW, Verreth J, Rombouts FM (2005) Survival of Lactobacillus plantarum 44a after spraying and drying in feed and during exposure to gastrointestinal tract fluids in vitro. J Gen Appl Microbiol 51:221–227

    Article  CAS  Google Scholar 

  7. Chen J, Gaikwad V, Holmes M, Murray B, Povey M, Wang Y, Zhang Y (2011) Development of a simple model device for in vitro gastric digestion investigation. Food Funct 2:174–182

    Article  CAS  Google Scholar 

  8. Collado M, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226:1065–1073

    Article  CAS  Google Scholar 

  9. Collado MC, Gueimonde M, Salminen S (2010) Probiotics in adhesion of pathogens: mechanisms of action. In: Watson RR, Preedy VR (eds) Bioactive foods in promoting health. Probiotics and probiotics. Academic Press, Boston, pp 353–370

    Chapter  Google Scholar 

  10. Colloca ME, Ahumada MC, López ME, Nader-Macías ME (2000) Surface properties of lactobacilli isolated from healthy subjects. Oral Dis 6:227–233

    Article  CAS  Google Scholar 

  11. Cotter PD, Ross RP, Hill C (2013) Bacteriocins a viable alternative to antibiotics? Nat Rev Microbiol 11(2):95–105

    Article  CAS  Google Scholar 

  12. de Vries MC, Vaughan EE, Kleerebezem M, de Vos WM (2006) Lactobacillus plantarum—survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16:1018–1028

    Article  Google Scholar 

  13. Deepika G, Charalampopoulos D (2010) Surface and adhesion properties of Lactobacilli. Adv Appl Microbiol 70:127–152

    Article  CAS  Google Scholar 

  14. Doyle P, Meng J (2006) Bacteria in food and beverage production. In: Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Vol. 1. Symbiotic associations, biotechnology, applied microbiology, 3rd edn. Springer, New York, pp 797–811

    Google Scholar 

  15. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in foods. FAO/WHO, London

    Google Scholar 

  16. Gagnon M, Zihler A, Chassard C, Lacroix C (2011) Ecology of probiotics and enteric protection. In: Malago JJ, Koninkx JFJJ, Marinsek-Logar R (eds) Probiotic bacteria and enteric infections. Springer, Dordrecht, pp 65–85

    Chapter  Google Scholar 

  17. Gbassi GK, Vandamme T (2012) Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics 4:149–163

    Article  CAS  Google Scholar 

  18. González-Sánchez F, Azaola A, Gutiérrez-López GF, Hernández-Sánchez H (2010) Viability of microencapsulated Bifidobacterium animalis ssp. lactis BB12 in kefir during refrigerated storage. Int J Dairy Technol 63:431–436

    Article  Google Scholar 

  19. Guinee TP, Fox PF (2004) Salt in cheese: physical, chemical and biological aspects. Cheese Chem Phys Microbiol 1:207–259

    Google Scholar 

  20. Ivanova I, Miteva V, Stefanova T, Pantev A, Budakov I, Danova S, Moncheva P, Nikolova I, Dousset X, Boyaval P (1998) Characterization of a bacteriocin produced by Streptococcus thermophilus 81. Int J Food Microbiol 42(3):147–158

    Article  CAS  Google Scholar 

  21. Iyer R, Tomar S, Kapila S, Mani J, Singh R (2010) Probiotic properties of folate producing Streptococcus thermophilus strains. Food Res Int 43:103–110

    Article  CAS  Google Scholar 

  22. Kos B, Šušković J, Vuković S, Šimpraga M, Frece J, Matošić S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94:981–987

    Article  CAS  Google Scholar 

  23. Koseki S, Mizuno Y, Sotome I (2011) Modeling of pathogen survival during simulated gastric digestion. Appl Environ Microbiol 77:1021–1032

    Article  CAS  Google Scholar 

  24. Kumar R, Grover S, Batish VK (2012) Bile salt hydrolase (Bsh) activity screening of lactobacilli: in vitro selection of indigenous lactobacillus strains with potential bile salt hydrolysing and cholesterol-lowering ability. Probiotics Antimicrob Proteins 4:162–172

    Google Scholar 

  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  26. Lash BW, Gourama H, Mysliwiec TH (2002) Microscale assay for screening of inhibitory activity of Lactobacillus. Biotechniques 33:1224–1228

    CAS  Google Scholar 

  27. Liong M, Shah N (2005) Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. Int Dairy J 15:391–398

    Article  CAS  Google Scholar 

  28. Ljungh A, Wadström T (2006) Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol 7:73–90

    CAS  Google Scholar 

  29. Lo Curto A, Pitino I, Mandalari G, Dainty JR, Faulks RM, John Wickham MS (2011) Survival of probiotic lactobacilli in the upper gastrointestinal tract using an in vitro gastric model of digestion. Food Microbiol 28:1359–1366

    Article  Google Scholar 

  30. Madureira AR, Amorim M, Gomes AM, Pintado ME, Malcata FX (2011) Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions. Food Res Int 44:465–470

    Article  CAS  Google Scholar 

  31. Mathara JM, Schillinger U, Guigas C, Franz C, Kutima PM, Mbugua SK, Shin HK, Holzapfel WH (2008) Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int J Food Microbiol 126:57–64

    Article  CAS  Google Scholar 

  32. Morales F, Morales J, Hernández C, Hernández-Sánchez H (2011) Isolation and partial characterization of halotolerant lactic acid bacteria from two Mexican cheeses. Appl Biochem Biotechnol 164:889–905

    Article  CAS  Google Scholar 

  33. Nguyen TDT, Kang JH, Lee MS (2007) Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int J Food Microbiol 113:358–361

    Article  CAS  Google Scholar 

  34. Oelschlaeger TA (2010) Mechanisms of probiotic actions—a review. Int J Med Microbiol 300:57–62

    Article  CAS  Google Scholar 

  35. Ofek I, Hasty DL, Sharon N (2003) Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol 38:181–191

    Article  CAS  Google Scholar 

  36. Pacheco KC, Valencia-Del Toro G, Martinez FR, Durán-Páramo E (2010) Viability of Lactobacillus delbrueckii under human gastrointestinal conditions simulated in vitro. Am J Agric Biol Sci 5:37–42

    Article  Google Scholar 

  37. Parada JL, Caron CR, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Brazilian Arch Biol Technol 50(3):512–542

    Article  Google Scholar 

  38. Patel AK, Singhania RR, Pandey A, Chincholkar SB (2010) Probiotic bile salt hydrolase: current developments and perspectives. Appl Biochem Biotechnol 162:166–180

    Article  CAS  Google Scholar 

  39. Reis JA, Paula AT, Casarotti SN, Penna ALB (2012) Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Eng Rev 4(2):124–140

    Article  CAS  Google Scholar 

  40. Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  CAS  Google Scholar 

  41. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  42. Sako T (2010) The world’s oldest probiotic: perspectives for health claims. In: Kneifel W, Salminen S (eds) Probiotics and health claims. Wiley-Blackwell, Oxford, pp 17–36

    Chapter  Google Scholar 

  43. Salminen SJ (1998) Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int J Food Microbiol 41:45–51

    Article  Google Scholar 

  44. Sánchez B, Bressollier P, Urdaci MC (2008) Exported proteins in probiotic bacteria: adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. FEMS Immunol Med Microbiol 54:1–17

    Article  Google Scholar 

  45. Sutula J, Coulthwaite L, Verran J (2012) Culture media for differential isolation of Lactobacillus casei Shirota from oral samples. J Microbiol Methods 90:65–71

    Article  Google Scholar 

  46. Tallon R, Arias S, Bressollier P, Urdaci MC (2007) Strain- and matrix-dependent adhesion of Lactobacillus plantarum is mediated by proteinaceous bacterial compounds. J Appl Microbiol 102:442–451

    Article  CAS  Google Scholar 

  47. Vamanu E, Vamanu A, Nita S, Rusu N (2011) The viability of the Lactobacillus paracasei IL2 and Lactobacillus plantarum IL3 strains in simulated gastrointestinal conditions. Afr J Microbiol Res 5:1029–1036

    Google Scholar 

  48. Van den Abbeele P, Grootaert C, Possemiers S, Verstraete W, Verbeken K, Van de Wiele T (2009) In vitro model to study the modulation of the mucin-adhered bacterial community. Appl Microbiol Biotechnol 83:349–359

    Article  Google Scholar 

  49. Vinderola C, Reinheimer J (2003) Lactic acid starter and probiotic bacteria: a comparative. Food Res Int 36:895–904

    Article  CAS  Google Scholar 

  50. Vinderola G, Capellini B, Villarreal F, Suárez V, Quiberoni A, Reinheimer J (2008) Usefulness of a set of simple in vitro tests for the screening and identification of probiotic candidate strains for dairy use. LWT-Food Sci Technol 41:1678–1688

    Article  CAS  Google Scholar 

  51. Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74(16):4985–4996

    Article  CAS  Google Scholar 

  52. Zago M, Fornasari ME, Carminati D, Burns P, Suárez V, Vinderola G, Reinheimer J, Giraffa G (2011) Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28:1033–1040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Consejo Nacional de Ciencia y Tecnología (Conacyt) through the grant number 206847 and Instituto Politécnico Nacional with the project number SIP-20110353.

Conflict of interest

Neither author has any conflict of interest in performing and reporting these experiments. This includes the fact that neither author has any link, direct or indirect, to any of the manufacturers of the commercial strains used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Hernández-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melgar-Lalanne, G., Rivera-Espinoza, Y., Reyes Méndez, A.I. et al. In Vitro Evaluation of the Probiotic Potential of Halotolerant Lactobacilli Isolated from a Ripened Tropical Mexican Cheese. Probiotics & Antimicro. Prot. 5, 239–251 (2013). https://doi.org/10.1007/s12602-013-9144-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-013-9144-0

Keywords

Navigation