Skip to main content
Log in

Elevated Production of Docosahexaenoic Acid in Females: Potential Molecular Mechanisms

  • Review
  • Published:
Lipids

Abstract

Observational evidence suggests that in populations consuming low levels of n-3 highly unsaturated fatty acids, women have higher blood levels of docosahexaenoic acid (DHA; 22:3n-6) as compared with men. Increased conversion of alpha-linolenic acid (ALA; 18:3n-3) to DHA by females has been confirmed in fatty acid stable isotope studies. This difference in conversion appears to be associated with estrogen and some evidence indicates that the expression of enzymes involved in synthesis of DHA from ALA, including desaturases and elongases, is elevated in females. An estrogen-associated effect may be mediated by peroxisome proliferator activated receptor-α (PPARα), as activation of this nuclear receptor increases the expression of these enzymes. However, because estrogens are weak ligands for PPARα, estrogen-mediated increases in PPARα activity likely occur through an indirect mechanism involving membrane-bound estrogen receptors and estrogen-sensitive G-proteins. The protein kinases activated by these receptors phosphorylate and increase the activity of PPARα, as well as phospholipase A2 and cyclooxygenase 2 that increase the intracellular concentration of PPARα ligands. This review will outline current knowledge regarding elevated DHA production in females, as well as highlight interactions between estrogen signaling and PPARα activity that may mediate this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALA:

Alpha-linoleic acid

AMPK:

AMP-activated protein kinase

Ca2+-PLA2 :

Calcium-dependent phospholipase A2

CE:

Cholesteryl esters

COX:

Cyclooxygenase

CREB:

cAMP response element binding

D5D:

Delta-5 desaturase

D6D:

Delta-6 desaturase

DHA:

Docosahexaenoic acid

DPAn-3:

Docosapentaenoic acid, n-3

ELOVL:

Elongase of very long chain fatty acids

EPA:

Eicosapentaenoic acid

ER:

Estrogen receptor

ERK-MAPK:

Extracellular receptor kinase-mitogen activated protein kinase

FABP:

Fatty acid binding proteins

GPR30:

G-protein receptor 30

HUFA:

Highly unsaturated fatty acids

LNA:

Linoleic acid

MAPK:

Mitogen-activated protein kinase

PC:

Phosphatidyl choline

PE:

Phosphatidyl ethanolamine

PL:

Phospholipids

PLA2 :

Phospholipase A2

PPAR:

Peroxisome proliferator activated receptor

PPRE:

Peroxisome proliferator response element

PS:

Phosphatidyl serine

PUFA:

Polyunsaturated fatty acids

References

  1. Xiao YF, Sigg DC, Leaf A (2005) The antiarrhythmic effect of n-3 polyunsaturated fatty acids: modulation of cardiac ion channels as a potential mechanism. J Membr Biol 206:141–154

    Article  PubMed  CAS  Google Scholar 

  2. GISSI-Prevenzione Investigators (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 354:447–455

    Article  Google Scholar 

  3. Leaf A, Albert CM, Josephson M, Steinhaus D, Kluger J, Kang JX, Cox B, Zhang H, Schoenfeld D (2005) Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake. Circulation 112:2762–2768

    Article  PubMed  CAS  Google Scholar 

  4. Leaf A, Xiao YF, Kang JX, Billman GE (2005) Membrane effects of the n-3 fish oil fatty acids, which prevent fatal ventricular arrhythmias. J Membr Biol 206:129–139

    Article  PubMed  CAS  Google Scholar 

  5. McCann JC, Ames BN (2005) Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am J Clin Nutr 82:281–295

    PubMed  CAS  Google Scholar 

  6. Lim SY, Hoshiba J, Salem N Jr (2005) An extraordinary degree of structural specificity is required in neural phospholipids for optimal brain function: n-6 docosapentaenoic acid substitution for docosahexaenoic acid leads to a loss in spatial task performance. J Neurochem 95:848–857

    Article  PubMed  CAS  Google Scholar 

  7. Burdge GC, Calder PC (2005) Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 45:581–597

    Article  PubMed  CAS  Google Scholar 

  8. Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 296:1885–1899

    Article  PubMed  CAS  Google Scholar 

  9. Gebauer SK, Psota TL, Harris WS, Kris-Etherton PM (2006) n-3 Fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am J Clin Nutr 83:1526S–1535S

    PubMed  CAS  Google Scholar 

  10. Denomme J, Stark KD, Holub BJ (2005) Directly quantitated dietary (n-3) fatty acid intakes of pregnant Canadian women are lower than current dietary recommendations. J Nutr 135:206–211

    PubMed  CAS  Google Scholar 

  11. Fratesi JA, Hogg RC, Young-Newton GS, Patterson AC, Charkhzarin P, Block TK, Sharratt MT, Stark KD (2009) Direct quantitation of omega-3 fatty acid intake of Canadian residents of a long-term care facility. Appl Physiol Nutr Metab 34:1–9

    Article  PubMed  CAS  Google Scholar 

  12. Stark KD, Beblo S, Murthy M, Buda-Abela M, Janisse J, Rockett H, Whitty JE, Martier SS, Sokol RJ, Hannigan JH, Salem N Jr (2005) Comparison of bloodstream fatty acid composition from African-American women at gestation, delivery, and postpartum. J Lipid Res 46:516–525

    Article  PubMed  CAS  Google Scholar 

  13. Harris WS, Mozaffarian D, Lefevre M, Toner CD, Colombo J, Cunnane SC, Holden JM, Klurfeld DM, Morris MC, Whelan J (2009) Towards establishing dietary reference intakes for eicosapentaenoic and docosahexaenoic acids. J Nutr 139:804S–819S

    Article  PubMed  CAS  Google Scholar 

  14. Albert CM, Oh K, Whang W, Manson JE, Chae CU, Stampfer MJ, Willett WC, Hu FB (2005) Dietary alpha-linolenic acid intake and risk of sudden cardiac death and coronary heart disease. Circulation 112:3232–3238

    Article  PubMed  CAS  Google Scholar 

  15. Mozaffarian D, Ascherio A, Hu FB, Stampfer MJ, Willett WC, Siscovick DS, Rimm EB (2005) Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation 111:157–164

    Article  PubMed  CAS  Google Scholar 

  16. Pawlosky R, Hibbeln J, Lin Y, Salem N Jr (2003) n-3 Fatty acid metabolism in women. Br J Nutr 90:993–994

    Article  PubMed  CAS  Google Scholar 

  17. Pawlosky RJ, Hibbeln JR, Lin Y, Goodson S, Riggs P, Sebring N, Brown GL, Salem N Jr (2003) Effects of beef- and fish-based diets on the kinetics of n-3 fatty acid metabolism in human subjects. Am J Clin Nutr 77:565–572

    PubMed  CAS  Google Scholar 

  18. Burdge GC, Wootton SA (2002) Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr 88:411–420

    Article  PubMed  CAS  Google Scholar 

  19. Burdge GC, Jones AE, Wootton SA (2002) Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men. Br J Nutr 88:355–363

    Article  PubMed  CAS  Google Scholar 

  20. Burdge GC, Slater-Jefferies JL, Grant RA, Chung WS, West AL, Lillycrop KA, Hanson MA, Calder PC (2008) Sex, but not maternal protein or folic acid intake, determines the fatty acid composition of hepatic phospholipids, but not of triacylglycerol, in adult rats. Prostaglandins Leukot Essent Fatty Acids 78:73–79

    Article  PubMed  CAS  Google Scholar 

  21. Giltay EJ, Gooren LJ, Toorians AW, Katan MB, Zock PL (2004) Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. Am J Clin Nutr 80:1167–1174

    PubMed  CAS  Google Scholar 

  22. Crowe FL, Skeaff CM, Green TJ, Gray AR (2008) Serum n-3 long-chain PUFA differ by sex and age in a population-based survey of New Zealand adolescents and adults. Br J Nutr 99:168–174

    Article  PubMed  CAS  Google Scholar 

  23. Bakewell L, Burdge GC, Calder PC (2006) Polyunsaturated fatty acid concentrations in young men and women consuming their habitual diets. Br J Nutr 96:93–99

    Article  PubMed  CAS  Google Scholar 

  24. Metherel AH, Armstrong JM, Patterson AC, Stark KD (2009) Assessment of blood measures of n-3 polyunsaturated fatty acids with acute fish oil supplementation and washout in men and women. Prostaglandins Leukot Essent Fatty Acids 81:23–29

    Article  PubMed  CAS  Google Scholar 

  25. Innis SM (2005) Essential fatty acid transfer and fetal development. Placenta 26 Suppl A:S70–S75

    Article  PubMed  CAS  Google Scholar 

  26. Stewart F, Rodie VA, Ramsay JE, Greer IA, Freeman DJ, Meyer BJ (2007) Longitudinal assessment of erythrocyte fatty acid composition throughout pregnancy and post partum. Lipids 42:335–344

    Article  PubMed  CAS  Google Scholar 

  27. Otto SJ, van Houwelingen AC, Badart-Smook A, Hornstra G (2001) Comparison of the peripartum and postpartum phospholipid polyunsaturated fatty acid profiles of lactating and nonlactating women. Am J Clin Nutr 73:1074–1079

    PubMed  CAS  Google Scholar 

  28. Postle AD, Al MD, Burdge GC, Hornstra G (1995) The composition of individual molecular species of plasma phosphatidylcholine in human pregnancy. Early Hum Dev 43:47–58

    Article  PubMed  CAS  Google Scholar 

  29. Stark KD, Park EJ, Holub BJ (2003) Fatty acid composition of serum phospholipid of premenopausal women and postmenopausal women receiving and not receiving hormone replacement therapy. Menopause 10:448–455

    Article  PubMed  Google Scholar 

  30. Stark KD, Holub BJ (2004) Differential eicosapentaenoic acid elevations and altered cardiovascular disease risk factor responses after supplementation with docosahexaenoic acid in postmenopausal women receiving and not receiving hormone replacement therapy. Am J Clin Nutr 79:765–773

    PubMed  CAS  Google Scholar 

  31. Oscarsson J, Eden S (1988) Sex differences in fatty acid composition of rat liver phosphatidylcholine are regulated by the plasma pattern of growth hormone. Biochim Biophys Acta 959:280–287

    PubMed  CAS  Google Scholar 

  32. Burdge GC, Hunt AN, Postle AD (1994) Mechanisms of hepatic phosphatidylcholine synthesis in adult rat: effects of pregnancy. Biochem J 303(Pt 3):941–947

    PubMed  CAS  Google Scholar 

  33. O’Lone R, Frith MC, Karlsson EK, Hansen U (2004) Genomic targets of nuclear estrogen receptors. Mol Endocrinol 18:1859–1875

    Article  PubMed  CAS  Google Scholar 

  34. Tang C, Cho HP, Nakamura MT, Clarke SD (2003) Regulation of human delta-6 desaturase gene transcription: identification of a functional direct repeat-1 element. J Lipid Res 44:686–695

    Article  PubMed  CAS  Google Scholar 

  35. Guillou H, Martin P, Jan S, D’Andrea S, Roulet A, Catheline D, Rioux V, Pineau T, Legrand P (2002) Comparative effect of fenofibrate on hepatic desaturases in wild-type and peroxisome proliferator-activated receptor alpha-deficient mice. Lipids 37:981–989

    Article  PubMed  CAS  Google Scholar 

  36. Krey G, Braissant O, L’Horset F, Kalkhoven E, Perroud M, Parker MG, Wahli W (1997) Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 11:779–791

    Article  PubMed  CAS  Google Scholar 

  37. Shingo AS, Kito S (2005) Estradiol induces PKA activation through the putative membrane receptor in the living hippocampal neuron. J Neural Transm 112:1469–1473

    Article  PubMed  CAS  Google Scholar 

  38. Bryant DN, Bosch MA, Ronnekleiv OK, Dorsa DM (2005) 17-Beta estradiol rapidly enhances extracellular signal-regulated kinase 2 phosphorylation in the rat brain. Neuroscience 133:343–352

    Article  PubMed  CAS  Google Scholar 

  39. Gorosito SV, Cambiasso MJ (2008) Axogenic effect of estrogen in male rat hypothalamic neurons involves Ca(2+), protein kinase C, and extracellular signal-regulated kinase signaling. J Neurosci Res 86:145–157

    Article  PubMed  CAS  Google Scholar 

  40. Stark KD, Beblo S, Murthy M, Whitty JE, Buda-Abela M, Janisse J, Rockett H, Martier SS, Sokol RJ, Hannigan JH, Salem N Jr (2005) Alcohol consumption in pregnant, black women is associated with decreased plasma and erythrocyte docosahexaenoic acid. Alcohol Clin Exp Res 29:130–140

    Article  PubMed  CAS  Google Scholar 

  41. Mahaffey KR, Clickner RP, Jeffries RA (2008) Methylmercury and omega-3 fatty acids: co-occurrence of dietary sources with emphasis on fish and shellfish. Environ Res 107:20–29

    Article  PubMed  CAS  Google Scholar 

  42. Health Canada (2010) Canadian Nutrient File. http://webprod.hc-sc.gc.ca/cnf-fce/index-eng.jsp. Accessed Jan 2010

  43. Patterson AC, Stark KD (2008) Direct determinations of the fatty acid composition of daily dietary intakes incorporating nutraceuticals and functional food strategies to increase n-3 highly unsaturated fatty acids. J Am Coll Nutr 27:538–546

    PubMed  CAS  Google Scholar 

  44. Kitson AP, Patterson AC, Izadi H, Stark KD (2009) Pan-frying Salmon in an eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) enriched margarine prevents EPA and DHA loss. Food Chem 114:927–932

    Google Scholar 

  45. Jenkins DJ, Sievenpiper JL, Pauly D, Sumaila UR, Kendall CW, Mowat FM (2009) Are dietary recommendations for the use of fish oils sustainable? CMAJ 180:633–637

    PubMed  Google Scholar 

  46. Hauvermale A, Kuner J, Rosenzweig B, Guerra D, Diltz S, Metz JG (2006) Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 41:739–747

    Article  PubMed  CAS  Google Scholar 

  47. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  PubMed  CAS  Google Scholar 

  48. Chi X, Zhang X, Guan X, Ding L, Li Y, Wang M, Lin H, Qin S (2008) Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: identification of a microsomal delta 12 desaturase in Chlamydomonas reinhardtii. J Microbiol 46:189–201

    Article  PubMed  CAS  Google Scholar 

  49. Meyer A, Cirpus P, Ott C, Schlecker R, Zahringer U, Heinz E (2003) Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a delta4-fatty acyl group desaturase. Biochemistry 42:9779–9788

    Article  PubMed  CAS  Google Scholar 

  50. Damude HG, Kinney AJ (2007) Engineering oilseed plants for a sustainable, land-based source of long chain polyunsaturated fatty acids. Lipids 42:179–185

    Article  PubMed  CAS  Google Scholar 

  51. Damude HG, Zhang H, Farrall L, Ripp KG, Tomb JF, Hollerbach D, Yadav NS (2006) Identification of bifunctional delta12/omega3 fatty acid desaturases for improving the ratio of omega3 to omega6 fatty acids in microbes and plants. Proc Natl Acad Sci USA 103:9446–9451

    Article  PubMed  CAS  Google Scholar 

  52. Barcelo-Coblijn G, Murphy EJ, Othman R, Moghadasian MH, Kashour T, Friel JK (2008) Flaxseed oil and fish-oil capsule consumption alters human red blood cell n-3 fatty acid composition: a multiple-dosing trial comparing 2 sources of n-3 fatty acid. Am J Clin Nutr 88:801–809

    PubMed  CAS  Google Scholar 

  53. Mantzioris E, James MJ, Gibson RA, Cleland LG (1994) Dietary substitution with an alpha-linolenic acid-rich vegetable oil increases eicosapentaenoic acid concentrations in tissues. Am J Clin Nutr 59:1304–1309

    PubMed  CAS  Google Scholar 

  54. Li D, Sinclair A, Wilson A, Nakkote S, Kelly F, Abedin L, Mann N, Turner A (1999) Effect of dietary alpha-linolenic acid on thrombotic risk factors in vegetarian men. Am J Clin Nutr 69:872–882

    PubMed  CAS  Google Scholar 

  55. Wallace FA, Miles EA, Calder PC (2003) Comparison of the effects of linseed oil and different doses of fish oil on mononuclear cell function in healthy human subjects. Br J Nutr 89:679–689

    Article  PubMed  CAS  Google Scholar 

  56. Sanders TA, Younger KM (1981) The effect of dietary supplements of omega 3 polyunsaturated fatty acids on the fatty acid composition of platelets and plasma choline phosphoglycerides. Br J Nutr 45:613–616

    Article  PubMed  CAS  Google Scholar 

  57. Cunnane SC, Hamadeh MJ, Liede AC, Thompson LU, Wolever TM, Jenkins DJ (1995) Nutritional attributes of traditional flaxseed in healthy young adults. Am J Clin Nutr 61:62–68

    PubMed  CAS  Google Scholar 

  58. Finnegan YE, Minihane AM, Leigh-Firbank EC, Kew S, Meijer GW, Muggli R, Calder PC, Williams CM (2003) Plant- and marine-derived n-3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects. Am J Clin Nutr 77:783–795

    PubMed  CAS  Google Scholar 

  59. Harper CR, Edwards MJ, DeFilippis AP, Jacobson TA (2006) Flaxseed oil increases the plasma concentrations of cardioprotective (n-3) fatty acids in humans. J Nutr 136:83–87

    PubMed  CAS  Google Scholar 

  60. Bemelmans WJ, Broer J, Feskens EJ, Smit AJ, Muskiet FA, Lefrandt JD, Bom VJ, May JF, Meyboom-de JB (2002) Effect of an increased intake of alpha-linolenic acid and group nutritional education on cardiovascular risk factors: the Mediterranean Alpha-linolenic Enriched Groningen Dietary Intervention (MARGARIN) study. Am J Clin Nutr 75:221–227

    PubMed  CAS  Google Scholar 

  61. Barcelo-Coblijn G, Murphy EJ (2009) Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 48:355–374

    Article  PubMed  CAS  Google Scholar 

  62. Widmer C Jr, Holman RT (1950) Polyethenoid fatty acid metabolism; deposition of polyunsaturated fatty acids in fat-deficient rats upon single fatty acid supplementation. Arch Biochem 25:1–12

    PubMed  CAS  Google Scholar 

  63. Klenk E, Mohrhauer H (1960) Studies on the metabolism of polyenoic fatty acids in the rat. Hoppe Seylers Z Physiol Chem 320:218–232

    PubMed  CAS  Google Scholar 

  64. Nugteren DH (1965) The enzymic chain elongation of fatty acids by rat-liver microsomes. Biochim Biophys Acta 106:280–290

    PubMed  CAS  Google Scholar 

  65. Voss A, Reinhart M, Sankarappa S, Sprecher H (1991) The metabolism of 7, 10, 13, 16, 19-docosapentaenoic acid to 4, 7, 10, 13, 16, 19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J Biol Chem 266:19995–20000

    PubMed  CAS  Google Scholar 

  66. Luthria DL, Mohammed BS, Sprecher H (1996) Regulation of the biosynthesis of 4, 7, 10, 13, 16, 19-docosahexaenoic acid. J Biol Chem 271:16020–16025

    Article  PubMed  CAS  Google Scholar 

  67. Nakamura MT, Nara TY (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr 24:345–376

    Article  PubMed  CAS  Google Scholar 

  68. Goyens PL, Spilker ME, Zock PL, Katan MB, Mensink RP (2006) Conversion of alpha-linolenic acid in humans is influenced by the absolute amounts of alpha-linolenic acid and linoleic acid in the diet and not by their ratio. Am J Clin Nutr 84:44–53

    PubMed  CAS  Google Scholar 

  69. Stroud CK, Nara TY, Roqueta-Rivera M, Radlowski EC, Lawrence P, Zhang Y, Cho BH, Segre M, Hess RA, Brenna JT, Haschek WM, Nakamura MT (2009) Disruption of FADS2 gene in mice impairs male reproduction and causes dermal and intestinal ulceration. J Lipid Res 50:1870–1880

    Article  PubMed  CAS  Google Scholar 

  70. Portolesi R, Powell BC, Gibson RA (2007) Competition between 24:5n-3 and ALA for Delta 6 desaturase may limit the accumulation of DHA in HepG2 cell membranes. J Lipid Res 48:1592–1598

    Article  PubMed  CAS  Google Scholar 

  71. Melin T, Nilsson A (1997) Delta-6-desaturase and delta-5-desaturase in human Hep G2 cells are both fatty acid interconversion rate limiting and are upregulated under essential fatty acid deficient conditions. Prostaglandins Leukot Essent Fatty Acids 56:437–442

    Article  PubMed  CAS  Google Scholar 

  72. Marangoni F, Colombo C, Martiello A, Negri E, Galli C (2007) The fatty acid profiles in a drop of blood from a fingertip correlate with physiological, dietary and lifestyle parameters in volunteers. Prostaglandins Leukot Essent Fatty Acids 76:87–92

    Article  PubMed  CAS  Google Scholar 

  73. McCloy U, Ryan MA, Pencharz PB, Ross RJ, Cunnane SC (2004) A comparison of the metabolism of eighteen-carbon 13C-unsaturated fatty acids in healthy women. J Lipid Res 45:474–485

    Article  PubMed  CAS  Google Scholar 

  74. Burdge GC, Wootton SA (2003) Conversion of alpha-linolenic acid to palmitic, palmitoleic, stearic and oleic acids in men and women. Prostaglandins Leukot Essent Fatty Acids 69:283–290

    Article  PubMed  CAS  Google Scholar 

  75. Barcelo-Coblijn G, Collison LW, Jolly CA, Murphy EJ (2005) Dietary alpha-linolenic acid increases brain but not heart and liver docosahexaenoic acid levels. Lipids 40:787–798

    Article  PubMed  CAS  Google Scholar 

  76. Extier A, Langelier B, Perruchot MH, Guesnet P, Van Veldhoven PP, Lavialle M, Alessandri JM (2009) Gender affects liver desaturase expression in a rat model of n-3 fatty acid repletion. J Nutr Biochem. doi:10.1016/j.jnutbio.2008.10.008

  77. Childs CE, Romeu-Nadal M, Burdge GC, Calder PC (2010) The polyunsaturated fatty acid composition of hepatic and plasma lipids differ by both sex and dietary fat intake in rats. J Nutr 140:245–250

    Article  PubMed  Google Scholar 

  78. Vandal M, Freemantle E, Tremblay-Mercier J, Plourde M, Fortier M, Bruneau J, Gagnon J, Begin M, Cunnane SC (2008) Plasma omega-3 fatty acid response to a fish oil supplement in the healthy elderly. Lipids 43:1085–1089

    Article  PubMed  CAS  Google Scholar 

  79. Dewailly EE, Blanchet C, Gingras S, Lemieux S, Sauve L, Bergeron J, Holub BJ (2001) Relations between n-3 fatty acid status and cardiovascular disease risk factors among Quebecers. Am J Clin Nutr 74:603–611

    CAS  Google Scholar 

  80. de Groot RH, van Boxtel MP, Schiepers OJ, Hornstra G, Jolles J (2009) Age dependence of plasma phospholipid fatty acid levels: potential role of linoleic acid in the age-associated increase in docosahexaenoic acid and eicosapentaenoic acid concentrations. Br J Nutr 102:1058–1064

    Article  PubMed  CAS  Google Scholar 

  81. Sands SA, Reid KJ, Windsor SL, Harris WS (2005) The impact of age, body mass index, and fish intake on the EPA and DHA content of human erythrocytes. Lipids 40:343–347

    Article  PubMed  CAS  Google Scholar 

  82. Babin F, Abderrazik M, Favier F, Cristol JP, Leger CL, Papoz L, Descomps B (1999) Differences between polyunsaturated fatty acid status of non-institutionalised elderly women and younger controls: a bioconversion defect can be suspected. Eur J Clin Nutr 53:591–596

    Article  PubMed  CAS  Google Scholar 

  83. Rump P, Otto SJ, Hornstra G (2001) Leptin and phospholipid-esterified docosahexaenoic acid concentrations in plasma of women: observations during pregnancy and lactation. Eur J Clin Nutr 55:244–251

    Article  PubMed  CAS  Google Scholar 

  84. Su HM, Huang MC, Saad NM, Nathanielsz PW, Brenna JT (2001) Fetal baboons convert 18:3n-3 to 22:6n-3 in vivo. A stable isotope tracer study. J Lipid Res 42:581–586

    PubMed  CAS  Google Scholar 

  85. Tworek C, Muti P, Micheli A, Krogh V, Riboli E, Berrino F (2000) Fatty acid composition of the red blood cell membrane in relation to menopausal status. Ann Epidemiol 10:477

    Article  PubMed  Google Scholar 

  86. Giltay EJ, Duschek EJ, Katan MB, Zock PL, Neele SJ, Netelenbos JC (2004) Raloxifene and hormone replacement therapy increase arachidonic acid and docosahexaenoic acid levels in postmenopausal women. J Endocrinol 182:399–408

    Article  PubMed  CAS  Google Scholar 

  87. Sumino H, Ichikawa S, Murakami M, Nakamura T, Kanda T, Sakamaki T, Mizunuma H, Kurabayashi M (2003) Effects of hormone replacement therapy on circulating docosahexaenoic acid and eicosapentaenoic acid levels in postmenopausal women. Endocr J 50:51–59

    Article  PubMed  CAS  Google Scholar 

  88. Magnusardottir AR, Steingrimsdottir L, Thorgeirsdottir H, Gunnlaugsson G, Skuladottir GV (2009) Docosahexaenoic acid in red blood cells of women of reproductive age is positively associated with oral contraceptive use and physical activity. Prostaglandins Leukot Essent Fatty Acids 80:27–32

    Article  PubMed  CAS  Google Scholar 

  89. Childs CE, Romeu-Nadal M, Burdge GC, Calder PC (2008) Gender differences in the n-3 fatty acid content of tissues. Proc Nutr Soc 67:19–27

    Article  PubMed  CAS  Google Scholar 

  90. McNamara RK, Able J, Jandacek R, Rider T, Tso P (2009) Gender differences in rat erythrocyte and brain docosahexaenoic acid composition: role of ovarian hormones and dietary omega-3 fatty acid composition. Psychoneuroendocrinology 34:532–539

    Article  PubMed  CAS  Google Scholar 

  91. Extier A, Perruchot MH, Baudry C, Guesnet P, Lavialle M, Alessandri JM (2009) Differential effects of steroids on the synthesis of polyunsaturated fatty acids by human neuroblastoma cells. Neurochem Int 55:295–301

    Article  PubMed  CAS  Google Scholar 

  92. Alessandri JM, Extier A, Langelier B, Perruchot MH, Heberden C, Guesnet P, Lavialle M (2008) Estradiol favors the formation of eicosapentaenoic acid (20:5n-3) and n-3 docosapentaenoic acid (22:5n-3) from alpha-linolenic acid (18:3n-3) in SH-SY5Y neuroblastoma cells. Lipids 43:19–28

    Article  PubMed  CAS  Google Scholar 

  93. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833–842

    Article  PubMed  CAS  Google Scholar 

  94. Ropero AB, Eghbali M, Minosyan TY, Tang G, Toro L, Stefani E (2006) Heart estrogen receptor alpha: distinct membrane and nuclear distribution patterns and regulation by estrogen. J Mol Cell Cardiol 41:496–510

    Article  PubMed  CAS  Google Scholar 

  95. Monje P, Zanello S, Holick M, Boland R (2001) Differential cellular localization of estrogen receptor alpha in uterine and mammary cells. Mol Cell Endocrinol 181:117–129

    Article  PubMed  CAS  Google Scholar 

  96. Acconcia F, Ascenzi P, Fabozzi G, Visca P, Marino M (2004) S-palmitoylation modulates human estrogen receptor-alpha functions. Biochem Biophys Res Commun 316:878–883

    Article  PubMed  CAS  Google Scholar 

  97. Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr (2000) Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 14:1649–1660

    Article  PubMed  CAS  Google Scholar 

  98. Razandi M, Pedram A, Merchenthaler I, Greene GL, Levin ER (2004) Plasma membrane estrogen receptors exist and functions as dimers. Mol Endocrinol 18:2854–2865

    Article  PubMed  CAS  Google Scholar 

  99. Kamalakaran S, Radhakrishnan SK, Beck WT (2005) Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites. J Biol Chem 280:21491–21497

    Article  PubMed  CAS  Google Scholar 

  100. Sharov AA, Dudekula DB, Ko MS (2006) CisView: a browser and database of cis-regulatory modules predicted in the mouse genome. DNA Res 13:123–134

    Article  PubMed  CAS  Google Scholar 

  101. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435

    Article  PubMed  CAS  Google Scholar 

  102. Fruchart JC, Duriez P, Staels B (1999) Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 10:245–257

    Article  PubMed  CAS  Google Scholar 

  103. Zhu Y, Qi C, Calandra C, Rao MS, Reddy JK (1996) Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor gamma. Gene Expr 6:185–195

    PubMed  CAS  Google Scholar 

  104. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354–366

    Article  PubMed  CAS  Google Scholar 

  105. Palmer CN, Hsu MH, Griffin KJ, Raucy JL, Johnson EF (1998) Peroxisome proliferator activated receptor-alpha expression in human liver. Mol Pharmacol 53:14–22

    PubMed  CAS  Google Scholar 

  106. Jump DB, Thelen A, Mater M (1999) Dietary polyunsaturated fatty acids and hepatic gene expression. Lipids 34 Suppl:S209–S212

    Article  PubMed  CAS  Google Scholar 

  107. Corton JC, Bocos C, Moreno ES, Merritt A, Cattley RC, Gustafsson JA (1997) Peroxisome proliferators alter the expression of estrogen-metabolizing enzymes. Biochimie 79:151–162

    Article  PubMed  CAS  Google Scholar 

  108. Chu R, Madison LD, Lin Y, Kopp P, Rao MS, Jameson JL, Reddy JK (1995) Thyroid hormone (T3) inhibits ciprofibrate-induced transcription of genes encoding beta-oxidation enzymes: cross talk between peroxisome proliferator and T3 signaling pathways. Proc Natl Acad Sci USA 92:11593–11597

    Article  PubMed  CAS  Google Scholar 

  109. Sandberg MB, Bloksgaard M, Duran-Sandoval D, Duval C, Staels B, Mandrup S (2005) The gene encoding acyl-CoA-binding protein is subject to metabolic regulation by both sterol regulatory element-binding protein and peroxisome proliferator-activated receptor alpha in hepatocytes. J Biol Chem 280:5258–5266

    Article  PubMed  CAS  Google Scholar 

  110. Martin G, Schoonjans K, Lefebvre AM, Staels B, Auwerx J (1997) Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem 272:28210–28217

    Article  PubMed  CAS  Google Scholar 

  111. Mandard S, Muller M, Kersten S (2004) Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 61:393–416

    Article  PubMed  CAS  Google Scholar 

  112. Nakamura MT, Cheon Y, Li Y, Nara TY (2004) Mechanisms of regulation of gene expression by fatty acids. Lipids 39:1077–1083

    Article  PubMed  CAS  Google Scholar 

  113. Burns KA, Vanden Heuvel JP (2007) Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta 1771:952–960

    PubMed  CAS  Google Scholar 

  114. Juge-Aubry CE, Hammar E, Siegrist-Kaiser C, Pernin A, Takeshita A, Chin WW, Burger AG, Meier CA (1999) Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor alpha by phosphorylation of a ligand-independent trans-activating domain. J Biol Chem 274:10505–10510

    Article  PubMed  CAS  Google Scholar 

  115. Nemoto Y, Toda K, Ono M, Fujikawa-Adachi K, Saibara T, Onishi S, Enzan H, Okada T, Shizuta Y (2000) Altered expression of fatty acid-metabolizing enzymes in aromatase-deficient mice. J Clin Invest 105:1819–1825

    Article  PubMed  CAS  Google Scholar 

  116. Yoshikawa T, Toda K, Nemoto Y, Ono M, Iwasaki S, Maeda T, Saibara T, Hayashi Y, Miyazaki E, Hiroi M, Enzan H, Shizuta Y, Onishi S (2002) Aromatase-deficient (ArKO) mice are retrieved from severe hepatic steatosis by peroxisome proliferator administration. Hepatol Res 22:278–287

    Article  PubMed  CAS  Google Scholar 

  117. Lee KN, Pariza MW, Ntambi JM (1996) Differential expression of hepatic stearoyl-CoA desaturase gene 1 in male and female mice. Biochim Biophys Acta 1304:85–88

    PubMed  Google Scholar 

  118. Kien CL, Bunn JY (2008) Gender alters the effects of palmitate and oleate on fat oxidation and energy expenditure. Obesity (Silver Spring) 16:29–33

    Article  CAS  Google Scholar 

  119. Campbell SE, Mehan KA, Tunstall RJ, Febbraio MA, Cameron-Smith D (2003) 17beta-estradiol upregulates the expression of peroxisome proliferator-activated receptor alpha and lipid oxidative genes in skeletal muscle. J Mol Endocrinol 31:37–45

    Article  PubMed  CAS  Google Scholar 

  120. D’Eon TM, Souza SC, Aronovitz M, Obin MS, Fried SK, Greenberg AS (2005) Estrogen regulation of adiposity and fuel partitioning. Evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways. J Biol Chem 280:35983–35991

    Article  PubMed  CAS  Google Scholar 

  121. Atshaves BP, Payne HR, McIntosh AL, Tichy SE, Russell D, Kier AB, Schroeder F (2004) Sexually dimorphic metabolism of branched-chain lipids in C57BL/6 J mice. J Lipid Res 45:812–830

    Article  PubMed  CAS  Google Scholar 

  122. Brandes R, Kaikaus RM, Lysenko N, Ockner RK, Bass NM (1990) Induction of fatty acid binding protein by peroxisome proliferators in primary hepatocyte cultures and its relationship to the induction of peroxisomal beta-oxidation. Biochim Biophys Acta 1034:53–61

    PubMed  CAS  Google Scholar 

  123. Bass NM, Barker ME, Manning JA, Jones AL, Ockner RK (1989) Acinar heterogeneity of fatty acid binding protein expression in the livers of male, female and clofibrate-treated rats. Hepatology 9:12–21

    Article  PubMed  CAS  Google Scholar 

  124. Gorski J, Zendzian-Piotrowska M, Wolfrum C, Nawrocki A, Spener F (2000) Effect of sex and bezafibrate on incorporation of blood borne palmitate into lipids of rat liver nuclei. Mol Cell Biochem 214:57–62

    Article  PubMed  CAS  Google Scholar 

  125. Huang H, Starodub O, McIntosh A, Atshaves BP, Woldegiorgis G, Kier AB, Schroeder F (2004) Liver fatty acid-binding protein colocalizes with peroxisome proliferator activated receptor alpha and enhances ligand distribution to nuclei of living cells. Biochemistry 43:2484–2500

    Article  PubMed  CAS  Google Scholar 

  126. Hostetler HA, McIntosh AL, Atshaves BP, Storey SM, Payne HR, Kier AB, Schroeder F (2009) L-FABP directly interacts with PPARalpha in cultured primary hepatocytes. J Lipid Res 50:1663–1675

    Article  PubMed  CAS  Google Scholar 

  127. McIntosh AL, Atshaves BP, Hostetler HA, Huang H, Davis J, Lyuksyutova OI, Landrock D, Kier AB, Schroeder F (2009) Liver type fatty acid binding protein (L-FABP) gene ablation reduces nuclear ligand distribution and peroxisome proliferator-activated receptor-alpha activity in cultured primary hepatocytes. Arch Biochem Biophys 485:160–173

    Article  PubMed  CAS  Google Scholar 

  128. Helledie T, Antonius M, Sorensen RV, Hertzel AV, Bernlohr DA, Kolvraa S, Kristiansen K, Mandrup S (2000) Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm. J Lipid Res 41:1740–1751

    PubMed  CAS  Google Scholar 

  129. Bohnet S, Rogers L, Sasaki G, Kolattukudy PE (1991) Estradiol induces proliferation of peroxisome-like microbodies and the production of 3-hydroxy fatty acid diesters, the female pheromones, in the uropygial glands of male and female mallards. J Biol Chem 266:9795–9804

    PubMed  CAS  Google Scholar 

  130. Rosenberger TA, Hovda JT, Peters JM (2002) Targeted disruption of peroxisomal proliferator-activated receptor beta (delta) results in distinct gender differences in mouse brain phospholipid and esterified FA levels. Lipids 37:495–500

    Article  PubMed  CAS  Google Scholar 

  131. Yu K, Bayona W, Kallen CB, Harding HP, Ravera CP, McMahon G, Brown M, Lazar MA (1995) Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem 270:23975–23983

    Article  PubMed  CAS  Google Scholar 

  132. Ciana P, Biserni A, Tatangelo L, Tiveron C, Sciarroni AF, Ottobrini L, Maggi A (2007) A novel peroxisome proliferator-activated receptor responsive element-luciferase reporter mouse reveals gender specificity of peroxisome proliferator-activated receptor activity in liver. Mol Endocrinol 21:388–400

    Article  PubMed  CAS  Google Scholar 

  133. Nakajima T, Kamijo Y, Usuda N, Liang Y, Fukushima Y, Kametani K, Gonzalez FJ, Aoyama T (2000) Sex-dependent regulation of hepatic peroxisome proliferation in mice by trichloroethylene via peroxisome proliferator-activated receptor alpha (PPARalpha). Carcinogenesis 21:677–682

    Article  PubMed  CAS  Google Scholar 

  134. Kim BH, Won YS, Kim DY, Kim B, Kim EY, Yoon M, Oh GT (2009) Signal crosstalk between estrogen and peroxisome proliferator-activated receptor alpha on adiposity. BMB Rep 42:91–95

    PubMed  CAS  Google Scholar 

  135. Lewitt MS, Brismar K (2002) Gender difference in the leptin response to feeding in peroxisome-proliferator-activated receptor-alpha knockout mice. Int J Obes Relat Metab Disord 26:1296–1300

    Article  PubMed  CAS  Google Scholar 

  136. Ronda AC, Buitrago C, Colicheo A, de Boland AR, Roldan E, Boland R (2007) Activation of MAPKs by 1alpha, 25(OH)2-vitamin D3 and 17beta-estradiol in skeletal muscle cells leads to phosphorylation of Elk-1 and CREB transcription factors. J Steroid Biochem Mol Biol 103:462–466

    Article  PubMed  CAS  Google Scholar 

  137. Migliaccio A, Di DM, Castoria G, de FA, Bontempo P, Nola E, Auricchio F (1996) Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 15:1292–1300

    PubMed  CAS  Google Scholar 

  138. Shalev A, Siegrist-Kaiser CA, Yen PM, Wahli W, Burger AG, Chin WW, Meier CA (1996) The peroxisome proliferator-activated receptor alpha is a phosphoprotein: regulation by insulin. Endocrinology 137:4499–4502

    Article  PubMed  CAS  Google Scholar 

  139. Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB (2006) Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 55:2562–2570

    Article  PubMed  CAS  Google Scholar 

  140. Pandey NR, Renwick J, Misquith A, Sokoll K, Sparks DL (2008) Linoleic acid-enriched phospholipids act through peroxisome proliferator-activated receptors alpha to stimulate hepatic apolipoprotein A-I secretion. Biochemistry 47:1579–1587

    Article  PubMed  CAS  Google Scholar 

  141. Tang B, Ji Y, Traub RJ (2008) Estrogen alters spinal NMDA receptor activity via a PKA signaling pathway in a visceral pain model in the rat. Pain 137:540–549

    Article  PubMed  CAS  Google Scholar 

  142. Hsieh YC, Yu HP, Frink M, Suzuki T, Choudhry MA, Schwacha MG, Chaudry IH (2007) G protein-coupled receptor 30-dependent protein kinase A pathway is critical in nongenomic effects of estrogen in attenuating liver injury after trauma-hemorrhage. Am J Pathol 170:1210–1218

    Article  PubMed  CAS  Google Scholar 

  143. Lazennec G, Canaple L, Saugy D, Wahli W (2000) Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators. Mol Endocrinol 14:1962–1975

    Article  PubMed  CAS  Google Scholar 

  144. Rosenberger TA, Farooqui AA, Horrocks LA (2007) Bovine brain diacylglycerol lipase: substrate specificity and activation by cyclic AMP-dependent protein kinase. Lipids 42:187–195

    Article  PubMed  CAS  Google Scholar 

  145. Gaidhu MP, Fediuc S, Anthony NM, So M, Mirpourian M, Perry RL, Ceddia RB (2009) Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL. J Lipid Res 50:704–715

    Article  PubMed  CAS  Google Scholar 

  146. Lee WJ, Kim M, Park HS, Kim HS, Jeon MJ, Oh KS, Koh EH, Won JC, Kim MS, Oh GT, Yoon M, Lee KU, Park JY (2006) AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1. Biochem Biophys Res Commun 340:291–295

    Article  PubMed  CAS  Google Scholar 

  147. Wilson BE, Mochon E, Boxer LM (1996) Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 16:5546–5556

    PubMed  CAS  Google Scholar 

  148. Castro-Rivera E, Samudio I, Safe S (2001) Estrogen regulation of cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple enhancer elements. J Biol Chem 276:30853–30861

    Article  PubMed  CAS  Google Scholar 

  149. Alexaki VI, Charalampopoulos I, Kampa M, Nifli AP, Hatzoglou A, Gravanis A, Castanas E (2006) Activation of membrane estrogen receptors induce pro-survival kinases. J Steroid Biochem Mol Biol 98:97–110

    Article  PubMed  CAS  Google Scholar 

  150. Boon JM, Smith BD (2002) Chemical control of phospholipid distribution across bilayer membranes. Med Res Rev 22:251–281

    Article  PubMed  CAS  Google Scholar 

  151. Jupp OJ, Vandenabeele P, MacEwan DJ (2003) Distinct regulation of cytosolic phospholipase A2 phosphorylation, translocation, proteolysis and activation by tumour necrosis factor-receptor subtypes. Biochem J 374:453–461

    Article  PubMed  CAS  Google Scholar 

  152. Grewal S, Morrison EE, Ponnambalam S, Walker JH (2002) Nuclear localisation of cytosolic phospholipase A2-alpha in the EA.hy.926 human endothelial cell line is proliferation dependent and modulated by phosphorylation. J Cell Sci 115:4533–4543

    Article  PubMed  CAS  Google Scholar 

  153. Improta-Brears T, Whorton AR, Codazzi F, York JD, Meyer T, McDonnell DP (1999) Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium. Proc Natl Acad Sci USA 96:4686–4691

    Article  PubMed  CAS  Google Scholar 

  154. Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW (1999) Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest 103:401–406

    Article  PubMed  CAS  Google Scholar 

  155. Marino M, Acconcia F, Bresciani F, Weisz A, Trentalance A (2002) Distinct nongenomic signal transduction pathways controlled by 17beta-estradiol regulate DNA synthesis and cyclin D(1) gene transcription in HepG2 cells. Mol Biol Cell 13:3720–3729

    Article  PubMed  CAS  Google Scholar 

  156. Farina MG, Billi S, Leguizamon G, Weissmann C, Guadagnoli T, Ribeiro ML, Franchi AM (2007) Secretory and cytosolic phospholipase A2 activities and expression are regulated by oxytocin and estradiol during labor. Reproduction 134:355–364

    Article  PubMed  CAS  Google Scholar 

  157. Burlando B, Marchi B, Panfoli I, Viarengo A (2002) Essential role of Ca2+-dependent phospholipase A2 in estradiol-induced lysosome activation. Am J Physiol Cell Physiol 283:C1461–C1468

    PubMed  CAS  Google Scholar 

  158. Das UN (2007) A defect in the activity of Delta6 and Delta5 desaturases may be a factor in the initiation and progression of atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 76:251–268

    Article  PubMed  CAS  Google Scholar 

  159. Spaziani EP, Lantz ME, Benoit RR, O’Brien WF (1996) The induction of cyclooxygenase-2 (COX-2) in intact human amnion tissue by interleukin-4. Prostaglandins 51:215–223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken D. Stark.

About this article

Cite this article

Kitson, A.P., Stroud, C.K. & Stark, K.D. Elevated Production of Docosahexaenoic Acid in Females: Potential Molecular Mechanisms. Lipids 45, 209–224 (2010). https://doi.org/10.1007/s11745-010-3391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3391-6

Keywords

Navigation