Skip to main content
Log in

Biochemical characterization and potential for textile dye degradation of blue laccase from Aspergillus ochraceus NCIM-1146

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In our study, we produced intracellular blue laccase by growing the filamentous fungus Aspergillus ochraceus NCIM-1146 in potato dextrose broth. The enzyme was then purified 22-fold to a specific activity of 4.81 U/mg using anion-exchange and size exclusion chromatography. The molecular weight of purified laccase was estimated as 68 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme showed maximum substrate specificity toward 2,2′-Azinobis, 3-ethylbenzothiazoline-6-sulfonic acid than any other substrate. The optimum pH and temperature for laccase activity were 4.0 and 60°C, respectively. The purified enzyme was stable up to 50°C, and high laccase activity was maintained at pH 5.0 ∼ 7.0. Laccase activity was strongly inhibited by sodium azide, EDTA, dithiothreitol, and L-cysteine. Purified laccase decolorized various textile dyes within 4 h in the absence of redox mediators. HPLC and FTIR analysis confirmed degradation of methyl orange. The metabolite formed after decolorization of methyl orange was characterized as p-N,N′-dimethylamine phenyldiazine using GCMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalyani, D. C., P. S. Patil, J. P. Jadhav, and S. P. Govindwar (2008) Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour. Technol. 99: 4635–4641.

    Article  CAS  Google Scholar 

  2. Cameron, M., S. Timofeevski, and S. Aust (2000) Mini-review: Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl. Microbiol. Biotechnol. 54: 751–758.

    Article  CAS  Google Scholar 

  3. Assadi, M. M. and M. R. Jahangiri (2001) Textile wastewater treatment by Aspergillus niger. Desalination 141: 1–6.

    Article  CAS  Google Scholar 

  4. Sharma, P., L. Singh, and N. Dilbaghi (2009) Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius. J. Hazard. Mater. 161: 1081–1086.

    Article  CAS  Google Scholar 

  5. Corso, C. R. and A. C. M. Almeida (2009) Bioremediation of dyes in textile effluents by Aspergillus oryzae. Microb. Ecol. 57: 384–390.

    Article  CAS  Google Scholar 

  6. Khelifi, E., L. Ayed, H. Bouallagui, Y. Touhami, and M. Hamdi (2009) Effect of nitrogen and carbon sources on Indigo and Congo red decolorization by Aspergillus alliaceus strain 121C. J. Hazard. Mater. 163: 1056–1062.

    Article  CAS  Google Scholar 

  7. Saratale, G. D., S. D. Kalme, and S. P. Govindwar (2006) Decolorization of textile dyes by Aspergillus ochraceus NCIM-1146. Ind. J. Biotechnol. 5: 407–410.

    CAS  Google Scholar 

  8. Sharma, P., R. Goel, and N. Capalash (2007) Bacterial laccases. World J. Microbiol. Biotechnol. 23: 823–832.

    Article  CAS  Google Scholar 

  9. Claus, H. (2003) Laccases and their occurrence in prokaryotes. Arch. Microbiol. 179: 145–150.

    CAS  Google Scholar 

  10. Messerschmidt, A. and R. Huber (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur. J. Biochem. 187: 341–352.

    Article  CAS  Google Scholar 

  11. Telke, A. A., D. C. Kalyani, U. U. Jadhav, G. K. Parshetti, and S. P. Govindwar (2009) Purification and characterization of an extracellular laccase from a Pseudomonas sp. LBC1 and its application for the removal of bisphenol A. J. Mol. Catal. B: Enzymatic 61: 252–260.

    Article  CAS  Google Scholar 

  12. Kawai, S., T. Umezawa, and T. Higuchi (1988) Degradation mechanisms of phenolic β-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch. Biochem. Biophys. 262: 99–110.

    Article  CAS  Google Scholar 

  13. Wesenberg, D., I. Kyriakides, and S. Agathos (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Advan. 22: 161–187.

    Article  CAS  Google Scholar 

  14. Claus, H. (2004) Laccases: Structure, reactions, distribution. Micron 35: 93–96.

    Article  CAS  Google Scholar 

  15. Palonen, H. and L. Viikari (2004) Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol. Bioeng. 86: 550–557.

    Article  CAS  Google Scholar 

  16. Murugesan, K., A. Dhamija, I. Nam, Y. Kim, and Y. Chang (2007) Decolorization of Reactive black 5 by laccase: Optimization by response surface methodology. Dyes Pigments. 75: 176–184.

    Article  CAS  Google Scholar 

  17. Baldrian, P. (2006) Fungal laccases-occurrence and properties. FEMS Microbiol. Rev. 30: 215–242.

    Article  CAS  Google Scholar 

  18. Kurtz, M. and S. Champe (1982) Purification and characterization of the Conidial Laccase of Aspergillus nidulans. J. Bacteriol. 151: 1338–1345.

    CAS  Google Scholar 

  19. Scherer, M. and R. Fischer (1998) Purification and characterization of laccase II of Aspergillus nidulans. Arch. Microbiol. 170: 78–84.

    Article  CAS  Google Scholar 

  20. Parshetti, G. K., S. D. Kalme, S. S. Gomare, and S. P. Govindwar (2007) Biodegradation of Reactive blue-25 by Aspergillus ochraceus NCIM-1146. Bioresour. Technol. 98: 3638–3642.

    Article  CAS  Google Scholar 

  21. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. L. Randall (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  Google Scholar 

  22. Eisenman, H., M. Mues, S. Weber, S. Frases, S. Chaskes, G. Gerfen, and A. Casadevall (2007) Cryptococcus neoformans laccase catalyses melanin synthesis from both D- and L-DOPA. Microbiol. 153: 3954–3962.

    Article  CAS  Google Scholar 

  23. Nagai, M., T. Sato, H. Watanabe, K. Saito, M. Kawata, and H. Enei (2002) Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol. 60: 327–335.

    Article  CAS  Google Scholar 

  24. Blaich, R. and K. Esser (1975) Function of enzymes in wood destroying fungi. Arch. Microbiol. 103: 271–277.

    Article  CAS  Google Scholar 

  25. Ko, E. M., Y. E. Leem, and H. T. Choi (2001) Purification, and characterization of laccase isozymes from the white-rot basidiomycete Ganoderma lucidum. Appl. Microbiol. Biotechnol. 57: 98–102.

    Article  CAS  Google Scholar 

  26. Sadhasivam, S., S. Savitha, K. Swaminathan, and F. Lin (2008) Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1. Proc. Biochem. 43: 736–742.

    Article  CAS  Google Scholar 

  27. Minussi, R. C., G. M. Pastorea, and N. Durán (2007) Laccase induction in fungi and laccase/N-OH mediator systems applied in paper mill effluent. Bioresour. Technol. 98: 158–164.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay P. Govindwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telke, A.A., Kadam, A.A., Jagtap, S.S. et al. Biochemical characterization and potential for textile dye degradation of blue laccase from Aspergillus ochraceus NCIM-1146. Biotechnol Bioproc E 15, 696–703 (2010). https://doi.org/10.1007/s12257-009-3126-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3126-9

Keywords

Navigation