Skip to main content
Log in

Comparative effect of fenofibrate on hepatic desaturases in wild-type and peroxisome proliferator-activated receptor α-deficient mice

  • Articles
  • Published:
Lipids

Abstract

In this study is presented the effect of fenofibrate, a prototypical peroxisome proliferator of the fibrate class, on wild-type and peroxisome proliferator-activated receptor α (PPARα)-/-mouse liver FA profile, desaturase mRNA levels, and activities. We established that, following peroxisome proliferator exposure, the hepatic FA profile was greatly modified. These modifications in hepatic FA content required the expression of PPARα, as they are suppressed in transgenic mice deficient in this nuclear receptor. Following peroxisome proliferator exposure, Δ6- and Δ5-desaturase mRNA levels and activities were increased in wild-type but not in PPARα-deficient mouse liver. These results suggest the involvement of PPARα in the control of hepatic Δ6- and Δ5-desaturases in mice. Their roles in minimizing long-chain PUFA depletion in the liver during peroxisome proliferator exposure are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOX:

peroxisomal acyl-CoA oxidase

CYP4A10:

cytochrome P450 4A10

PP:

peroxisome proliferator

PPARα:

peroxisome proliferator-activated receptor α

PPRE:

peroxisome proliferator responsive element

SCD:

stearoyl-CoA desaturase

TBS:

Tris-buffered saline

W-T:

wild-type

References

  1. Lake, B.G. (1995) Peroxisome Proliferation: Current Mechanisms Relating to Nongenotoxic Carcinogenesis, Toxicol. Lett. 82–83, 673–681.

    Article  PubMed  Google Scholar 

  2. Reddy, J.K., and Hashimoto, T. (2001) Peroxisomal β-Oxidation and Peroxisome Proliferator-Activated Receptor α: An Adaptive Metabolic System, Annu. Rev. Nutr. 21, 193–230.

    Article  PubMed  CAS  Google Scholar 

  3. Lee, S.S., Pineau, T., Drago, J., Lee, E.J., Owens, J.W., Kroetz, D.L., Fernandez-Salguero, P.M., Westphal, H., and Gonzalez, F.J. (1995) Targeted Disruption of the Alpha Isoform of the Peroxisome Proliferator-Activated Receptor Gene in Mice Results in Abolishment of the Pleiotropic Effects of Peroxisome Proliferators, Mol. Cell. Biol. 15, 3012–3022.

    PubMed  CAS  Google Scholar 

  4. Mangelsdorf, D.J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., et al. (1995) The Nuclear Receptor Superfamily: The Second Decade, Cell 15, 835–839.

    Article  Google Scholar 

  5. Issemann, I., and Green, S. (1990) Activation of a Member of the Steroid Hormone Receptor Superfamily by Peroxisome Proliferators, Nature 347, 645–650.

    Article  PubMed  CAS  Google Scholar 

  6. Forman, B.M., Chen, J., and Evans, R.M. (1997) Hypolipidemic Drugs, Polyunsaturated Fatty Acids, and Eicosanoids Are Ligands for Peroxisome Proliferator-Activated Receptors α and σ, Proc. Natl. Acad. Sci. USA 94, 4312–4317.

    Article  PubMed  CAS  Google Scholar 

  7. Kliewer, S.A., Umesono, K., Noonan, D.J., Heyman, R.A., and Evans, R.M. (1992) Convergence of 9-cis Retinoic Acid and Peroxisome Proliferator Signalling Pathways Through Heterodimer Formation of Their Receptors, Nature 358, 771–774.

    Article  PubMed  CAS  Google Scholar 

  8. Reddy, J.K., and Lalwai, N.D. (1983) Carcinogenesis by Hepatic Peroxisome Proliferators: Evaluation of the Risk of Hypolipidemic Drugs and Industrial Plasticizers to Humans, Crit. Rev. Toxicol. 12, 1–58.

    PubMed  CAS  Google Scholar 

  9. Kawashima, Y., Hanioka, N., Matsumura, M., and Kozuka, H. (1983) Induction of Microsomal Stearoyl-CoA Desaturation by the Administration of Various Peroxisome Proliferators, Biochim. Biophys. Acta 752, 259–264.

    PubMed  CAS  Google Scholar 

  10. Kawashima, Y., Musoh, K., and Kozuka, H. (1990) Peroxisome Proliferators Enhance Linoleic Acid Metabolism in Rat Liver. Increased Biosynthesis of Omega 6 Polyunsaturated Fatty Acids, J. Biol. Chem. 265, 9170–9175.

    PubMed  CAS  Google Scholar 

  11. Tocher, D.R., Leaver, M.J., and Hodgson, P.A. (1998) Recent Advances in the Biochemistry and Molecular Biology of Fatty Acyl Desaturases, Prog. Lipid Res. 37, 73–117.

    Article  PubMed  CAS  Google Scholar 

  12. Ntambi, J.M. (1999) Regulation of Stearoyl-CoA Desaturase by Polyunsaturated Fatty Acids and Cholesterol, J. Lipid Res. 40, 1549–1558.

    PubMed  CAS  Google Scholar 

  13. Landschulz, K.T., Jump, D.B., MacDougald, O.A., and Lane, M.D. (1994) Transcriptional Control of the Stearoyl-CoA Desaturase-1 Gene by Polyunsaturated Fatty Acids, Biochem. Biophys. Res. Commun. 200, 763–768.

    Article  PubMed  CAS  Google Scholar 

  14. Rodriguez, C., Cabrero, A., Roglans, N., Adzet, T., Sanchez, R.M., Vazquez, M., Ciudad, C.J., and Laguna, J.C. (2001) Differential Induction of Stearoyl-CoA Desaturase and Acyl-CoA Oxidase Genes by Fibrates in HepG2 Cells, Biochem. Pharmacol. 61, 357–364.

    Article  PubMed  CAS  Google Scholar 

  15. Miller, C.W., and Ntambi, J. (1996) Peroxisome Proliferators Induce Mouse Liver Stearoyl-CoA Desaturase 1 Gene Expression, Proc. Natl. Acad. Sci. USA 93, 9443–9448.

    Article  PubMed  CAS  Google Scholar 

  16. Cho, H.P., Nakamura, M.T., and Clarke, S.D. (1999) Cloning, Expression, and Nutritional Regulation of the Mammalian Δ6-Desaturase, J. Biol. Chem. 274, 471–477.

    Article  PubMed  CAS  Google Scholar 

  17. Cho, H.P., Nakamura, M.T., and Clarke, S.D. (1999) Cloning, Expression, and Fatty Acid Regulation of the Human Δ5-Desaturase, J. Biol. Chem. 274, 37335–37339.

    Article  PubMed  CAS  Google Scholar 

  18. Aki, T., Shimada, Y., Inagaki, K., Higashimoto, H., Kawamoto, S., Shigeta, S., Ono, K., and Suzuki, O. (1999) Molecular Cloning and Functional Characterization of Rat Δ6 Fatty Acid Desaturase, Biochem. Biophys. Res. Commun. 255, 575–579.

    Article  PubMed  CAS  Google Scholar 

  19. Zolfaghari, R., Cifelli, C.J., Banta, M.D., and Ross, A.C. (2001) Fatty Acid Δ(5)-Desaturase mRNA Is Regulated by Dietary Vitamin A and Exogenous Retinoic Acid in Liver of Adult Rats, Arch. Biochem. Biophys. 391, 8–15.

    Article  PubMed  CAS  Google Scholar 

  20. Matsuzaka, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Yoshikawa, T., Hasty, A.H., Tamura, Y., Osuga, J.-I., Okazaki, H., Iizuka, Y., et al. (2002) Dual Regulation of Mouse Δ5- and Δ6-Desaturase Gene Expression by SREBP-1 and PPARα, J. Lipid Res. 43, 107–114.

    PubMed  CAS  Google Scholar 

  21. Costet, P., Legendre, C., More, J., Edgar, A., Galtier, P., and Pineau, T. (1998) Peroxisome Proliferator-Activated Receptor α-Isoform Deficiency Leads to Progressive Dyslipidemia with Sexually Dimorphic Obesity and Steatosis, J. Biol. Chem. 273, 29577–29585.

    Article  PubMed  CAS  Google Scholar 

  22. Rioux, V., Catheline, D., Bouriel, M., and Legrand, P. (1999) High-Performance Liquid Chromatography of Fatty Acids as Naphthacyl Esters, Analusis 27, 186–193.

    Article  CAS  Google Scholar 

  23. Rioux V., Lemarchal, P., and Legrand P. (2000) Myristic Acid, Unlike Palmitic Acid, Is Rapidly Metabolized in Cultured Rat Hepatocytes, J. Nutr. Biochem. 11, 198–207.

    Article  PubMed  CAS  Google Scholar 

  24. Bensadoun, A., and Weinstein, D. (1976) Assay of Proteins in the Presence of Interfering Materials, Anal. Biochem. 70, 241–250.

    Article  PubMed  CAS  Google Scholar 

  25. D’Andrea, S., Guillou, H., Jan, S., Catheline, D., Thibault, J.-N., Bouriel, M., Rioux, V., and Legrand, P. (2002) The Same Rat Δ6-Desaturase Not Only Acts on 18-but Also on 24-Carbon Fatty Acids in Very-Long-Chain Polyunsaturated Fatty Acid Biosynthesis, Biochem. J. 364, 49–55.

    PubMed  CAS  Google Scholar 

  26. Kroetz, D.L., Yook, P., Costet, P., Bianchi, P., and Pineau, T. (1998) Peroxisome Proliferator-Activated Receptor α Controls the Hepatic CYP4A Induction Adaptive Response to Starvation and Diabetes, J. Biol. Chem. 273, 31581–31589.

    Article  PubMed  CAS  Google Scholar 

  27. Leone, T.C., Weinheimer, C.J., and Kelly, D.P. (1999) A Critical Role for the Peroxisome Proliferator-Activated Receptor α (PPARα) in the Cellular Fasting Response: The PPARα-Null Mouse as a Model of Fatty Acid Oxidation Disorders, Proc. Natl. Acad. Sci. USA 96, 7473–7478.

    Article  PubMed  CAS  Google Scholar 

  28. Ren, B., Thelen, A.P., Peters, J.M., Gonzalez, F.J., and Jump, D.B. (1997) Polyunsaturated Fatty Acid Suppression of Hepatic Fatty Acid Synthase and S14 Gene Expression Does Not Require Peroxisome Proliferator-Activated Receptor α, J. Biol. Chem. 272, 26827–26832.

    Article  PubMed  CAS  Google Scholar 

  29. Akiyama, T.E., Nicol, C.J., Fievet, C., Staels, B., Ward, J.M., Auwerx, J., Lee, S.S., Gonzalez, F.J., and Peters, J.M. (2001) Peroxisome Proliferator-Activated Receptor-α Regulates Lipid Homeostasis, but Is Not Associated with Obesity: Studies with Congenic Mouse Lines, J. Biol. Chem. 276, 39088–39093.

    Article  PubMed  CAS  Google Scholar 

  30. Pennacchiotti, G.L., Maldonado, E.N., and Aveldaño, M.I. (2001) Major Clofibrate Effects on Liver and Plasma Lipids Are Independent of Changes in Polyunsaturated Fatty Acid Composition Induced by Dietary Fat, Lipids 36, 121–127.

    Article  PubMed  CAS  Google Scholar 

  31. Aoyama, T., Peters, J.M., Iritani, N., Nakajima, T., Furihata, K., Hashimoto, T., and Gonzalez, F.J. (1998) Altered Constitutive Expression of Fatty Acid-Metabolizing Enzymes in Mice Lacking the Peroxisome Proliferator-Activated Receptor Alpha (PPARalpha), J. Biol. Chem. 273, 5678–5684.

    Article  PubMed  CAS  Google Scholar 

  32. Reddy, J.K., and Mannaerts, G.P. (1994) Peroxisomal Lipid Metabolism, Annu. Rev. Nutr. 14, 343–370.

    Article  PubMed  CAS  Google Scholar 

  33. Brenner, R.R., Bernasconi, A.M., Gonzales, M.S., and Rimoldi, O.J. (2002) Dietary Cholesterol Modulates Δ6 and Δ9 Desaturase mRNAs and Enzymatic Activity in Rats Fed a Low-EFA diet, Lipids 37, 375–383.

    Article  PubMed  CAS  Google Scholar 

  34. Brenner, R.R. (1990) Endocrine Control of Fatty Acid Desaturation, Biochem. Soc. Trans. 18, 773–775.

    PubMed  CAS  Google Scholar 

  35. Rimoldi, O.J., Finarelli, G.S., and Brenner, R.R. (2001) Effects of Diabetes and Insulin on Hepatic Δ6 Desaturase Gene Expression, Biochem. Biophys. Res. Commun. 283, 323–326.

    Article  PubMed  CAS  Google Scholar 

  36. Spector, A.A. (1999) Essentiality of Fatty Acids, Lipids 34 (Suppl.), S1-S3.

    Article  PubMed  CAS  Google Scholar 

  37. Clarke, S.D. (2001) Polyunsaturated Fatty Acid Regulation of Gene Transcription: A Molecular Mechanism to Improve the Metabolic Syndrome, J. Nutr. 131, 1129–1132.

    PubMed  CAS  Google Scholar 

  38. Cherkaoui-Malki, M., Meyer, K., Cao, W.-Q., Latruffe, N., Yeldandi, A.V., Rao, M.S., Bradfield, C., and Reddy, J.K. (2001) Identification of Novel Peroxisome Proliferator-Activated Receptor α (PPARα) Target Genes in Mouse Liver Using cDNA Microarray Analysis, Gene Expr. 9, 291–304.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Legrand.

About this article

Cite this article

Guillou, H., Martin, P., Jan, S. et al. Comparative effect of fenofibrate on hepatic desaturases in wild-type and peroxisome proliferator-activated receptor α-deficient mice. Lipids 37, 981–989 (2002). https://doi.org/10.1007/s11745-006-0990-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-0990-3

Keywords

Navigation