Skip to main content
Log in

A Potent Probiotic Strain from Cheddar Cheese

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

A lactic acid bacteria Leuconostoc paramesenteroides was isolated and characterized from cheddar cheese and was adapted to grow at low pH (2.0) and high bile salt concentration (2%) by sequential sub-culturing so that it can survive the extreme environmental condition of gut. Cell hydrophobicity assay shows the maximum adherence of the culture to toluene (46.11%). Adhesion ability was confirmed by in vitro assay using rat intestinal epithelial layer. The culture has an antimicrobial activity against food borne pathogens and is vancomycin sensitive. The culture shows a β-galactosidase activity of 3.42 μM/mg protein, which indicates the ability of the culture to hydrolyze lactose for easy absorption. All these properties determine the ability of the culture to be used as a probiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alsopp D, Colwell RR, Howksworth DL (1995) In: Proceedings of the IUBS/IUMS workshop held at Egham, UK, 10–13 Aug 1993 in support of the IUBS/UNESCO/SCOPE “DIVERSITAS” programme. CEB International, University Press, Cambridge, UK

  2. Gilliland SE (1987) Importance of bile tolerance in Lactobacilli used as dietary adjunct. In: Lyons TP (ed) Biotechnology in the feed industry. All Tech Co., Lexington, pp 149–155

    Google Scholar 

  3. Peterson SD, Marshall RT, Heymann H (1990) Peptidase profiling of Lactobacilli associated with cheddar cheese and its application to identification and selection of strain of cheese ripening studies. J Dairy Sci 73:1454–1464

    Article  CAS  Google Scholar 

  4. Salminen S, Laino M, Von Wright A, Vuopio-Varkila J, Korhonon T, Mattila-Sandholm T (1996) Development of selection criteria for probiotic strains to assess their potential in functional foods: a Nordic and European approach. Biosci Microflora 15:61–67

    Google Scholar 

  5. Swearingen PA, O’Sullivan DJ, Warthesen JJ (2001) Isolation, characterization and influence of native, non starter lactic acid bacteria on cheddar cheese quality. J Dairy Sci 84:50–59

    Article  PubMed  CAS  Google Scholar 

  6. Krieg N (ed) (1984) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore

  7. Herrero M, Mayo B, Gonzalez B, Suarez JE (1996) Evaluation of technologically important traits in lactic acid bacteria isolated from spontaneous fermentation. J Appl Bacteriol 81:565–570

    Google Scholar 

  8. Terzaghi BE, Sandine WE (1975) Improved medium for lactic Streptococci and their bacteriophages. Appl Microbiol 29:807–813

    PubMed  CAS  Google Scholar 

  9. Smibert RM, Krieg NR (1981) General characterization. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Briggs Phillips G (eds) Manual of methods for general bacteriology. ASM press, Washington, pp 409–443

  10. Chelo IM, Ze-Ze L, Chambel L, Tenreiro R (2004) Physicla and genetic map of Weissella paramesenteroides DSMZ 20288 chromosome and characterization of different rrn operon by ITS analysis. Microbiol 150:4075–4084

    Article  CAS  Google Scholar 

  11. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  12. Mayra-Makinen A, Manninen M, Gyllenberg H (1983) The adherence of lactic acid bacteria to the columnar epithelial cells of pigs and calves. J Appl Bacteriol 55:241–245

    PubMed  CAS  Google Scholar 

  13. Bhowmik T, Marth EH (1989) Simple method to detect β-galactosidase. Appl Environ Microbiol 55:3240–3242

    PubMed  CAS  Google Scholar 

  14. Castro HP, Teixeira PM, Kirby R (1997) Evidence of membrane damage in Lactobacillus bulgaricus following freeze drying. J Appl Microbiol 82:87–94

    Article  CAS  Google Scholar 

  15. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein estimation with the folin phenol (ciocalteau) reagent. J Biol Chem 193:265–271

    PubMed  CAS  Google Scholar 

  16. Brashears MM, Durre WA (1999) Antagonistic action of Lactobacillus lactis toward Salmonella spp and Escherichia coli 0151:H7 during growth and refrigerated storage. J Food Prot 62:1336–1340

    PubMed  CAS  Google Scholar 

  17. Schillinnger U, Lucke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906

    Google Scholar 

  18. Tserovska L, Stefanova S, Yordanova T (2002) Identification of lactic acid bacteria isolated from katyk, goat’s milk and cheese. J Cult Collect 3:48–52

    Google Scholar 

  19. Beukes EM, Bester BH, Mostert JF (2001) The microbiology of South African traditional fermented milks. Int J Food Microbiol 63(3):189–197

    Article  PubMed  CAS  Google Scholar 

  20. Savadogo A, Ouattara CAT, Savadogo PW, Ouattara AS, Barro N, Traore AS (2004) Microorganisms involved in fulani traditional fermented Milk in Burkina Faso. Pak J Nutr 3(2):134–139

    Article  Google Scholar 

  21. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  22. Chung HS, Kim YB, Chun SL, Ji GE (1999) Screening and selection of acid and bile resistant Bifidobacteria. Int J Food Microbiol 47:25–32

    Article  PubMed  CAS  Google Scholar 

  23. Grill JP, Schneider F, Crociani J, Ballongue J (1995) Purification and characterization of conjugated bile salt hydrolase from Bifidobacterium longum BB536. Appl Environ Microbiol 61:2577–2582

    PubMed  CAS  Google Scholar 

  24. Margolles A, Garcia L, Sanchez B, Gueimonde M, de los Reyes-Gavilan CG (2003) Characterisation of a Bifidobacterium strain with acquired resistance to cholate: a preliminary study. Int J Food Microbiol 82(2):191–198

    Article  PubMed  CAS  Google Scholar 

  25. Conway PL, Gorbach SL, Goldin BR (1987) Survival of lactic acid bacteria in the human stomach by adhesion to intestinal cells. J Dairy Sci 70:1–12

    Article  PubMed  CAS  Google Scholar 

  26. Lankaputhra WEV, Shah NP (1995) Survival of Lactobacillus acidophilus and Bifidobacteria species in the presence of acid and bile salts. J Cult Dairy Prod 30:2–7

    CAS  Google Scholar 

  27. Clark PA, Cotton LN, Martin JH (1993) Selection of Bifidobacteria for use as dietary adjuncts in cultured dairy foods: II. Tolerance to simulated pH of human stomach. Cult Dairy Pro J 28:11–14

    Google Scholar 

  28. Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31:438–442

    Article  PubMed  CAS  Google Scholar 

  29. Rojas M, Ascencio F, Conway PL (2002) Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol 68:2330–2336

    Article  PubMed  CAS  Google Scholar 

  30. Ram C, Chander H (2003) Optimization of culture conditions of probiotic Bifidobacteria for maximal adhesion to hexadecane. World J Microbiol Biotechnol 19:407–410

    Article  CAS  Google Scholar 

  31. Mojgani N, Torshizi MAK, Rahimi S (2007) Screening of locally isolated lactic acid bacteria for use as probiotics in poultry in Iran. J Poult Sci 44:357–365

    Article  CAS  Google Scholar 

  32. Yu B, Liu JR, Chiou MY, Hsu YR, Chiou PWS (2007) The effects of probiotic Lactobacillus reuteri Pg4 strain on intestinal characteristics and performance in broilers. Asian Aust J Anim Sci 20:1243–1251

    CAS  Google Scholar 

  33. Hickey MW, Hillier AJ, Jago GR (1986) Transport and metabolism of lactose, glucose, and galactose in homofermentative Lactobacilli. Appl Environ Microbiol 51(4):825–831

    PubMed  CAS  Google Scholar 

  34. Cogan TM, Jordan KN (1994) Metabolism of Leuconostoc bacteria, symposium: the dairy Leuconosotc. J Dairy Sci 77:2704–2717

    Article  CAS  Google Scholar 

  35. Fiedurek J, Szczodrak J (1994) Selection of strain, culture conditions and extraction procedures for optimum production of β-galactosidase from Kluyveromyces fragilis. Acta Microbiol Pol 43:57–65

    PubMed  CAS  Google Scholar 

  36. Griffiths MW, Muir DD (1978) Properties of a thermostable β-galactosidase from a thermophilic Bacillus: comparison of the enzyme activity of whole cells, purified enzyme and immobilized whole cells. J Sci Food Agric 29:753–761

    Google Scholar 

  37. Hsu CA, Yu RC, Chou CC (2005) Production of β-galactosidase by Bifidobacteria as influenced by various culture conditions. Int J Food Microbiol 104:197–206

    Article  PubMed  CAS  Google Scholar 

  38. Kim JW, Rajagopal SN (2000) Isolation and characterization of β-galactosidase from Lactobacillus crispatus. Folia Microbiol 45:29–34

    Article  CAS  Google Scholar 

  39. Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fonden R, Saxelin M, Collins K, Mogensen G, Birkeland SE, Mattila-Sandholm T (1998) Demonstration of safety of probiotic: a review. Intl J Food Microbiol 44(1–2):96–106

    Google Scholar 

  40. Kannappan S, Manja KS (2004) Antagonistic efficacy of lactic acid bacteria against seafood borne bacteria. J Food Sci Technol Mysore 41:50–59

    Google Scholar 

  41. Vescovo M, Torriani S, Orsi C, Macchiarolo F, Scolari G (1996) Application of antimicrobial-producing lactic acid bacteria to control pathogens in ready-to-use vegetables. J Appl Microbiol 81:113–119

    Article  CAS  Google Scholar 

  42. Wilderdyke MR, Smith DA, Brashears MM (2004) Isolation, identification and selection of lactic acid bacteria from alfalfa sprouts for competitive inhibition of food borne pathogens. J Food Prot 67:947–951

    PubMed  CAS  Google Scholar 

  43. Oyetayo VO, Adetuyi FC, Akinyosoye FA (2003) Safety and protective effect of Lactobacillus acidophilus and Lactobacillus casei used as probiotic agent in vivo. Afr J Biotechnol 2(11):448–452

    CAS  Google Scholar 

  44. Hugas M (1998) Bacteriocinogenic lactic acid bacteria for the biopreservation of meat and meat products. Meat Sci 49:s139–s150

    Article  Google Scholar 

  45. Jay JM (1982) Antimicrobial properties of diacetyl. Appl Environ Microbiol 44:525–532

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. V. Prakash, Director, CFTRI and Dr. S. Umesh, HOD, FM for their encouragement during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shobharani, P., Agrawal, R. A Potent Probiotic Strain from Cheddar Cheese. Indian J Microbiol 51, 251–258 (2011). https://doi.org/10.1007/s12088-011-0072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-011-0072-y

Keywords

Navigation