Skip to main content
Log in

Recent trends in fungal laccase for various industrial applications: An eco-friendly approach - A review

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The aim of this review is to determine the trends of state-of-art of laccase sources, properties, structure and recent application of fungal laccase in various fields. Laccases are biotechnologically important multi copper proteins that have broad substrate specificity towards aromatic and non-aromatic compounds. Fungi are the major laccase producers especially ascomycetes, deuteromycetes and basidiomycetes, and laccases have an average molecular weight between 50 and 130 kDa. Fungal laccases are used in biotechnological applications for preparation of anticancerous and anti-oxidant hormonal drugs, stabilization of food products, and laccase application is also extended to preparation of biosensors, DNA labeling, immunochemical assay, bioorganic compound synthesis etc. The environmental application of laccase is for biodegradation of dyes, phenols and pesticides, and the mechanism of degradation has been briefly explained. Analysis of the biodegraded dye sample by FT-IR and Mass (ESI)-spectrum has been discussed in a detailed manner. Modeling kinetics has been discussed with respect to degradation of wastes in order to understand the factors involved in the degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filazzola, M. T., F. Sannino, M. A. Rao, and L. Giangreda (1999) Bioremediation and biodegradation: Effect of various pollutants and soil-like constituents on laccase from Cerrena unicolor. J. Environ. Quality 28: 1929–1938.

    Article  CAS  Google Scholar 

  2. Jolivalt, C., A. Raynal, E. Caminade, B. Kokel, F. Le Goffic, and C. Mougin (1999) Transformation of N’,N’-dimethyl-N-(hydroxyphenyl) ureas by laccase from the White-rot fungus Trametes versicolor. Appl. Microb. Biotechnol. 51: 676–681.

    Article  CAS  Google Scholar 

  3. Arora, D. S. and R. Sharma (2010) Ligninolytic fungal laccase and their biotechnological applications. Appl. Biochem. Biotech. 160: 1760–1788.

    Article  CAS  Google Scholar 

  4. Yaropolov, A. I., O. V. Skorobogatko, S. S. Vartanov, and S. D. Varfolomeyev (1994) Laccase: Properties, catalytic mechanism and applicability. Appl. Biochem. Biotech. 49: 257–280.

    Article  CAS  Google Scholar 

  5. Call, H. P. and I. Mucke (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). J. Biotech. 53: 163–202.

    Article  CAS  Google Scholar 

  6. Mayer, A. M. and R. C. Staples (2002) Laccase: New functions for an old enzyme. Phytochem. 60: 551–565.

    Article  CAS  Google Scholar 

  7. Leonowicz, A., N. S. Cho, J. Luterek, A. Wilkolazka, M. Wotjas-Wasilewska, A. Matuszewska, M. Hofrichter, D. Wesenberg, and J. Rogalski (2001) Fungal laccase: Properties and activity on lignin. J. Basic Microb. 41: 185–227.

    Article  CAS  Google Scholar 

  8. Thurston, C. (1994) The structure and function of fungal laccases. Microbiol. 140: 19–26.

    Article  CAS  Google Scholar 

  9. Mukhopadhyay, M. and R. Banerjee (2014) Purification and biochemical characterization of a newly produced yellow laccase from Lentinus squarrosulus MR13. 3 Biotech 5: 227–236.

    Article  Google Scholar 

  10. Germann, U. A., G. Muller, P. E. Hunziker, and K. Lerch (1988) Characterization of two allelic forms of Neurospora crassa laccase. The J. Biolog. Chem. 263: 885–896.

    CAS  Google Scholar 

  11. Mayer, A. M. (1987) Polyphenol oxidases in plant: Recent progress. Phytochem. 26: 11–20.

    Article  Google Scholar 

  12. Walkerl, J. W. R. and R. F. McCallion (1980) The selective inhibition of ortho and paradiphenol oxidases. Phytochem. 19: 373–373.

    Article  Google Scholar 

  13. Shleev, S. V., O. V. Morozova, O. V. Nikitina, E. S. Gorshina, T. V. Rusinova, V. A. Serezhenkov, D. S. Burbaev, I. G. Gazaryan, and A. I. Yaropolov (2004) Comparison of Physico-chemical characteristics of four laccases from different basidiomycetes. Biochem. 86: 693–703.

    Article  CAS  Google Scholar 

  14. Palmer, A. E., D. W. Randall, F. Xu, and E. I. Solomon (1999) Spectroscopic studies and electronic structure description of the high potential type 1 copper site in fungal laccase: Insight into the effect of the axial ligand. J. Am. Chem. Soc. 121: 7138–7149.

    Article  CAS  Google Scholar 

  15. Xu, F (1999) In: M. C. Flickinger and S. W. Drew (eds.). Encyclopedia of bioprocess technology: Fermentation, biocatalysis, bioseparation. John Wiley & Sons Inc., NY, USA. 1545–1554.

  16. Baldrian, P. (2006) Fungal laccases occurrence and properties. FEMS Microb. Rev. 30: 215–242.

    Article  CAS  Google Scholar 

  17. Benfield, G., S. M. Bocks, K. Bromley, and B. R. Brown (1964) Studies in fungal and plant laccases. Phytochem. 3: 79–88.

    Article  CAS  Google Scholar 

  18. Prinz, A., K. Koch, A. Gorak, and T. Zeiner (2014) Multi-stage laccase extraction and separation using aqueous two-phase systems: Experiment and model. Proc. Biochem. 49: 1020–1031.

    Article  CAS  Google Scholar 

  19. Rogalski, J. and A. Leonowicz (2004) “Laccase”. pp: 533–542. In: A. Pandey (ed.). Concise encyclopedia of bioresource technology. Food product press, Haworth Reference press, NY, USA.

    Google Scholar 

  20. Vasdev, K., S. Dhawan, R. K. Kapoor, and R. C. Kuhad (2005) Biochemical characterization and molecular evidence of a laccase from the birds nest fungus Cyathus bulleri. Fungal Gen. Biol. 42: 684–693.

    Article  CAS  Google Scholar 

  21. Morozova, O. V., G. P. Shumakovich, M. A. Gorbacheva, S. V. Shleev, and A. I. Yaropolov (2007) Laccase–Mediator systems and their applications: A review. J. Biochem. (Moscow) 72: 1136–1150.

    Article  CAS  Google Scholar 

  22. Zeng, X., Y. Cai, X. Liao, X. Zenga, S. Luo, and D. Zhang (2012) Anthraquinone dye assisted the decolourization of azo dyes by a novel Trametes trogii laccase. Proc. Biochem. 47: 160–163.

    Article  CAS  Google Scholar 

  23. Stoilova, I., A. Krastanova, and V. Stanchev (2010) Properties of crude laccase from Trametes versicolor produced by solid substrate fermentation. Advan. Bioscie. Biotech. 1: 208–215.

    Article  CAS  Google Scholar 

  24. Solomon, E. I., U. M. Sundaram, and T. E. Machonkin (1996) Multicopper oxidases and oxygenases. Chem. Rev. 96: 2563–2606.

    Article  CAS  Google Scholar 

  25. Bourbonnais, R., M. G. Paice, I. D. Reid, P. Lanthier, and M. Yaguchi (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2’,2’-azinobis (3-ethylbenzthiazoline-6-sulphonate) in kraft pulp depolymerisation. Appl. Environ. Microb. 61: 1876–1880.

    CAS  Google Scholar 

  26. Leontievsky, A. A., T. Vares, P. Lankinen, J. K. Shergill, N. N. Pozdnyakova, N. M. Myasoedova, N. Kalkkinen, L. A. Golovleva, R. Cammack, C. F. Thurston, and A. Hatakka (1997) Blue and yellow laccases of ligninolytic fungi. FEMS Microb. Lett. 156: 9–14.

    Article  CAS  Google Scholar 

  27. Mendoza, L (2011) Laccases from new fungal sources and new promising applications. Ph. D. Thesis. Department of Biotechnology, Lund University, Sweden.

    Google Scholar 

  28. Claus, H. (2004) Laccases: Structure, reactions, distribution. Micron. 35: 93–96.

    Article  CAS  Google Scholar 

  29. Claus, H. (2003) Laccases and their occurrence in prokaryotes. Arch. Microb. 179: 145–150.

    CAS  Google Scholar 

  30. Givaudan, A., A. Effose, D. Faure, P. Potier, M. L. Bouillant, and R. Bally (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microb. Lett. 108: 205–210.

    Article  CAS  Google Scholar 

  31. Alexandre, G. and I. B. Zhulin (2000) Laccases are wide spread in bacteria. Trends Biotech. 18: 41–42.

    Article  CAS  Google Scholar 

  32. Galai, S., Y. Touhammi, and M. N. Marzouki (2012) Response surface methodology applied to laccase activities exhibited by Stenotrophomonas Maltophilia AAP56 in different growth conditions. Bio Res. 7: 706–726.

    CAS  Google Scholar 

  33. Octavio, L. C., P. P. M. C. Irma, B. R. J. Ricardo, and V. O. Francisco (2006) Laccases. Adv. Agricult. Food Biotech. 323–340.

    Google Scholar 

  34. Assavanig, A., B. Amornkitticharorn, N. Ekpaisal, V. Meevootisom, and T. W. Flegel (1992) Isolation, characterization and function of laccase from Trichoderma. Appl. Microb. Biotech. 38: 198–202.

    CAS  Google Scholar 

  35. Aisemberg, G. O., E. Grorewold, G. E. Taccioli, and N. Judewicz (1989) A major transcript in the response of Neurospora crassa to protein synthesis inhibition by cycloheximide. Exp. Mycol. 13: 121–128.

    Article  CAS  Google Scholar 

  36. Levin, L. and F. Forchiassin (2001) Ligninolytic enzymes of the white-rot basidiomycete Trametes trogii. Acta Biotech. 21: 179–186.

    Article  CAS  Google Scholar 

  37. Sadhasivam, S., S. Savitha, K. Swaminathan, and F.-H. Lin (2008) Production, purification and characterization of midredox potential laccase from a newly isolated Trichoderma harzianum WL1. Proc. Biochem. 43: 736–742.

    Article  CAS  Google Scholar 

  38. Thakker, G. D., C. S. Evans, and K. K. Rao (1992) Purification and characterization of laccase from Monocillium indicum. Appl. Microb. Biotech. 37: 321–323.

    Article  CAS  Google Scholar 

  39. Revankar, M. S. and S. S. Lele (2006) Enhanced production of laccase using a new isolate of white rot fungus WR-1. Proc. Biochem. 41: 581–588.

    Article  CAS  Google Scholar 

  40. Dittmer, N. T., R. J. Suderman, H. Jiang, Y. C. Zhu, M. J. Gorman, K. J. Kramer, and M. R. Kanost (2004) Characterization of cDNA encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol. 34: 29–41.

    Article  CAS  Google Scholar 

  41. Sharma, K. K. and R. C. Kuhad (2008) Laccase: Enzyme revisited and function refined. Ind. J. Microb. 48: 309–316.

    Article  CAS  Google Scholar 

  42. Gochev, V. K. and A. I. Krastanov (2007) Isolation of laccase producing Trichoderma spp. Bulgarian J. Agricul. Sci. 13: 171–176.

    Google Scholar 

  43. Chefetz, B., Y. Chen, and Y. Hadar (1998) Purification and characterization of laccase from Chaemotomium thermophilum and its role in humification. Appl. Environ. Microb. 64: 3175–3179.

    CAS  Google Scholar 

  44. Levin, L., E. Melignani, and A. M. Ramos (2010) Effect of nitrogen sources and vitamins on lignolytic enzyme production by some white-rot fungi dye decolorization by selected culture filtrates. Biores. Tech. 101: 4554–4563.

    Article  CAS  Google Scholar 

  45. Galhaup, C., H. Wagner, K. D. Kulbe, and D. Haltrich (2001) Efficient production of laccase activity by the white-rot fungus Trametes pubescens. Proceedings of the 8th international conference on biotechnology in the pulp and paper industry. June 4–8, Helsinki, Finland.

    Google Scholar 

  46. Mishra, A., S. Kumar, and A. K. Pandey (2011) Laccase production and simultaneous decolourization of synthetic dyes in unique expensive medium by new isolates of white-rot fungus. Internat. Biodeter. Biodeg. 65: 487–493.

    Article  CAS  Google Scholar 

  47. Wang, Z.-X., Y.-J. Cai, X.-R. Liao, G.-J. Tao, Y.-Y. Li, F. Zhang, and D.-B. Zhang (2010) Purification and characterization of two thermostable laccases with high cold adapted characteristics from Pycnoporus sp. SYBC-L1. Proc. Biochem. 45: 1720–1729.

    Article  CAS  Google Scholar 

  48. Liu, J., Y. Cai, X. Liao, Q. Huang, Z. Hao, M. Hu, D. Zhang, and Z. Li (2013) Efficiency of laccase production in a 65 L airlift reactor for potential green industrial and environmental application. J. Clean. Prod. 39: 154–160.

    Article  CAS  Google Scholar 

  49. Patel, H., S. Gupte, M. Gahlout, and A. Gupte (2014) Purification and characterization of an extracellular laccase from solidstate culture of Pleurotus ostreatus HP-1. 3 Biotech 4: 77–84.

    Article  Google Scholar 

  50. Chiranjeevi, P. V., M. R. Pandian, and T. Sathish (2014) Enhancement of laccase production from Pleurotus ostreatus PVCRSP-7 by altering the nutritional conditions using response surface methodology. BioRes. 9: 4212–4225.

    Article  Google Scholar 

  51. Jordaan, J., B. I. Pletschke, and W. D. Leukes (2004) Purification and partial characterization of a thermostable laccase from an unidentified basidiomycetes. Enz. Microb. Technol. 34: 635–641.

    Article  CAS  Google Scholar 

  52. Fonseca, M. I., E. Shimizu, P. D. Zapata, and L. L. Villalba (2010) Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina). Enz. Microb. Technol. 46: 534–539.

    Article  CAS  Google Scholar 

  53. Boron, F. and O. Yesilada (2011) Enhanced production of laccase by fungi under solid substrate fermentation condition. Biores. 6: 4404–4416.

    Google Scholar 

  54. Mohammadian, M., M. F. Roudsari, N. Mollania, A. B. Dalfard, and K. Khajeh (2010) Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: Purification and biochemical characterization. J. Ind. Microb. Biotech. 5: 41–45.

    Google Scholar 

  55. Mohite, B. V., R. E. Jalgaonwala, S. Pawar, and A. Morankar (2010) Isolation and characterization of phenol degrading bacteria from oil contaminated soil. Innov. Roman. Food Biotech. 7: 61–65.

    CAS  Google Scholar 

  56. Kunamneni, A., S. Camarero, C. Garcia-Burgos, F. J. Plou, A. Ballesteros, and M. Alcalde (2008) Engineering and applications of fungal laccases for organic synthesis. Microb. Cell Fact. 7: 1–17.

    Article  CAS  Google Scholar 

  57. Ardhaoui, M., S. Bhatt, M. Zheng, D. Dowling, C. Jolivalt, and F. A. Khonsari (2013) Biosensor based on laccase immobilized on plasma polymerized allylamine/ carbon electrode. Mat. Sci. Engin. C 33: 3197–3205.

    Article  CAS  Google Scholar 

  58. Chhaya, U. and A. Gupte (2013) Possible role of laccase from Fusarium incarnatum UC-14 in bioremediation of Bisphenol A using reverse micelles system. J. Hazard. Mat. 254–255: 149–156.

    Article  CAS  Google Scholar 

  59. Faramarzi, M. A. and H. Forootanfar (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf. B: Biointerfaces 87: 23–27.

    Article  CAS  Google Scholar 

  60. Wong, K.-S., Q. Huang, C.-H. Au, J. Wang, and H.-S. Kwan (2012) Biodegradation of dyes and polyaromatic hydrocarbons by two allelic forms of Lentinula edodes laccase expressed from Pichia pastoris. Biores. Techn. 104: 157–164.

    Article  CAS  Google Scholar 

  61. Lee, K. M., D. Kalyani, M. K. Tiwari, T. S. Kim, S. S. Dhiman, J. K. Lee, and I. W. Kima (2012) Enhanced enzymatic hydrolysis of rice straw by removal of Phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Biores. Technol. 123: 636–645.

    Article  CAS  Google Scholar 

  62. Brondani, D., B. D. Souza, B. S. Souza, A. Neves, and L. C. Vieira (2013) PEI-coated gold nanoparticles decorated with laccase: A new platform for direct electrochemistry of enzymes and biosensing applications. Biosen. Bioelect. 42: 242–247.

    Article  CAS  Google Scholar 

  63. Dai, Z., M. Q. Guo, X. J. Wang, H. F. Wang, and W. Y. Chen (2014) Development of amperometric laccase biosensor through immobilizing enzyme in magnesium-containing mesoporous silica sieve (Mg-MCM-41)/polyvinyl alcohol matrix. J. Nanomat. (Article ID 458245) 8.

    Google Scholar 

  64. Roy, J. J., T. E. Abraham, K. S. Abhijith, P. V. Kumar, and M. S. Thakur (2005) Biosensor for the determination of phenols based on cross-linked enzyme crystals (CLEC) of laccase. Biosen. Bioelect. 21: 206–211.

    Article  CAS  Google Scholar 

  65. Luo, H., S. Jin, P. H. Fallgren, H. J. Park, and P. A. Johnson (2010) A novel laccase-catalyzed cathode for microbial fuel cells. Chem. Engin. J. 165: 524–528.

    Article  CAS  Google Scholar 

  66. Chawla, S., R. Rawal, Shabnam, R. C. Kuhad, and C. S. Pundir (2011) An amperometric polyphenol biosensor based on laccase immobilized on epoxy resin membrane. Anal. Meth. 3: 709–714.

    Article  CAS  Google Scholar 

  67. Morozova, O. V., G. P. Shumakovich, S. V. Shleev, and Y. I. Yaropolov, (2007) Laccase–Mediator systems and their applications: A review. Appl. Biochem. Microb. 43: 523–535.

    Article  CAS  Google Scholar 

  68. Rosana, C., Y. Minussi, G. M. Pastore, and N. Durany (2002) Potential applications of laccase in the food industry. Trends Food Sci. Techn. 13: 205–216.

    Article  Google Scholar 

  69. Minussi, R.C., G. M. Pastore, and N. Duran (2002) Potential applications of laccase in the food industry. Trends Food Sci. Techn. 13: 205–216.

    Article  CAS  Google Scholar 

  70. Couto, S. R. and J. L. T. Herrera (2006) Industrial and biotechnological applications of laccases: A review. Biotech. Adv. 24: 500–513.

    Article  CAS  Google Scholar 

  71. Rocasalbas, G., A. Francesko, S. Tourino, X. Fernandez-Francos, G. M. Guebitzc, and T. Tzanov (2013) Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. Carbohyd. Polym. 92: 989–996.

    Article  CAS  Google Scholar 

  72. Bourton, S. (2003) Laccases and phenol oxidases in organic synthesis. Curr. Organic Chem. 7: 1317–1331.

    Article  Google Scholar 

  73. Pilz, R., E. Hammer, F. Schauer, and U. Krag (2003) Laccase catalysed synthesis of coupling products of Phenolic substrates in different reactors. Appl. Microb. Biotech. 60: 708–712.

    Article  CAS  Google Scholar 

  74. Kurisawa, M., J. E. Chung, H. Uyama, and S. Kobayashi (2003) Laccase-catalyzed synthesis and antioxidant property of poly (catechin). Macromol. Biosci. 3: 758–764.

    Article  CAS  Google Scholar 

  75. Forgacsa, E., T. Cserhatia, and G. Ores (2004) Removal of synthetic dyes from wastewaters: A review. Environ. Internat. 30: 953–971.

    Article  CAS  Google Scholar 

  76. Erkurt, H. A (2010) Biodegradation of Azo Dyes. pp. 1–37. In: D. Barcelo and A. G. Kostianoy (eds.). The Hand Book of Environmental Chemistry. Springer Verlag Berlin Heidelberg.

    Google Scholar 

  77. Vandevivere, P. C., R. Bianchi, and W. S. Verstraete (1998) Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies. J. Chem. Techn. Biotech. 72: 289–302.

    Article  CAS  Google Scholar 

  78. Jaiswal, N., V. P. Pandey, and U. N. Dwivedi (2014) Purification of a thermostable laccase from Leucaena leucocephala using a copper alginate entrapment approach and the application of the laccase in dye decolorisation. Proc. Biochem. 49: 1196–1204.

    Article  CAS  Google Scholar 

  79. Wesenberg, D., F. Buchon, and S. N. Agathos (2002) Degradation of dye-containing textile effluent by the agaric white-rot fungus Clitocybula dusenii. Biotech. Lett. 24: 989–993.

    Article  CAS  Google Scholar 

  80. Bisschops, I. and H. Spanjers (2003) Literature review on textile waste water characterization. Environ. Techn. 24: 1399–1411.

    Article  CAS  Google Scholar 

  81. Pereira, L., A. V. Coelho, C. A. Viegas, M. M. Santos, M. P. Robalo, and L. O. Martins (2009) Enzymatic biotransformation of the azo dye Sudan orange G with bacterial cot A-laccase. J. Biotech. 139: 68–77.

    Article  CAS  Google Scholar 

  82. Wesenberg, D., I. Kyriakides, and S. N. Agathos (2003) Whiterot fungi and their enzymes for the treatment of industrial dye effluents. Biotech. Advan. 22: 161–187.

    Article  CAS  Google Scholar 

  83. Eichlerova, I., L. Homolka, L. Lisa, and F. Nerud (2005) Orange G and Remazol Brilliant Blue R decolorisation by white rot fungi Dichomitus squalens, Ischnoderma resinosum and Pleurotus calyptratus. Chemosphere 60: 398–404.

    Article  CAS  Google Scholar 

  84. Wong, Y. and J. Yu (1999) Laccase-catalyzed decolorisation of synthetic dyes. Water Res. 33: 3512–3520.

    Article  CAS  Google Scholar 

  85. Yesilada, O., S. C. Yildirim, E. Birhanli, E. Apohan, D. Asma, and F. Kuru (2010) The evaluation of pre-grown mycelial pellets in decolorisation of textile dyes during repeated batch process. World J. Microb. Biotech. 26: 33–39.

    Article  CAS  Google Scholar 

  86. Mouli, P. C., S. V. Mohan, and S. J. Reddy (2004) Electrochemical processes for the remediation of waste water and contaminated soil: emerging technology. J. Sci. Ind. Res. 63: 11–19.

    CAS  Google Scholar 

  87. Ozyurt, M. and H. Atacag (2003) Biodegradation of azo dyes: A review. Fresenius Environ. Bullet. 12: 1294–1302.

    CAS  Google Scholar 

  88. Khlifia, R., L. Belbaharia, S. Woodwarda, M. Ellouza, A. Dhouiba, S. Sayadia, and T. Mechichia (2010) Decolourization and detoxification of textile industry waste water by the laccasemediator system. J. Hazard. Mat. 175: 802–80.

    Article  CAS  Google Scholar 

  89. Moilanen, U., J. F. Osma, E. Winquist, M. Leisola, and S. R. Couto (2010) Decolorization of simulated textile dye baths by crude laccases from Trametes hirsute and Cerrena unicolor. Eng. Life Sci. 10: 1–6.

    Article  CAS  Google Scholar 

  90. Murugesan, K., I. H. Nam, Y. M. Kim, and Y. S. Chang (2007) Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid culture. Enz. Microb. Technol. 40: 1662–1672.

    Article  CAS  Google Scholar 

  91. Rodriguez-Couto, S. (2014) Decolouration of industrial metalcomplex dyes in successive batches by active cultures of Trametes pubescens. Biotech. Reports 4: 156–160.

    Article  Google Scholar 

  92. Casieri, L., G. C. Varese, A. Anastasi, V. Prigione, K. Svobodova, V. Filippelo Marchisio, and C. Novotny (2008) Decolorisation and detoxification of reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus. Folia Microbiol. 53: 44–52.

    Article  CAS  Google Scholar 

  93. Robinson, T., G. McMullan, R. Marchant, and P. Nigam (2001) Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77: 247–255.

    Article  CAS  Google Scholar 

  94. Chen, C.-Y., Y.-C. Huang, C.-M. Wei, M. Meng, W.-H. Liu, and C.-H. Yang (2013) Properties of the newly isolated extracellular thermo-alkali-stable laccase from thermophilic actinomycetes, Thermobifida fusca and its application in dye intermediates oxi-dation. AMB Exp. 3: 49.

    Article  CAS  Google Scholar 

  95. Cristova, R. O., A. P. M. Tavares, J. M. Loureiro, R. A. R. Boaventura, and E. A. Macedo (2008) Optimization of reactive dye degradation by laccase using Box-Bernken design. Environ. Tech. 29: 1357–1364.

    Article  Google Scholar 

  96. Rodriguez, E., M. A. Pickard, and R. Vazquez-Duhalt (1999) Industrial dye decolorization by laccases from ligninolytic fungi. Curr. Microbiol. 38: 27–32.

    Article  CAS  Google Scholar 

  97. Lu, L., M. Zhao, B. B. Zhang, S. Y. Yu, X. J. Bian, W. Wang, and Y. Wang (2007) Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme. Appl. Microbiol. Biotechnol. 74: 1232–1239.

    Article  CAS  Google Scholar 

  98. Abadulla, E., T. Tzanov, S. Costa, K.-H. Robra, A. Cavaco-Paulo, and G. M. Gu Bitz (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsute. Appl. Environ. Microb. 66: 3357–3362.

    Article  CAS  Google Scholar 

  99. Lorenzo, M., D. Moldes, and M. A. Sanroman (2006) Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemosphere 63: 912–917.

    Article  CAS  Google Scholar 

  100. Kanagaraj, J., T. Senthilvelan, and R. C. Panda (2014) Biodegradation of azo dyes in industrial effluent: An eco-friendly way toward green technology. Clean Techn. Environ. Policy 17: 331–341.

    Article  CAS  Google Scholar 

  101. Zhang, M., F. Wu, Z. Wei, Y. Xiao, and W. Gong (2006) Characterization and decolorization ability of a laccase from Panus rudis. Enz. Microb. Techn. 39: 92–97.

    Article  CAS  Google Scholar 

  102. Champagne, P. P. and J. A. Ramsay (2005) Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor. Appl. Microb. Biotechnol. 69: 276–285.

    Article  CAS  Google Scholar 

  103. Ramírez-Cavazosa, L. I., C. Junghannsb, N. Ornelas-Sotoa, D. L. Cardenas-Cháveza, C. Hernández-Lunac, P. Demarched, E. Enaudd, R. Garcia-Moralesa, S. N. Agathosd, and R. Parraa (2014) Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals. J. Molecul. Cat. B: Enzym. 108: 32–42.

    Article  CAS  Google Scholar 

  104. Pasti-Grigsby, M. B., A. Paszcynski, S. Goszczynski, D. L. Crawford, and R. L. Crawford (1992) Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 3605–3613.

    CAS  Google Scholar 

  105. Kandelbauer, A., O. Maute, R.W. Kessler, A. Erlacher, and G. M. Gubitz (2004) Study of dye decolorization in an immobilized laccase enzyme–Reactor using online spectroscopy. Biotechnol. Bioeng. 87: 552–563.

    Article  CAS  Google Scholar 

  106. Rico, A., J. Rencoret, J. C. D. Rio, A. T. Martínez, and A. Gutierrez (2014) Pretreatment with laccase and a phenolic mediator degrade lignin and enhance saccharification of Eucalyptus feedstock. Biotech. Biofuels 7: 1–14.

    Article  CAS  Google Scholar 

  107. Farragher, N. (2013) Degradation of pesticides by the ligninolytic enzyme Laccase-independent project in environmental science. MS Thesis. Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences, Sweden.

    Google Scholar 

  108. Margot, J., C. Bennati-Granier, J. Maillard, P. Blánquez, D. A. Barry, and C. Holliger (2013) Bacterial versus fungal laccase: Potential for micropollutant degradation. AMB Exp. 3: 63.

    Article  CAS  Google Scholar 

  109. Tisma, M., P. Nidarsie-Plazl, I. Plazl, B. Zelae, and D. Vasiae-Raekic (2008) Modelling of L-DOPA oxidation catalyzed by laccase. Chem. Biochem. Eng. Q 22: 307–313.

    CAS  Google Scholar 

  110. Ursula, F. and R. M. Blanca (2009) Effect of process parameters in laccase mediator system delignification of flax pulp. Part II: Impact on effluents properties. Chem. Eng. J. 152: 330–338.

    Google Scholar 

  111. Casas, N., P. Blanguez, T. Vicent, and M. Sarra (2013) Mathematical model for dye decoloration and laccase production by Trametes versicolor in fluidized bioreactor. Biochem. Eng. J. 1: 45–52.

    Article  CAS  Google Scholar 

  112. Tavares, A. P. M., R. O. Cristovao, J. M. Loureiro, R. A. R. Boaventura, and E. A. Macedo (2009) Application of statistical experimental methodology to optimize reactive dye decolourization by commercial laccase. J. Hazard. Mat. 162: 1255–1260.

    Article  CAS  Google Scholar 

  113. Paloma, G., S. Gurkan, G. Krist, and W. John (2010) Sensitivity analysis of a kinetic model describing the bi-enzymatic synthesis of Lactobionic acid. Computer-Aided Chem. Eng. Series 28: 1491–1496.

    Google Scholar 

  114. Vats, S., D. P. Maurya, A. Jain, V. Mall, and S. Negi (2013) Mathematical model-based optimization of physico-enzymatic hydrolysis of Pinus roxburghii needles for the production of reducing sugars. Ind. J. Exp. Biol. 51: 944–953.

    CAS  Google Scholar 

  115. Tusek, A. J., M. Tisma, V. Bregovi, A. Ptiar, Z. Kurtanjek, and B. Zelic (2013) Enhancement of phenolic compounds oxidation using laccase from Trametes versicolor in a microreactor. Biotech. Bioproc. Eng. 18: 686–696.

    Article  CAS  Google Scholar 

  116. Senthilvelan, T., J. Kanagaraj, R. C. Panda, and A. B. Mandal (2014) Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean Techn. Environ. Policy 16: 113–126.

    Article  CAS  Google Scholar 

  117. Sathishkumar, P., J.-C. Chae, A. R. Unnithan, T. Palvannan, H. Y. Kimb, K. J. Leea, M. Choa, S. Kamala-Kannana, and B.-T. Oha (2012) Laccase-poly (lactic-co-glycolic acid) (PLGA) nanofiber: Highly stable, reusable, and efficacious for the transformation of diclofenac. Enz. Microb. Technol. 51: 113–118.

    Article  CAS  Google Scholar 

  118. Jang, M. Y., W. R. Ryu, and M. H. Cho (2002) Laccase production from repeated batch cultures using free mycelia of Trametes sp. Enz. Microb. Technol. 30: 741–746.

    Article  CAS  Google Scholar 

  119. Saito, T., P. Hong, K. Kato, M. Okazaki, H. Inagaki, S. Maeda, and Y. Yokogawa (2003) Purification and characterization of an extracellular laccase of a fungus (family Chaetomiaceae) isolated from soil. Enz. Microb. Technol. 33: 520–526.

    Article  CAS  Google Scholar 

  120. Ryan, S., W. Schnitzhofer, T. Tzanov, T. Cavaco-Paulo, and G. M. Gubitz (2003) An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. Enz. Microb. Technol. 33: 766–774.

    Article  CAS  Google Scholar 

  121. Baldrian, P. (2004) Increase of laccase activity during interspecific interactions of Whit-rot fungi. FEMS Microb. Ecol. 50: 245–253.

    Article  CAS  Google Scholar 

  122. Tanaka, T., S. Eguchi, T. Aoki, T. Tamura, H. Saitoh, M. Taniguchi, H. Ohara, K. Nakanishi, and D. R. Lloyd (2007) Production of laccase by membrane-surface liquid culture of Trametes versicolor using a poly (L-lactic acid) membrane. Biochem. Eng. J. 33: 188–191.

    Article  CAS  Google Scholar 

  123. Michniewicz, A., S. Ledakowicz, R. Ullrich, and M. Hofrichter (2008) Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes Pigments 77: 295–302.

    Article  CAS  Google Scholar 

  124. Niladevi, K. N. and P. Prema (2008) Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresour. Technol. 99: 4583–4589.

    Article  CAS  Google Scholar 

  125. Ciullini, I., S. Tilli, A. Scozzafava, and F. Briganti (2008) Fungal laccase, cellobiose dehydrogenase, and chemical mediators: Combined actions for the decolorisation of different classes of textile dyes. Bioresour. Technol. 99: 7003–7010.

    Article  CAS  Google Scholar 

  126. Rubia T, M. Lucas, and J. Martinez (2008) Controversial role of fungal laccases in decreasing the antibacterial effect of olive mill waste-waters. Biores. Technol. 99: 1018–1025.

    Article  CAS  Google Scholar 

  127. Mishra, A. and S. Kumar (2009) Kinetic studies of laccase enzyme of Coriolus versicolor MTCC 138 in an inexpensive culture medium. Biochem. Eng. J. 46: 252–256.

    Article  CAS  Google Scholar 

  128. Niebisch, C. H., A. K. Malinowski, R. Schadeck, D. A. Mitchell, V. Kava-Cordeiro, and J. Paba (2010) Decolorisation and biodegradation of reactive blue 220 textile dye by Lentinus crinitus extracellular extract. J. Hazard. Mat. 180: 316–322.

    Article  CAS  Google Scholar 

  129. Shah, V., P. Dobiasova, P. Baldrian, F. Nerud, A. Kumar, and S. Seal (2010) Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. J. Hazard. Mat. 178: 1141–1145.

    Article  CAS  Google Scholar 

  130. Gassara, F., S. K. Brar, R. D. Tyagi, M. Verma, and R. Y. Surampalli (2010) Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem. Eng. J. 49: 388–394.

    Article  CAS  Google Scholar 

  131. Tilli, S., I. Ciullini, A. Scozzafava, and F. Briganti (2011) Differential decolorisation of textile dyes in mixtures and the joint effect of laccase and cellobiose dehydrogenase activities present in extracellular extracts from Funalia trogii. Enz. Microb. Technol. 49: 465–471.

    Article  CAS  Google Scholar 

  132. Sridhar, S., V. Chinnathambi, P. Arumugam, and P. K. Suresh (2012) Extracellular laccase enzyme production by Rigidoporous Sp. using the placket-burmann statistical design, spectral analysis and response surface methodology-based optimization of laccase-catalyzed decolorization of Acid blue 113-a prototype textile azo dye. American-Eurasian J. Agric. Environ. Sci. 12: 1617–1624.

    CAS  Google Scholar 

  133. Mathur, G., A. Mathur, B. M. Sharma, and R. S. Chauhan (2013) Enhanced production of laccase from Coriolus sp. using Plackett-Burman design. J. Pharm. Res. 6: 151–154.

    CAS  Google Scholar 

  134. Jadhav, S. B. and R. S. Singhal (2013) Polysaccharide conjugated laccase for the dye decolorization and reusability of effluent in textile industry. Internat. Biodeteri. Biodegrad. 85: 271–277.

    Article  CAS  Google Scholar 

  135. Birhanli, E., S. Erdogan, O. Yesilada, and Y. Onal (2013) Laccase production by newly isolated white-rot fungus Funalia trogii: Effect of immobilization matrix on laccase production. Biochem. Eng. J. 71: 134–139.

    Article  CAS  Google Scholar 

  136. Dhakar, K. and A. Pandey (2013) Laccase production from a temperature and pH tolerant fungal strain of Trametes hirsuta (MTCC 11397). Enz. Res. (Article ID 869062).

    Google Scholar 

  137. Manavalan, T., A. Manavalan, K. P. Thangavelu, and K. Heesed (2013) Characterization of optimized production, purification and application of laccase from Ganoderma lucidum. Biochem. Eng. J. 70: 106–114.

    Article  CAS  Google Scholar 

  138. Nilsson, I., A. Moller, B. Mattiasson, M. S. T. Rubindamayugi, and U. Welander (2006) Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enz. Microb. Technol. 38: 94–100.

    Article  CAS  Google Scholar 

  139. Almansa, E., A. Kandelbauer, L. Pereira, A. Cavaco-Paulo, and G. M. Gubitz (2004) Influence of structure on dye degradation with laccase mediator systems. Biocatal. Biotrans. 22: 315–324.

    Article  CAS  Google Scholar 

  140. Cristovao, R. O., A. P. M. Tavares, A. S. Ribeiro, J. M. Loureiro, R. A. R. Boaventura, and E. A. Macedo (2007) Kinetic modeling and simulation of laccase catalyzed degradation of reactive textile dyes. Biores. Techn. 99: 4768–4774.

    Article  CAS  Google Scholar 

  141. Tauber, M. M., G. M. Gubitz, and A. Rehorek (2008) Degradation of azo dyes by oxidative processes-laccase and ultrasound treatment. Bioresour. Technol. 99: 4213–4220.

    Article  CAS  Google Scholar 

  142. Telke, A. A., A. A. Kadam, S. S. Jagatap, J. P. Jadhav, and S. P. Govindwar (2010) Biochemical characterization and potential for textile dye degradation of blue laccase from Aspergillus ochraceus NCIM-1146. Biotechnol. Bioproc. Eng. 15: 696–703.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kanagaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthivelan, T., Kanagaraj, J. & Panda, R.C. Recent trends in fungal laccase for various industrial applications: An eco-friendly approach - A review. Biotechnol Bioproc E 21, 19–38 (2016). https://doi.org/10.1007/s12257-015-0278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0278-7

Keywords

Navigation