Skip to main content
Log in

Laccase: enzyme revisited and function redefined

  • Review
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

One enzyme, one physiological role, that’s how most scientists have traditionally looked at it but there is a growing appreciation that some enzymes “moonlight” i.e. in addition to their “primary” catalytic function, they carry other functions as well. Moonlighting refers to a protein that has multiple functions, which are not because of gene fusion; splice variants or multiple proteolytic fragments. Until recently laccases were reported from eukaryotes, e.g. fungi, plants, insect. However there is some evidence for its existence in prokaryotes, a protein with typical features of multi-copper oxidase enzyme family. The present available knowledge of its structure provides a glimpse of its plasticity, revealing a multitude of binding sites responsible for multifunctional activity. Laccase represents an example of a ‘moonlighting’ protein that overcomes the one gene-one structure-one function concept to follow the changes of the organism in its physiological and pathological conditions. It is wide spread in plants, where it is involved in biosynthesis of lignin; in fungi it is involved in lignin degradation, development associated pigmentation (melanin synthesis), detoxification and pathogenesis, and in bacteria, laccases are involved in the synthesis of endospore coat protein (cot A).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayer A and Staples R (2002) Laccase: new functions for an old enzyme. Phytochem 60:551–565

    Article  CAS  Google Scholar 

  2. Alexandre G and Zulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42

    Article  PubMed  CAS  Google Scholar 

  3. Givaudan A, Effose A, Faure D, Potier P, Bouillant M-L and Bally R (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett 108:205–210

    Article  CAS  Google Scholar 

  4. Faure D, Bouillant ML and Bally R (1994) Isolation of Azospirillum lipoferum 4T Tn5 mutants affected in melanization and laccase activity. Appl Environ Microbiol 60: 3413–3415

    PubMed  CAS  Google Scholar 

  5. Solano F, Garcia E, Perez De, Egea E and Sanchez-Amat A (1997) Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl Environ Microbiol 63:3499–3506

    PubMed  CAS  Google Scholar 

  6. Sanchez-Amat A, Lucas-Elio P, Fernandez E, Garcia-Borron JC and Solano F (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta 1547:104–116

    PubMed  CAS  Google Scholar 

  7. Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ and Kanost MR (2004) Characterization of cDNA encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 34:29–41

    Article  PubMed  CAS  Google Scholar 

  8. Arakane Y, Muthukrishnan S, Beeman RW, Kanost M R and Kramer K J (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. PNAS 102: 11337–11342

    Article  PubMed  CAS  Google Scholar 

  9. Beloqui A, Pita M, Polaina J et al. (2006) Novel Polyphenol Oxidase Mined from Metagenome Expression Library of Bovine Rumen: Biochemical Properties, Structural Analysis and Phylogenetic Relationship. J Biol Chem 281: 22933–22942

    Article  PubMed  CAS  Google Scholar 

  10. Yoshida H (1883) Chemistry of Lacquer (Urushi) part 1. J Chem Soc 43:472–486

    CAS  Google Scholar 

  11. Bertrand G (1894) Sur le latex de I’arbre á laque C R. Acad Sci 118:1215–1218

    Google Scholar 

  12. Laborde J (1896) Sur la casse des vins C R Hebd Seanes. Acad Sci 123:1074–1075

    Google Scholar 

  13. Malkin R, Malmstrom BG and Vanngard T (1969) The reversible removal of one specific copper (II) from fungal laccase. Eur J Biochem 7:253

    Article  PubMed  CAS  Google Scholar 

  14. Malmstrom BG, Andreason LE and Reinhammar R (1975) Boyer PD (Ed.), The Enzymes, vol. 12B, 3rd edn., Academic Press, New York, pp. 507

    Google Scholar 

  15. Holwerda RA, Wherland S and Gray HB (1976) Electron transfer reactions of copper proteins. Annu Rev Biophys Bioeng 5:363

    Article  PubMed  CAS  Google Scholar 

  16. Mayer AM and Harel E (1979) Polyphenol oxidases in plants. Phytochem 33:765–767

    Google Scholar 

  17. Reinhammar B (1984) Laccase. nIn: Lontie R (ed) Copper proteins and copper enzymes, vol 3. CRC Press, Boca Raton, pp 1–35

    Google Scholar 

  18. Thurston CF (1994) The structure and function of fungal laccases. Microbiol 140:19–26

    Article  CAS  Google Scholar 

  19. Eriksson K-E L (2000) Lignocellulose, lignin, ligninases. Encyclopedia Microbiol, Vol III, ed. II, Academic Press

  20. Xu F (2005) Applications of oxidoreductases: Recent progress. Industrial Biotechnol 1:38–50

    Article  CAS  Google Scholar 

  21. Jeffery CJ (2003) Moonlighting proteins: old proteins learning new tricks. Trends Genet 19:415–417

    Article  PubMed  CAS  Google Scholar 

  22. Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11

    Article  PubMed  CAS  Google Scholar 

  23. Lindell D, Jaffe JD, Johnson ZI, Church GM and Chisholm SW (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438(3):86–89

    Article  PubMed  CAS  Google Scholar 

  24. Rajendran V, Gupta G, Appel D and Atanassov P (2002) Laccase-catalyzed direct electron transfer: application in gas-diffusion air cathodes for biofuel cells. Science 296: 1222–1223

    Article  Google Scholar 

  25. Casadevall A and Perfect JR (1998) Cryptococcus neoformans. ASM press, Washington, DC

    Google Scholar 

  26. Zhu X and Williamson PR (2004) Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Research 5:1–10

    Article  PubMed  CAS  Google Scholar 

  27. Lide L, Tewari RP and Williamson PR (1999) Laccase protects Cryptococcus neoformans from antifungal activity of alveolar macrophages. Infect Immun 67:6034–6039

    Google Scholar 

  28. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH and Henriques, AO (2002) Molecular and Biochemical Characterization of a Highly Stable Bacterial Laccase That Occurs as a Structural Component of the Bacillus subtilis Endospore Coat. J Biol Chem 277: 18849–18859

    Article  PubMed  CAS  Google Scholar 

  29. Zhu X, Gibbons J, Garcia-Rivera J, Casadevall A and Williamson PR (2001) Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infect Immun 69(9): 5589–5596

    Article  PubMed  CAS  Google Scholar 

  30. Enguita F J, Martins LO, Henriques AO and Carrondo MA (2003) Crystal Structure of a Bacterial Endospore Coat Component: A Laccase with enhanced thermostability properties. J Biol Chem 278:19416–19425

    Article  PubMed  CAS  Google Scholar 

  31. Mizuguchi K, Deane CM, Blundell TL, Johnson MS and Overington JP (1998) JOY: protein sequence-structure representation and analysis. Bioinformatics 14:617–623

    Article  PubMed  CAS  Google Scholar 

  32. Messerschmidt A, Steigemann W, Huber R, Lang G and Kroneck PM (1992) X-ray crystallographic characterisation of type-2-depleted ascorbate oxidase from zucchini. Eur J Biochem 209(2):597–602

    Article  PubMed  CAS  Google Scholar 

  33. Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneide P, Pedersen AH and Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Nat Struct Biol 5:310–316

    Article  PubMed  CAS  Google Scholar 

  34. Donovan W, Zheng L, Sandman K and Losick R (1987) Genes encoding spore coat polypeptides from Bacillus subtilis. J Mol Biol 196:1–10

    Article  PubMed  CAS  Google Scholar 

  35. Zheng L and Losick R (1990) Cascade regulation of spore coat gene expression in Bacillus subtilis. J Mol Biol 212: 645–660

    Article  PubMed  CAS  Google Scholar 

  36. Zheng L, Donovan WP, Fitz-James PC and Losick R (1988) Gene encoding a morphogenic protein required in the assembly of outer coat of Bacillus subtilis endospore. Genes Dev 2:1047–1054

    Article  PubMed  CAS  Google Scholar 

  37. Driks A (1999) Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63:1–20

    PubMed  CAS  Google Scholar 

  38. Zhu X, Gibbons J, Garcia-Rivera J, Casadevall A and Williamson PR (2001) Laccase of Cryptococcus neoformans Is a Cell Wall-Associated Virulence Factor. Infect Immun 69(9):5589–5596

    Article  PubMed  CAS  Google Scholar 

  39. Li K, Xu F, and Karl-Erik L Eriksson (1999) Comparison of Fungal Laccases and Redox Mediators in Oxidation of a Nonphenolic Lignin Model Compound. Appl Environ Microbiol 65(6):2654–2660

    PubMed  CAS  Google Scholar 

  40. Xu F (1999) Recent progress in laccase study: properties, enzymology, production, and applications. In Encyclopedia of Bioprocessing Technology: Fermentation, Biocatalysis, and Bioseparation (Flickinger, M.C. and Drew, S.W., eds), pp. 1545–1554. John Wiley and Sons, New York, USA

    Google Scholar 

  41. Claus H (2004) Laccase: Structure, reactions, distribution. Micron 35:93–96

    Article  PubMed  CAS  Google Scholar 

  42. Kirk TK, Harkin JM and Cowling EB (1968) Degradation of the lignin model compound syringylgylcol-B guaiacyl ether by Polyporus versicolor and Stereum frustulatum. Biochim Biophys Acta 165:145

    PubMed  CAS  Google Scholar 

  43. Ishihara T and Miyazaki M (1974) Demethylation of lignin and lignin models by fungal laccase. Mokuzai Gakkaishi 18: 415

    Google Scholar 

  44. Bourbonnais R and Paice MG (1990) Oxidation of nonphenolic substrates: An expanded role for laccase in lignin biodegradation. FEBS Lett 407:89–92

    Google Scholar 

  45. Kuhad RC, Singh A and Eriksson K-E L (1997) Biotechnology in the pulp and paper industry, Springer Verlag: Berlin 45–125

    Book  Google Scholar 

  46. Call HP and Mucke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator systems (LignozymR-process). J Biotechnol 53: 215–236

    Article  Google Scholar 

  47. Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Haikier T, Mondorf K and Dalboge H (1996) Purification, characterization, molecular cloning and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62(3): 834–841

    PubMed  CAS  Google Scholar 

  48. Yaver DS and Golightly E J (1996) Cloning and characterization of hree laccase genes from the white rot basidiomycete Trametes villosa: genomic organization of the laccase gene. family Gene 181:95–102

    CAS  Google Scholar 

  49. Wahleithner JA, Xu F, Brown KM, Brown SH, Golightly EJ, Halkier S, Kauppinen A, Pderson A and Schnelder P (1976) The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 29:395–403

    Article  Google Scholar 

  50. Giardina P, Aurilia V, Cannio R, Marzullo L, Amoresano A, Siciliano R, Pucci P and Sannia G (1996) The gene, protein and glycan structures of laccase from Pleurotus ostreatus. Eur J Biochem 235:508–515

    Article  PubMed  CAS  Google Scholar 

  51. Yaver et al (1999) Molecular Characterization of Laccase Genes from the Basidiomycete Coprinus cinereus and Heterologous Expression of the Laccase Lcc1. App Environ Microbiol 65(11):4943–4948

    CAS  Google Scholar 

  52. Mansur M, Suarez T, Fernandez-Larrea JB, Brizuela MA and Gonzalez AE (1997) Identification of laccase gene family in the new lignin degrading basidiomycete CECT 20197. Appl Environ Microbiol 63(7):2637–2646

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chander Kuhad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, K.K., Kuhad, R.C. Laccase: enzyme revisited and function redefined. Indian J Microbiol 48, 309–316 (2008). https://doi.org/10.1007/s12088-008-0028-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-008-0028-z

Keywords

Navigation