Skip to main content
Log in

Engineering Oilseed Plants for a Sustainable, Land-Based Source of Long Chain Polyunsaturated Fatty Acids

  • Invited Thematic Review
  • Published:
Lipids

Abstract

Numerous clinical studies have demonstrated the cardiovascular and mental health benefits of including very long chain omega-3 polyunsaturated fatty acids, namely eicospentaenoic acid (EPA) and docosohexaenoic acid (DHA) in the human diet. Certain fish oils can be a rich source of omega-3 long chain polyunsaturated fatty acids although processed marine oils are generally undesirable as food ingredients because of the associated objectionable flavors and contaminants that are difficult and cost-prohibitive to remove. Oilseed plants rich in omega-3 fatty acids, such as flax and walnut oils, contain only the 18-carbon omega-3 polyunsaturated fatty acid alpha-linolenic acid, which is poorly converted by the human body to EPA and DHA. It is now possible to engineer common omega-6 rich oilseeds such as soybean and canola to produce EPA and DHA and this has been the focus of a number of academic and industrial research groups. Recent advances and future prospects in the production of EPA and DHA in oilseed crops are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

LCPUFA:

Long chain polyunsaturated fatty acids

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

ARA:

Arachidonic acid

COX-2:

Cyclooxygenase-2

LNA:

Linoleic acid

ALA:

Alpha-linolenic acid

GLA:

Gamma-linolenic acid

STA:

Stearidonic acid

DGLA:

Dihomo-gamma-linolenic acid

ETA:

Eicosatetraenoic acid

EDA:

Eicosadienoic acid

ERA:

Eicosatrienoic acid

DPA:

Docosapentaenoic acid

CoA:

Coenzyme A

PtdCho:

Phosphatidylcholine

LPAAT:

Lysophosphatidic acid acyltransferase

SCA:

Sciadonic acid

JUN:

Juniperonic acid

PKS:

Polyketide synthase

References

  1. Lands WEM (2005) Dietary fat and health: the evidence and the politics of prevention: careful use of dietary fats can improve life and prevent disease. Ann NY Acad Sci 1055:179–192

    Article  PubMed  CAS  Google Scholar 

  2. Stauffer CE (1996) Fats and Oils. Eagan Press, St Paul

    Google Scholar 

  3. Korver O, Katan MB (2006) The elimination of trans fats from spreads: how science helped to turn an industry around. Nutr Rev 64:275–279

    Article  PubMed  Google Scholar 

  4. Kinney AJ, Knowlton S (1998) Designer oils: the high oleic soybean. In: Roller S, Harlander S (eds) Genetic modification in the food industry. Blackie, London

    Google Scholar 

  5. Del Vecchio AJ (1996) High laurate canola. Inform 7:230–243

    Google Scholar 

  6. Voelker T, Kinney AJ (2001) Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Physiol Mol Biol 52:335–361

    Article  CAS  Google Scholar 

  7. Coughlan SJ, Kinney AJ (2002) Transgenic plants as sources of modified oils. In: Oksman-Caldentey KM, Barz WH (eds) Plant biotechnology and transgenic plants. Marcel Dekker, New York

    Google Scholar 

  8. Willatts P, Forsyth JS (2000) The role of long-chain polyunsaturated fatty acids in infant cognitive development. Prostaglandins Leukot Essent Fatty Acids 63:95–100

    Article  PubMed  CAS  Google Scholar 

  9. Iribarren C, Markovitz JH, Jacobs DR Jr, Schreiner PJ, Daviglus M, Hibbeln JR (2004) Dietary intake of n-3, n-6 fatty acids and fish: relationship with hostility in young adults-the CARDIA study. Eur J Clin Nutr 58:24–31

    Article  PubMed  CAS  Google Scholar 

  10. Stoll AL, Damico KE, Daly BP, Severus WE, Marangell LB (2001) Methodological considerations in clinical studies of omega 3 fatty acids in major depression and bipolar disorder. World Rev Nutr Diet 88:58–67

    Article  PubMed  CAS  Google Scholar 

  11. Dyerberg J, Bang HO (1982) A hypothesis on the development of acute myocardial infarction in Greenlanders. Scand J Clin Lab Inves Suppl 161:7–13

    Article  CAS  Google Scholar 

  12. Simopoulos AP (2006) Evolutionary aspects of diet, the Omega-6/Omega-3 ratio, and gene expression. In: Meskin MS, Bidlack WR, Randolph RK (eds) Phytochemicals. CRC Press LLC, Boca Raton

    Google Scholar 

  13. Napier JA, Beaudoin F, Michaelson LV, Sayanova O (2004) The production of long chain polyunsaturated fatty acids in transgenic plants by reverse engineering. Biochimie 86:785–792

    Article  PubMed  CAS  Google Scholar 

  14. Napier JA, Sayanova O, Qi B, Lazarus CM (2004) Progress toward the production of long-chain polyunsaturated fatty acids in transgenic plants. Lipids 39:1067–1075

    Article  PubMed  CAS  Google Scholar 

  15. Funk C (2001) Prostaglandins and leukotriences: advances in eicosanoid biology. Science 294:1871–1875

    Article  PubMed  CAS  Google Scholar 

  16. Smith W (2005) Cyclooxygenases, peroxide tone and the allure of fish oil. Curr Opin Cell Biol 17:174–182

    Article  PubMed  CAS  Google Scholar 

  17. Yaqoob P (2003) Fatty acids and the immune system: from basic science to clinical applications. Proc Nutr Soc 63:89–104

    Article  CAS  Google Scholar 

  18. Calder PC (2003) n-3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids 38:343–352

    Article  PubMed  CAS  Google Scholar 

  19. Mukherjee D, Nissen SE, Topol EJ (2001) Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 286:954–959

    Article  PubMed  CAS  Google Scholar 

  20. Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys acta 1486:219–231

    PubMed  CAS  Google Scholar 

  21. Hibbeln DR, Nieminen LRG, Lands WEM (2004) Increasing homicide rates and linoleic acid consumption among five Western countries, 1961–2000. Lipids 39:1207–1213

    Article  PubMed  CAS  Google Scholar 

  22. Sargent JR (1997) Fish oils and human diet. Br J Nutr 78:S5–S13

    Article  PubMed  CAS  Google Scholar 

  23. Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70:560S–569S

    PubMed  CAS  Google Scholar 

  24. Pauly D, Christensen V, Guenette S, Pitcher TJ, Sumaila UR, Walters CJ, Watson R, Zeller D (2000) Towards sustainability in world fisheries. Nature 418:689–695

    Article  CAS  Google Scholar 

  25. Jacobs MN, Covaci A, Gheorghe A, Schepens P (2004) Time trend investigation of PCBs, PBDEs, and organochlorine pesticides in selected n-3 polyunsaturated fatty acid rich dietary fish oil and vegetable oil supplements; nutritional relevance for human essential n-3 fatty acid requirements. J Agric Food Chem 52:1780–1788

    Article  PubMed  CAS  Google Scholar 

  26. Hites RA, Foran JA, Carpenter DO, Hamilton MC, Knuth BA, Schwage SJ (2004) Global assessment of organic contaminants in farmed salmon. Science 303:226–229

    Article  PubMed  CAS  Google Scholar 

  27. Bell JG, McGhee F, Campbell PJ, Sargent JR (2003) Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh fatty acid composition and effectiveness of subsequent fish oil “wash out”. Aquaculture 218:515–528

    Article  CAS  Google Scholar 

  28. Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  PubMed  CAS  Google Scholar 

  29. Sayanova O, Napier JA (2004) Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry 65:147–158

    Article  PubMed  CAS  Google Scholar 

  30. Bentley R, Bennett JW (1999) Constructing polyketides: from Collie to combinatorial biochemistry. Annu Rev Microbiol 53:411–456

    Article  PubMed  CAS  Google Scholar 

  31. Metz JG, Weaver CA, Barclay WR, Flatt JH (2004) Polyunsaturated fatty acid polyketide synthase genes and enzyme systems from Thraustochytrium and Schizochytrium and their use for preparation of bioactive molecules. PCT Int Appl WO2004087879

  32. Qiu X, Hong H, Mackenzie SL (2001) Identification of a Δ4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexaenoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J Biol Chem 276:31561–31566

    Article  PubMed  CAS  Google Scholar 

  33. Metz JG, Kuner J, Weaver C, Zirkle R, Rosenzweig B, Hauvermale A, Lippmeier C (2006) PUFA synthases: biochemical characterization and heterologous expression in bacteria and yeast. In: 17th International symposium on plant lipids, Michigan State University, East Lansing

  34. Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27:467–473

    Article  PubMed  CAS  Google Scholar 

  35. Spychalla JP, Kinney AJ, Browse J (1997) Identification of an animal omega-3 fatty acid desaturase by heterologous expression in Arabidopsis. Proc Natl Acad Sci USA 18:1142–1147

    Article  Google Scholar 

  36. Oura T, Kajiwara S (2004) Saccharomyces kluyveri FAD3 encodes an ω3 fatty acid desaturase. Microbiology 150:1983–1990

    Article  PubMed  CAS  Google Scholar 

  37. Pereira SL, Huang YS, Bobik EG, Kinney AJ, Stecca KL, Packer JC, Mukerji P (2004) A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid. Biochem J 378:665–671

    Article  PubMed  CAS  Google Scholar 

  38. Sakuradani E, Abe T, Iguchi K, Shimizu S (2005) A novel fungal ω3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Appl Microbiol Biotechnol 66:648–654

    Article  PubMed  CAS  Google Scholar 

  39. Damude HG, Zhang H, Farrall L, Ripp KG, Tomb JF, Hollerbach D, Yadav NS (2006) Identification of bifunctional Δ12/ω3 fatty acid desaturases for improving the ratio of ω3 to ω6 fatty acids in microbes and plants. PNAS 103:9446–9451

    Article  PubMed  CAS  Google Scholar 

  40. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–45

    Article  PubMed  CAS  Google Scholar 

  41. Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  PubMed  CAS  Google Scholar 

  42. Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017

    Article  PubMed  CAS  Google Scholar 

  43. Kinney AJ, Cahoon EB, Damude HG, Hitz WD, Kolar CW, Liu ZB (2004) Production of very long chain polyunsaturated fatty acids in oilseed plants. PCT Int Appl WO2004071467

  44. Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perez-Grau L, Kinney AJ, Hitz WD, Booth JR Jr, Schweiger B et al (1993) Cloning of higher plant ω-3 fatty acid desaturases. Plant Physiol 103:467–476

    Article  PubMed  CAS  Google Scholar 

  45. Pereira SL, Leonard AE, HuangYS, Chuang LT, Mukerji P (2004) Identification of two novel microalgal enzymes involved in the conversion of the ω3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem J 384:357–366

    Article  PubMed  CAS  Google Scholar 

  46. Parker-Barnes JM, Das T, Bobik E, Leonard AE, Thurmond JM, Chaung YSH, Mukerji P (2000) Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. PNAS 97:8284–8289

    Article  PubMed  CAS  Google Scholar 

  47. Chen R, Matsui K, Ogaw M, Oe M, Ochiai M, Kawashima H, Sakuradani E, Shimizu S, Ishimoto M, Hayashi M, Murooka Y, Tanaka Y (2006) Expression of Δ6, Δ5 desaturase and GLELO elongase genes from Mortierella alpina for production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds. Plant Sci 170:399–406

    Article  CAS  Google Scholar 

  48. Robert S, Singh SP, Zhou XR, Petrie JR, Blackburn SI, Mansour PM, Nichols PD, Liu Q, Green A (2005) Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Funct Plant Biol 32:473–479

    Article  CAS  Google Scholar 

  49. Damude H, Yadav NS (2005) Cloning and sequences of fungal Δ15 desaturases suitable for production of polyunsaturated fatty acids in oilseed plants for food or industrial uses. PCT Int Appl WO2005047479

  50. Kinney AJ (1996) Development of genetically engineered soybean oils for food applications. J Food Lipids 3:273–292

    CAS  Google Scholar 

  51. Mukerji P, Huang YS, Das T, Thurmond JM, Leonard AE, Pereira SL (2002) Protein and cDNA sequences of delta4-desaturases isolated from fungi and therapeutical uses thereof. PCT Int Appl WO2002090493

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Kinney.

About this article

Cite this article

Damude, H.G., Kinney, A.J. Engineering Oilseed Plants for a Sustainable, Land-Based Source of Long Chain Polyunsaturated Fatty Acids. Lipids 42, 179–185 (2007). https://doi.org/10.1007/s11745-007-3049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3049-1

Keywords

Navigation