Skip to main content
Log in

Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

During dye decoloration by Trametes versicolor ATCC 20869 in modified Kirk’s medium, manganese peroxidase (MnP) and laccase were produced, but not lignin peroxidase, cellobiose dehydrogenase or manganese-independent peroxidase. Purified MnP decolorized azo dyes [amaranth, reactive black 5 (RB5) and Cibacron brilliant yellow] in Mn2+-dependent reactions but did not decolorize an anthraquinone dye [Remazol brilliant blue R (RBBR)]. However, the purified laccase decolorized RBBR five to ten times faster than the azo dyes and the addition of a redox mediator, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), did not alter decoloration rates. Amaranth and RB5 were decolorized the most rapidly by MnP since they have a hydroxyl group in an ortho position and a sulfonate group in the meta position relative to the azo bond. During a typical batch decoloration with the fungal culture, the ratio of laccase:MnP was 10:1 to 20:1 (based on enzyme activity) and increased to greater than 30:1 after decoloration was complete. Since MnP decolorized amaranth about 30 times more rapidly than laccase per unit of enzyme activity, MnP should have contributed more to decoloration than laccase in batch cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addleman K, Dumonceaux T, Paice MG, Bourbonnais R, Archibald F (1995) Production and characterization of Trametes versicolor mutants unable to bleach hardwood kraft pulp. Appl Environ Microbiol 61:3687–3694

    Article  CAS  Google Scholar 

  • Archibald F, Roy B (1992) Production of manganic chelates by laccase from the lignin-degrading fungus Trametes versicolor. Appl Environ Microbiol 58:1496–1499

    Article  CAS  Google Scholar 

  • Baminger U, Nidetzky B, Kulbe KD, Schlosser D (1999) A simple assay for measuring cellobiose dehydrogenase activity in the presence of laccase. J Microbiol Methods 35:253–259

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  • Blànquez C, Caminal G, Sarra M, Vincent M, Gabarell X (2002) Olive oil mill waste water decoloration and detoxification in a bioreactor by the white rot fungus Phanerochaete flavido-alba. Biotechnol Prog 18:660–662

    Article  Google Scholar 

  • Bourbonnais R, Paice M, Reid I, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61:1876–1880

    Article  CAS  Google Scholar 

  • Clarke E, Anliker R (1980) Organic dyes and pigments. In: Handbook of environmental chemistry, anthropogenic compounds, vol 3, 2nd edn. Springer, Berlin Heidelberg New York, pp 181–215

    Google Scholar 

  • Claus H, Faber G, Konig H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678

    Article  CAS  Google Scholar 

  • Dubrow SF, Boardman GD, Michelsen DJ (1996) Chemical pretreatment and aerobic–anaerobic degradation of textile dye wastewater. In: Reife A, Freeman HS (eds) Environmental chemistry of dyes and pigments. Wiley, New York, pp 75–102

    Google Scholar 

  • Dutton MV, Evans CS, Atkey PT, Wood DA (1993) Oxalate production by basidiomycetes, including the white-rot Coriolus versicolor and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 39:5–10

    Article  CAS  Google Scholar 

  • Fahraeus G, Reinhammar B (1967) Large-scale production and purification of laccase from cultures of the fungus Polyporus versicolor and some properties of laccase A. Acta Chem Scand 21:2367–2378

    Article  CAS  Google Scholar 

  • Galkin S, Vares T, Kalsi M, Hatakka A (1998) Production of organic acids by different white-rot fungi as deleted using capillary zone electrophoresis. Biotechnol Tech 12:267–271

    Article  CAS  Google Scholar 

  • Heinfling A, Martinez M, Martinez A, Bergbauer M, Szewyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793

    Article  CAS  Google Scholar 

  • Hofer C, Schlosser D (1999) Novel enzymatic oxidation of Mn2+ to Mn3+ catalysed by a fungal laccase. FEBS Lett 451:186–190

    Article  CAS  Google Scholar 

  • Jong E de, Field J, de Bont J (1994) Aryl alcohols in the physiology of ligninolytic fungi. FEMS Microbiol Rev 13:153–188

    Article  Google Scholar 

  • Kirk T, Farrell R (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Kissi M, Mountadar M, Assobhri O, Gargiulo E, Palmieri G, Giardina P, Sannia G (2001) Roles of two white-rot basidiomycete fungi in decolorisation and detoxification of olive waste water. Appl Microbiol Biotechnol 57:221–226

    Article  CAS  Google Scholar 

  • Kuan C, Johnson J, Tien M (1993) Kinetic analysis of manganese peroxidase. The reaction with manganese complexes. J Biol Chem 268:20064–20070

    CAS  PubMed  Google Scholar 

  • Leitner C, Hess J, Galhaup C, Ludwig R, Nidetzky B, Kulbe KD, Haltrich D (2002) Purification and characterization of a laccase from the white-rot fungus Trametes multicolor. Appl Biochem Biotechnol 99:497–508

    Article  Google Scholar 

  • Lewis DM (1999) Coloration in the next century. Rev Prog Coloration 29:23–28

    Article  CAS  Google Scholar 

  • Maguire R, Tracz R (1991) Occurrence and persistence of dyes in a Canadian river. Water Pollut Res J Can 26:145–146

    Article  CAS  Google Scholar 

  • Matsui M (1996) Ozonation. In: Reife A, Freeman (eds) Environmental chemistry of dyes and pigments. Wiley, New York, pp 43–59

    Google Scholar 

  • Mielgo I, Lopez C, Moreira M, Feijoo G, Lema JM (2003) Oxidative degradation of azo dyes by manganese peroxidase under optimized conditions. Biotechnol Prog 19:325–331

    Article  CAS  Google Scholar 

  • Moreira M, Palma C, Mielgo I, Feijoo G, Lema J (2001) In vitro degradation of a polymeric dyes (poly R-478) by manganese peroxidase. Biotechnol Bioeng 75:362–368

    Article  CAS  Google Scholar 

  • Nyanhongo G, Gomes J, Gubitz G, Zvauya R, Read J, Steiner W (2002) Decolorization of textile dyes by laccases from a newly isolated strain from Trametes modesta. Water Res 36:1449–1456

    Article  CAS  Google Scholar 

  • Ollika P, Alhonmaki K, Leppananen V-M, Glumoff T, Raijola T, Suominen I (1993) Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol 59:4010–4016

    Article  Google Scholar 

  • Pasti-Grigsby M, Paszcynski A, Goszczynski S, Crawford R, Crawford D (1992) Influence of aromatic substitution pattern on azo dyes by Streptomyces spp. and Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605–3613

    Article  CAS  Google Scholar 

  • Rodriguez E, Pickard M, Vazquez-Duhalt R (1999) Industrial dye decoloration by laccases from ligninolytic fungi. Curr Microbiol 38:27–32

    Article  CAS  Google Scholar 

  • Schlosser D, Hofer C (2002) Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl Environ Microbiol 68:3514–3521

    Article  CAS  Google Scholar 

  • Selvam K, Swaminathan K, Chae K (2003) Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Bioresour Technol 88:115–119

    Article  CAS  Google Scholar 

  • Soares GM, de Amorim MP, Costa-Ferreira M (2001) Use of laccase together with redox mediators to decolorize remazol brilliant blue R. J Biotechnol 89:123–129

    Article  CAS  Google Scholar 

  • Spadaro J, Renganathan V (1994) Peroxidase-catalyzed oxidation of azo dyes: mechanism of disperse yellow 3 degradation. Arch Biochem Biophys 312:301–307

    Article  CAS  Google Scholar 

  • Swamy J, Ramsay JA (1999a) Effect of glucose and NH4 + concentrations on sequential dye decoloration by Trametes versicolor. Enzyme Microb Technol 25:278–284

    Article  CAS  Google Scholar 

  • Swamy J, Ramsay JA (1999b) Effect of Mn2+ and NH4 + concentrations on laccase and manganese peroxidase production and amaranth decoloration by Trametes versicolor. Appl Microbiol Biotechnol 51:391–396

    Article  CAS  Google Scholar 

  • Wariishi H, Valli K, Gold M (1992) Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. J Biol Chem 267:23688–23695

    CAS  PubMed  Google Scholar 

  • Waring D, Hallas G (1990) The chemistry and application of dyes. Plenum, New York

    Book  Google Scholar 

  • Wolfenden B, Willson R (1982) Radical-cations as reference chromogens in kinetic studies of one-electron transfer reactions. J Chem Soc Perkin Trans II:805–812

    Article  Google Scholar 

  • Wong Y, Yu J (1999) Laccase-catalyzed decolorization of synthetic dyes. Water Res 33:3512–3520

    Article  CAS  Google Scholar 

  • Young L, Yu J (1997) Ligninase catalysed decolorization of synthetic dyes. Water Res 31:1187–1193

    Article  CAS  Google Scholar 

  • Zhao J, Janse BJ (1996) Comparison of H2O2-producing enzyme in selected white rot fungi. FEMS Microbiol Lett 139:215–221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Natural Science and Engineering Research Council of Canada, the Premier’s Research Excellence Award, Government of Ontario, and the Chancellor’s Award of Queen’s University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Akit Ramsay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Champagne, PP., Ramsay, J.A. Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor . Appl Microbiol Biotechnol 69, 276–285 (2005). https://doi.org/10.1007/s00253-005-1964-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-1964-8

Keywords

Navigation