Skip to main content

Fungal Laccase: A Versatile Enzyme for Biotechnological Applications

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungal laccases are multicopper oxidase enzymes whose versatility has attracted increased interest in the last decades. Despite to be known since the nineteenth century, the interest in laccase enzymes boosted after the discovery that their catalytic action could be extended to non-phenolic substrates by the presence of the so-called redox mediators. The redox mediators are low molecular weight organic compounds that act as electron shuttles between the laccase and the target substrate. The combination of laccase plus a redox mediator is called laccase-mediator system (LMS) and was first described in 1990. Thus, laccases catalyse the transformation of a great variety of aromatic and non-aromatic compounds with the simultaneous reduction of molecular oxygen to water. This feature renders laccases as green catalysts and hence their high interest for different biotechnological applications such as beverage clarification, textile processing, paper pulping, dye degradation, bioremediation, biosensors and organic synthesis. This chapter highlights the recent potential applications of fungal laccases in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El Monssef RAA, Hassan EA, Ramadan EM (2016) Production of laccase enzyme for their potential application to decolorize fungal pigments on aging paper and parchment. Ann Agric Sci 61:145–154

    Google Scholar 

  • Abdel-Mohsen H, Conrad J, Harms K, Nohr D, Beifuss U (2017) Laccase-catalyzed green synthesis and cytotoxic activity of novel pyrimidobenzothiazoles and catechol thioethers. RSC Adv 7:17427–17441

    Google Scholar 

  • Aljawish A, Chevalot I, Madad N, Paris C, Muniglia L (2016) Laccase mediated-synthesis of hydroxycinnamoyl-peptide from ferulic acid and carnosine. J Biotechnol 227:83–93

    Google Scholar 

  • Antosova Z, Herkommerova K, Pichova I, Sychrova H (2017) Efficient secretion of three fungal laccases from Saccharomyces cerevisiae and their potential for decolorization of textile industry effluent—a comparative study. Biotechnol Prog 34:69–80

    Google Scholar 

  • Aslam MS, Hanif K, Rehman SU, Gull I, Athar MA, Abbas Z (2016) Delignification of paper pulp by purified laccase from Aspergillus flavus. J Anim Plant Sci 26:1399–1404

    Google Scholar 

  • Astolfi P, Brandi P, Galli C, Gentili P, Gerini MF, Greci L, Lanzalunga O (2005) New mediators for the enzyme laccase: mechanistic features and selectivity in the oxidation of nonphenolic substrates. New J Chem 29:1308–1317

    Google Scholar 

  • Bai R, Yu Y, Wang Q, Yuan J, Fan X (2016) Effect of laccase on dyeing properties of polyphenol-based natural dye for wool fabric. Fiber Polym 17:1613–1620

    Google Scholar 

  • Baldrian P (2006) Fungal laccases-occurrence and properties. FEMS Microbiol Rev 30:215–242

    Google Scholar 

  • Banci L, Ciofi-Baffoni S, Tien M (1999) Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers. Biochemistry (US) 38:3205–3210

    Google Scholar 

  • Bankeeree W, Prasongsuj S, Imai T, Lotrakul P, Punnapayak H (2016) A novel xylan-polyvinyl alcohol hydrogel bead with laccase entrapment for decolorization of Reactive Black 5. Bioresources 11:6984–7000

    Google Scholar 

  • Barrios-Estrada C, Rostro-Alanis MJ, Muñoz-Gutierrez BD, Iqbal HMN, Kannan S, Parra-Saldivar R (2018) Emergent contaminants: endocrine disruptors and their laccase-assisted degradation – a review. Sci Total Environ 612:1516–1531

    Google Scholar 

  • Battista E, Lettera V, Villani M, Celestani D, Gentile F, Netti PA, Lannotta S, Zappettini A, Copped N (2017) Enzymatic sensing with laccase-functionalized textile organic biosensors. Org Electron 40:51–57

    Google Scholar 

  • Becker D, Giustina SVD, Rodriguez-Mozaz S, Schoevaart R, Barceló D, de Cazes M, Belleville MP, Janchez-Marcano J, de Gunzburg J, Couillerot O, Völker J, Oehlmann J, Wagner M (2016) Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase – degradation of compounds does not always eliminate toxicity. Bioresour Technol 219:500–509

    Google Scholar 

  • Bertrand G (1895) Sur la laccase et sur le pouvoir oxydant de cette diastase. CR AcadSci (Paris) 120:266–269

    Google Scholar 

  • Bertrand G (1896) Sur la presencesimultanee de la laccase et de la tyrosinase dans le suc de quelques champignons. CR Hebd Seances Acad Sci 123:463–465

    Google Scholar 

  • Bertrand B, Martínez-Morales F, Trejo-Hernández MR (2013) Fungal laccases: induction and production. Rev Mex Ing Quim 12:473–488

    Google Scholar 

  • Bilir K, Weil MT, Lochead J, Kok FN, Werner T (2016) Construction of an oxygen detection-based optic laccase biosensor for polyphenoliccompound detection. Turk J Biol 40:1303–1310

    Google Scholar 

  • Bonugli-Santos RC, Durrant LR, da Silva M, Sette LD (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microb Technol 46:32–37

    Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Google Scholar 

  • Brijwani K, Rigdon A, Vadlani PV (2010) Fungal laccases: production, function, and applications in food processing. Enzyme Res. https://doi.org/10.4061/2010/149748

  • Brugnari T, Pereira MG, Bubna GA, de Freitas EN, Contato AG, Corrêa RCG, Castoldi R, Marques de Souza CG, Polizeli MLTM, Bracht A, Peralta RM (2018) A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Sci Total Environ 634:1346–1351

    Google Scholar 

  • Camarero S, Pardo I, Cañas AI, Molina P, Record E, Martinez AT, Martinez MJ, Alcalde M (2012) Engineering platforms for directed evolution of laccase from Pycnoporus cinnabarinus. Appl Environ Microbiol 78:1370–1384

    Google Scholar 

  • Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705

    Google Scholar 

  • Chana CKY, Zeeb B, McClements DJ, Weiss J (2017) Impact of laccase on the colour stability of structured oil-in-water emulsions. Food Res Int 97:223–230

    Google Scholar 

  • Chao J, Jingwei H, Vicki C (2016) Membranas biocatalíticas basadas en nanotubos de carbono reticulados para la degradación de microcontaminantes: rendimiento, estabilidad y regeneración. Diario de Membrane Science 520:869–880

    Google Scholar 

  • Chen H, Ji A, Qiu S, Liu Y, Zhu Q, Yin L (2018) Covalent conjugation of bovine serum album and sugar beet pectin through Maillard reaction/laccase catalysis to improve the emulsifying properties. Food Hydrocolloid 76:173–183

    Google Scholar 

  • Chimelova D, Ondrajovic M (2016) Purification and characterization of extracellular laccase produced by Ceriporiopsis subvermispora and decolorization of triphenylmethane dyes. J Basic Microbiol 56:1–10

    Google Scholar 

  • Cooper P (1995) Removing colour from dye house wastewater. Asian Text J 3:52–56

    Google Scholar 

  • Crognale S, Pesciaroli L, Petruccioli M, D’Annibale A (2012) Phenoloxidase-producing halotolerant fungi from olive brine wastewater. Process Biochem 47:1433–1437

    Google Scholar 

  • Dai J, Wang H, Chi H, Wang Y, Zhao J (2016) Immobilization of laccase from Pleurotus ostreatus on magnetic separable SiO2 support and excellent activity towards azo dye decolorization. J Environ Chem Eng 4:2585–2591

    Google Scholar 

  • Das A, Bhattacharya S, Panchanan G, Navya BS, Nambiar P (2016) Production, characterization and Congo red dye decolourizing efficiency of a laccase from Pleurotus ostreatus MTCC 142 cultivated on co-substrates of paddy straw and corn husk. J Genet Eng Biotechnol 14:281–288

    Google Scholar 

  • De Salas F, Pardo I, Salavagione HJ, Aza P, Amougui E, Vind J, Martinez AT, Camarero S (2016) Advanced synthesis of conductive polyaniline using laccase as biocatalyst. PLoS One. https://doi.org/10.1371/journal.pone.0164958

  • Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B-Enzym 68:117–128

    Google Scholar 

  • Engel N, Hundt M, Schapals T (2016) Increasing the lignin yield of the Alkaline Polyol Pulping process by treating black liquor with laccases of Myceliophthora thermophila. Bioresource Technol 203:96–102

    Google Scholar 

  • Fabbrini M, Galli C, Gentili P (2002) Comparing the catalytic efficiency of some mediators of laccase. J Mol Catal B-Enzym 16:231–240

    Google Scholar 

  • Freitas EN, Bubna GA, Kato CG, Nolli M, Rauen TG, Peralta-Muniz-Moreira R, Peralta RA, Bracht A, Souza CGM, Peralta RM (2017) Removal of bisphenol A by laccases from Pleurotus ostreatus and Pleurotus pulmonarius and evaluation of ecotoxicity of degradation products. Chem Eng J 330:1361–1369

    Google Scholar 

  • Galato D, Ckless K, Susin MF, Giacomelli C, Ribeiro-do-Valle RM, Spinelli A (2001) Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity. Redox Rep 6:243–250

    Google Scholar 

  • Galli C, Gentili P (2004) Chemical messengers: mediated oxidations with the enzyme laccase. J Phys Org Chem 17:973–977

    Google Scholar 

  • García-Morales R, García-García A, Orona-Navar C, Osma JF, Nigam KDP, Ornelas-Soto N (2018) Biotransformation of emerging pollutants in groundwater by laccase from P. sanguineus CS43 immobilized onto titania nanoparticles. J Environ Chem Eng 6:710–717

    Google Scholar 

  • Georgiou RP, Tsiakiri EP, Lazaridis NK, Pantazaki AA (2016) Decolorization of melanoidins from simulated and industrial molasses effluents by immobilized laccase. J Environ Chem Eng 4:1322–1331

    Google Scholar 

  • GianfredaL XF, Bollag J-M (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediation J 3:1–25

    Google Scholar 

  • González K, Arévalo MC, Falcón MA (2009) Catalytic efficiency of natural and synthetic compounds used as laccase-mediators in oxidising veratryl alcohol and a kraft lignin, estimated by electrochemical analysis. Electrochim Acta 54:2621–2629

    Google Scholar 

  • Hessel A, Allegre C, Maisseu M, Charbit F, Moulin P (2007) Guidelines and legislation for dye house effluents. J Environ Manag 83:171–180

    Google Scholar 

  • Hou JJ, Yang XQ, Fu SR, Wang MP, Xiao F (2016) Preparation of double-network tofu with mechanical and sensory toughness. Int J Food Sci Tech 51:962–969

    Google Scholar 

  • Ilk S, Demircan D, Saglam S, Saglam N, Rzayev ZMO (2016) Immobilization of laccase onto a porous nanocomposite: application for textile dye degradation. Turk J Chem 40:262–276

    Google Scholar 

  • Iracheta-Cardenas MA, Rocha-Peña MA, Galan-Wong LJ, Arevalo-Niño K, Tovar-Herrera OE (2016) A Pycnoporus sanguineus laccase for denim bleaching and its comparison with an enzymatic commercial formulation. J Environ Manag 177:93–100

    Google Scholar 

  • Isaschar-Ovdat SI, Fishman A (2018) Crosslinking of food proteins mediated by oxidative enzymes – a review. Trends Food Sci Tech 72:134–143

    Google Scholar 

  • Jamil J, Asgher M, Hussain F, Bhatti HN (2018) Biodegradation of synthetic textile dyes by chitosan beads crosslinked laccase from Pleurotus ostreatusIBL-02. J Anim Plant Sci 28:231–243

    Google Scholar 

  • Jaufurally AS, Teixeira ARS, Hollande L, Allais F, Ducrot PH (2016) Optimization of the laccase-catalyzed synthesis of (±)-syringaresinol and study of its thermal and antiradical activities. Chemistryselect 1:5165–5171. https://doi.org/10.1002/slct.201600543

    Google Scholar 

  • Jia W, Wang Q, Fan X, Dong A, Yu Y, Wang P (2017) Laccase-mediated in situ oxidation of dopa for bio inspired coloration of silk fabric. RSC Adv 7:12977–12983

    Google Scholar 

  • Jia W, Wang Q, Fan X, Dong A, Yu Y, Wang P, Yuan J (2018) Laccase-mediated dye free coloration of wool fabric. Indian J Fibre Text 43:224–230

    Google Scholar 

  • Khalil NM, Ali MIA, Ouf SA, Abd El-Ghany MN (2016) Characterization of Aspergillus flavus NG 85 laccase and its dye decolorization efficiency. Res J Pharm Biol Chem Sci 7:817–829

    Google Scholar 

  • Kim S, Lee H, Kim J, Oliveira F, Souto P, Kim H, Nakamatsu J (2017) Laccase-mediated grafting of polyphenols onto cationized cotton fibers to impart UV protection and antioxidant activities. J Appl Polym Sci. https://doi.org/10.1002/app.45801

  • Kudanga T, Le Roes-Hill M (2014) Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biot 98:6525–6542

    Google Scholar 

  • Kunamneni A, Plou F, Ballesteros A, Alcalde M (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2:10–24

    Google Scholar 

  • Laborde J (1896) Sur la casse des vins. CR Hebd Seances Acad Sci 123:1074–1075

    Google Scholar 

  • Le TT, Murugesan K, Lee CS, Vu CH, Chang YS, Jeon JR (2016) Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core–shell magnetic copper alginate beads. Bioresource Technol 216:203–210

    Google Scholar 

  • Lettera V, Pezzella C, Cicatiello P, Piscitelli A, Giacobelli VG, Galano E, Amoresano A, Sannia G (2016) Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification. Food Chem 196:1272–1278

    Google Scholar 

  • Liang S, Luo Q, Huang Q (2017) Degradation of sulfadimethoxine catalyzed by laccase with soybean meal extract as natural mediator: mechanism and reaction pathway. Chemosphere 181:320–327

    Google Scholar 

  • Lim J, Sana B, Krishnan R, Seayad J, Ghadessy FJ, Jana S, Ramalingam B (2018) Síntesis catalizada por lacasa de oligómeros tipo lignina de bajo peso molecular y su aplicación como materiales bloqueadores de rayos UV. Química - Un diario asiático 13:284–291

    Google Scholar 

  • Lin WZ, Navaratnam S, Yao SD, Lin NY (1998) Antioxidative properties of hydroxycinnamic acid derivatives and a phenylpropanoid glycoside. A pulseradiolysis study. Radiat Phys Chem 53:425–430

    Google Scholar 

  • Mainardi PH, Feitosa VA, Brenellide Paiva LB, Bonugli-Santos RC, Squina FM, Pessoa A, Sette LD (2018) Laccase production in bioreactor scale under saline condition by the marine-derived basidiomycete Peniophora sp. CBMAI 1063. Fungal Biol-UK 122:302–309

    Google Scholar 

  • Maleki N, Kashanian S, Maleki E, Nazari M (2017) A novel enzyme based biosensor for catechol detection in water samples using artificial neural network. BiochemEng J 128:1–11

    Google Scholar 

  • Malmström BG (1982) Enzymology of oxygen. Annu Rev Biochem 51:21–59

    Google Scholar 

  • Manhivi VE, Amonsou EO, Kudanga T (2018) Laccase-mediated crosslinking of gluten-free amadumbe flour improves rheological properties. Food Chem 264:157–163

    Google Scholar 

  • Marim RA, Oliveira ACC, Marquezoni RS, Servantes JPR, Cardoso BK, Linde GA, Colauto NB, Valle JS (2016) Use of sugarcane molasses by Pycnoporussanguineus for the production of laccase for dye decolorization. Genet Mol Res 15. https://doi.org/10.4238/gmr15048972

  • Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar OM et al (2017) Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 35:815–831

    Google Scholar 

  • Maryskova M, Ardao I, Garcia-Gonzalez CA, Martinova L, Roykova J, Sevcu A (2016) Polyamide 6/chitosan nanofibers as support for the immobilization of Trametes versicolor laccase for the elimination of endocrine disrupting chemicals. Enzyme Microb Technol 89:31–38

    Google Scholar 

  • Mate DM, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 10:1457–1467

    Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Google Scholar 

  • Mihajlovic L, Radosavljevic J, Nordlund E, Krstic M, Bohn T, Smit J, Bucherte J, CirkovicVelickovic T (2016) Peanut protein structure, polyphenol content and immune response to peanut proteins in vivo are modulated by laccase. Food Funct. https://doi.org/10.1039/c5fo01325a

  • Minussi CR, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trends Food Sci Tech 13:205–216

    Google Scholar 

  • Mitbaa R, de Eugenio L, Ghariani B, Louati I, Belbahri LA, Nasri M, Mechichi T (2017) A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization. Biotech 7(3):329. https://doi.org/10.1007/s13205-017-0973-5

    Google Scholar 

  • Mokoonlall A, Pfannstiel J, Struch M, Berger RG, Hinrichs J (2016a) Structure modification of stirred fermented milk gel due to laccase-catalysed protein crosslinking in a post-processing step. Innov Food Sci Emerg 33:563–570

    Google Scholar 

  • Mokoonlall A, Sykora L, Pfannstiel J, Nöbel S, Weiss J, Hinrichs J (2016b) A feasibility study on the application of a laccase-mediator system in stirred yoghurt at the pilot scale. Food Hydrocolloid 60:119–127

    Google Scholar 

  • Moo-Young M, Moreira AR, Tengerdy RP (1983) Principles of solid state fermentation. In: Smith JE, Berry DR, KristiansenB (eds.) The filamentous fungi, Edward Arnold Publishers, London

    Google Scholar 

  • Nagdhi M, Taheran M, Brar SK, Kermanshahi-pour A, Verma M, Surampalli RY (2018) Biotransformation of carbamazepine by laccase-mediator system: kinetics, by-products and toxicity assessment. Process Biochem 67:147–154

    Google Scholar 

  • Nathan VK, Kanthimathinathan SR, Rani ME, Rathinasamy G, Kannan ND (2018) Biobleaching of waste paper using lignolytic enzymefrom Fusarium equiseti VKF2: a mangrove isolate. Cellulose. https://doi.org/10.1007/s10570-018-1834-z

  • Nguyen LN, Hai FI, Dosseto A, Richardson C, Price WE, Nghiem LD (2016) Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor. Bioresource Technol 210:108–116

    Google Scholar 

  • Ortner A, Hofer K, Bauer W, Nyanhongo GS, Guebitz GM (2018) Laccase modified lignosulfonates as novel binder in pigment based paper coating formulations. React Funct Polym 123:20–25

    Google Scholar 

  • Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Uses of laccases in the food industry. Enzyme Res. https://doi.org/10.4061/2010/918761

  • Otto B, Schlosser D, Reisser W (2010) First description of a laccase-like enzyme in soil algae. Arch Microbiol 192:759–768

    Google Scholar 

  • Palanisamy S, Ramaraj SK, Chen SM, Yang CK, Fsn PY, Chen TW, Velusamy V, Selvam S (2016) A novel laccase biosensor based on laccase immobilized graphene cellulose microfiber composite modified screen-printed carbon electrode for sensitive determination of catechol. SciRep-UK. https://doi.org/10.1038/srep41214

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999a) Solid state fermentation for the production of industrial enzymes. Curr Sci India 77:149–162

    Google Scholar 

  • Pandey A, Azmi W, Singh J, Banerjee UC (1999b) Types of fermentation and factors affecting it. In: Joshi VK, Pandey A (eds) Biotechnology: food fermentation. Educational Publishers & Distributors, New Delhi

    Google Scholar 

  • Pardo I, Vicente AI, Mate DM, Alcalde M, Camarero S (2012) Development of chimeric laccases by directed evolution. Biotechnol Bioeng 109:2978–2986

    Google Scholar 

  • Patel SKS, Anwar MZ, Kumar A, Otari SV, Pagolu RT, Kim SY, Kim IW, Lee JK (2018) Fe2O3 yolk-shell particle-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. Biochem Eng J 132:1–8

    Google Scholar 

  • Pezzela C, Giacobbe S, Giacobelli VG, Guarino L, Kylic S, Sener M, Sannia G, Piscitelli A (2016) Green routes towards industrial textile dyeing: a laccase based approach. J Mol Catal B-Enzym 134:274–279

    Google Scholar 

  • Pezzella C, Guarino L, Piscitelli A (2015) How to enjoy laccases. Cell Mol Life Sci 72:923–940

    Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    Google Scholar 

  • Polak J, Jarosz-WilkoÅ‚azka A, SzaÅ‚apata K, Graz M, Osinska-Jaroszuk M (2016) Laccase-mediated synthesis of a phenoxazine compound with antioxidative and dyeing properties – the optimisation process. New Biotechnol 33. https://doi.org/10.1016/j.nbt.2015.09.004

  • Povedano E, Cincotto FH, Parrado C, Diez P, Sanchez A, Canevari TC, Machado SAS, Pingarron JM, Villalonga R (2017) Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosens Bioelectron 89:343–351

    Google Scholar 

  • Pozdnyakova N, Jarosz-Wilkolazka A, Polak J, Wlizlo K, Dubrovskaya E, Turkovskaya O (2017) Unique properties of fungal laccases for biodegradative processes. In: Harris A (ed) Laccase: applications, investigations and insights. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Qwebani-Ogunleye T, Kolesnikova NI, Steenkamp P, de Koning CB, Brady D, Wellington KWA (2017) One-pot laccase-catalysed synthesis of coumestan derivatives and their anticancer activity. Bioorg Med Chem 25:1172–1182

    Google Scholar 

  • Rahimi A, Habibi D, Rostami A, Zolfigol MA, Mallakpour S (2018) Laccase-catalyzed, aerobic oxidative coupling of 4-substituted urazoles with sodium arylsulfinates: green and mild procedure for the synthesis of arylsulfonyltriazolidinediones. Tetrahedron Lett 59:383–387

    Google Scholar 

  • Rani M, Shanker U, Chaurasia AK (2017) Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: degradation of alizarin red S dye. J Environ ChemEng 5:2730–2739

    Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Google Scholar 

  • Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ (2010) Designer laccases: a vogue for high-potential fungal enzymes? Trends Biotechnol 28:63–72

    Google Scholar 

  • Rodríguez-Couto S, Toca-Herrera JL (2006) Application of laccases in the textile industry. Biotechnol Mol Biol Rev 1:117–122

    Google Scholar 

  • Rodriguez-Couto S, Toca-Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569

    Google Scholar 

  • Rodriguez-Delgado MM, Aleman-Nava GS, Rodriguez-Delgado JM, Dieck-Assad G, Martinez-Chapa SO, Barcelo D, Parra R (2015) Laccase-based biosensors for detection of phenolic compounds. Trends Analyt Chem 74:21–45

    Google Scholar 

  • Rouhani S, Rostami A, Salimi A, Pourshiani O (2018) Graphene oxide/CuFe2O4 nanocomposite as a novel scaffold for the immobilization of laccase and its application as a recyclable nanobiocatalyst for the green synthesis of arylsulfonyl benzenediols. Biochem Eng J 133:1–11

    Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3. Biotech 7:1–11

    Google Scholar 

  • Salat M, Petkova P, Hoyo J, Perelshtein I, Gedanken A, Tzanov T (2018) Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive. Carbohyd Polym 189:198–203

    Google Scholar 

  • Sayahi E, Ladhari N, Mechichi T, Sakli F (2016) Azo dyes decolourization by the laccase from Trametes trogii. J Text I. https://doi.org/10.1080/00405000.2015.1128224

  • Schirmann JG, Dekker RFH, Borsato D, Barbosa-Dekker AM (2018) Selective control for the laccase-catalyzed synthesis of dimers from 2,6-dimethoxyphenol: optimization of 3,3′,5,5′-tetramethoxy-biphenyl-4,4′-diolsynthesis using factorial design, and evaluation of its antioxidant action in biodiesel. Appl Catal A-Gen 555:88–97

    Google Scholar 

  • Senthilvelan T, Kanagaraj J, Panda RC (2017) Effective bioremoval of syntan using fungal laccase to reduce pollution from effluent. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-017-1495-8

  • Senthivelan T, Kanagarai J, Panda RC (2016) Recent trends in fungal laccase for various industrial applications: an eco-friendly. Approach Biotechnol Bioproc E 1:19–38

    Google Scholar 

  • Sing NN, Husaini A, Zulkharnain A, Roslan HA (2017) Decolourisation capabilities of ligninolytic enzymes produced by Marasmius cladophyllus UMAS MS8 on Remazol Brilliant Blue R and other azo dyes. Biomed Res Int. https://doi.org/10.1155/2017/1325754

  • Stephen JA (1995) Electrooxidation of dyestuffs in waste waters. J Chem Technol Biotechnol 62:111–117

    Google Scholar 

  • Struch M, Krahe NK, Linke D, Mokoonlall A, Hinrichs J, Berger RG (2016) Dose dependent effects of a milk ion tolerant laccase on yoghurt gel structure. LWT-Food Sci Technol 65:1144–1152

    Google Scholar 

  • Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42

    Google Scholar 

  • Taheran M, Nagdhi M, Brar SK, Knystautas EJ, Verma M, Surampali RY (2017) Degradation of chlortetracycline using immobilized laccase on polyacrylonitrile-biochar composite nanofibrous membrane. Sci Total Environ 605-606:315–321

    Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Google Scholar 

  • Upadhyay PU, Shrivastava R, Agrawa PK (2016) Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 6:15. https://doi.org/10.1007/s13205-015-0316-3

    Google Scholar 

  • Vanhulle S, Trovaslet M, Enaud E, Lucas M, Sonveaux M, Decock C, Onderwater R, Schneider YJ, Corbisie AM (2008) Cytotoxicity and genotoxicity evolution during decolorization of dyes by white rot fungi. World J Microb Biot 24:337–344

    Google Scholar 

  • Vantamuri AB, Kaliwal BB (2016) Purification and characterization of laccase from Marasmius species BBKAV79 and effective decolorization of selected textile dyes. Biotech 6(3):189. https://doi.org/10.1007/s13205-016-0504-9

    Google Scholar 

  • Vasilescu I, Eremia SV, Kusko M, Radoi A, Vasile E, Radu GL (2016) Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor. Biosens Bioelectron 75:232–237

    Google Scholar 

  • Vats A, Mishra S (2017) Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive Orange 16. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-8802-2

  • Verrastro A, Cicco N, Crispo F, Morone A, Dinescu M, Dumitru M, Fabati F, Centonze D (2016) Amperometric biosensor based on laccase immobilized onto a screen-printed electrode by Matrix Assisted Pulsed Laser Evaporation. Talanta 154:438–445

    Google Scholar 

  • Vicente AI, Viña-Gonzalez J, Santos-Moriano P, Marquez-Alvarez C, Ballesteros AO, Alcalde M (2016) Evolved alkaline fungal laccase secreted by Saccharomyces cerevisiae as useful tool for the synthesis of C–N heteropolymeric dye. J Mol Catal B-Enzym 134:323–330

    Google Scholar 

  • Vlamidis Y, Gualandi I, Tonelli D (2017) Amperometric biosensors based on reduced GO and MWCNTs composite for polyphenols detection in fruit juices. J Electroanal Chem 799:285–292

    Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Google Scholar 

  • Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry: a review. Enzyme Microb Technol 42:293–307

    Google Scholar 

  • Wulfhorst H, Harwardt N, Giese H, Jäger G, Zeithammel EU, Ellinidou E, Falkenberg M, Büchs J, Spiess AC (2011) Enzymatic degradation of lignocellulose for synthesis of biofuels and other value-added products. In: Klaas M, Pischinger S, Schröder W (eds) Fuels from biomass: an interdisciplinary approach. Springer, Berlin

    Google Scholar 

  • Xu F (1999) Recent progress in laccase study: properties, enzimology, production and applications. In: Flickinger MC, Drew SW (eds) The encyclopedia of bioprocessing technology: fermentation, biocatalysis and bioseparation. Wiley, New York

    Google Scholar 

  • Xu F, Kulys JJ, Duke K, Li KC (2000) Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Appl Environ Microb 6:2052–2056

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017a) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4

    Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Saxena AK (2017b) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO 01:48–54

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Google Scholar 

  • Yin L, Ye J, Kuang S, Guan Y, You R (2017) Induction, purification, and characterization of athermo and pH stable laccase from Abortiporus biennis J2 and its application on the clarification of litchi juice. Biosc Biotech Bioch. https://doi.org/10.1080/09168451.2017.1279850

  • Yoshida H (1883) Chemistry of lacquer (Urushi). J Chem Soc 43:472–486

    Google Scholar 

  • Yuan X, Tuan G, Zhao Y, Zhao L, Wang H, Ng TZ (2016) Degradation of dyes using crude extract and a thermostable and pH-stable laccase isolated from Pleurotus nebrodensis. Biosci Rep 36:e00365. https://doi.org/10.1042/BSR20160163

    Google Scholar 

  • Zeng S, Qin X, Xia L (2017) Degradation of the herbicide isoproturon by laccase-mediator systems. Biochem Eng J 119:92–100

    Google Scholar 

  • Zhang T, Bai R, Shen J, Wang Q, Wang P, Yuan J, Fan X (2017) Laccase-catalyzed polymerization of diaminobenzenesulfonic acid for pH-responsive color-changing and conductive wool fabrics. Text Res J. https://doi.org/10.1177/0040517517720497

  • Zhao J, Zeng S, Xia Y, Liming X (2018) Expression of a thermotolerant laccase from Pycnoporus sanguineus in Trichoderma reesei and its application in the degradation of bisphenol A. J Biosci Bioeng 125:471–376

    Google Scholar 

  • Zheng Y, Wang D, Li Z, Sun X, Gao T, Zhou G (2018) Laccase biosensor fabricated on flower–shaped yolk–shell SiO2 nanospheres for catechol detection. Colloid Surface A 538:202–209

    Google Scholar 

  • Zhu M, Zhang G, Meng L, Wang H, Gao K, Ng T (2016) Purificación y caracterización de una lacasa blanca con una pronunciada capacidad de decoloración del tinte y actividad inhibidora de la transcriptasa inversa del VIH-1 de Lepista nuda. Moléculas 21: 415. https://doi.org/10.3390/molecules21040415

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Rodríguez-Couto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Couto, S. (2019). Fungal Laccase: A Versatile Enzyme for Biotechnological Applications. In: Yadav, A., Mishra, S., Singh, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_13

Download citation

Publish with us

Policies and ethics