Skip to main content
Log in

Mechanisms of regulation of gene expression by fatty acids

  • Published:
Lipids

Abstract

Fatty acids (FA) regulate the expression of genes involved in lipid and energy metabolism. In particular, two transcription factors, sterol regulatory element binding protein-1c (SREBP-1 c) and peroxisome proliferator activated receptor α (PPARα), have emerged as key mediators of gene regulation by FA. SREBP-1 c induces a set of lipogenic enzymes in liver. Polyunsaturated fatty acids (PUFA), but not saturated or mono-unsaturated FA, suppress the induction of lipogenic genes by inhibiting the expression and processing of SREBP-1c. This unique effect of PUFA suggests that SREBP-1c may regulate the synthesis of unsaturated FA for incorporation, into glycerolipids and cholesteryl esters. PPARα plays an essential role in metabolic adaptation to fasting by inducing the genes for mitochondrial and peroxisomal FA oxidation as well as those for ketogenesis in mitochondria. FA released from adipose tissue during fasting are considered as ligands of PPARα. Dietary PUFA, except for 18∶2 n′6, are likely to induced FA oxidation enzymes via PPARα as “feed-forward” mechanism. PPARα is also required for regulating the synthesis of highly unsaturated FA, indicating pleiotropic functions of PPARα in the regulation of lipid metabolic pathways. It is yet to be determined whether FA regulate other transcription factors such as liver-X receptor, hepatocyte nuclear factor 4, and carbohydrate response element binding protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ChREBP:

carbohydrate response element binding protein

coA:

coenzyme A

D6D:

delta-6 desaturase

HNF4:

hepatocyte nuclear factor 4

LXR:

liver-X receptor

HUFA:

highly unsaturated fatty acid

PPAR:

peroxisome proliferator activated receptor

SCD:

stearoyl-CoA desaturase

SREBP:

sterol regulatory element binding protein

References

  1. Lee, C.-H., Olson, P., and Evans, R.M. (2003) Minireview: Lipid Metabolism, Metabolic Diseases, and Peroxisome Proliferator-Activated Receptors, Endocrinology 144, 2201–2207.

    Article  PubMed  CAS  Google Scholar 

  2. Desvergne, B., and Wahli, W. (1999) Peroxisome Proliferator-Activated Receptors: Nuclear Control of Metabolism, Endocr. Rev. 20, 649–688.

    Article  PubMed  CAS  Google Scholar 

  3. Horton, J.D., Goldstein, J.L., and Brown, M.S. (2002) SREBPs: Activators of the Complete Program of Cholesterol and Fatty Acid Synthesis in the Liver, J. Clin. Invest. 109, 1125–1131.

    PubMed  CAS  Google Scholar 

  4. Uyeda, K., Yamashita, H., and Kawaguchi, T. (2002) Carbohydrate Responsive Element-Binding Protein (ChREBP): A Key Regulator of Glucose Metabolism and Fat Storage, Biochem. Pharmacol. 63, 2075–2080.

    Article  PubMed  CAS  Google Scholar 

  5. Clarke, S.D., and Jump, D.B. (1993) Regulation of Gene Transcription by Polyunsaturated Fatty Acids, Prog. Lipid Res. 32, 139–149.

    Article  PubMed  CAS  Google Scholar 

  6. Jump, D.B., and Clarke, S.D. (1999) Regulation of Gene Expression by Dietary Fat, Annu. Rev. Nutr. 19, 63–90.

    Article  PubMed  CAS  Google Scholar 

  7. Nakamura, M.T. (2004) Transcriptional Regulation of Energy Metabolism in Liver, in Genomics and Proteomics in Nutrition, Moustaid-Moussa, N., and Berdanier, C.D., editors, Marcel Dekker, New York, pp. 119–143.

    Chapter  Google Scholar 

  8. Nakamura, M.T., and Nara, T.Y. (2004) Structure, Function, and Dietary Regulation of Delta6, Delta5, and Delta9 Desaturases, Annu. Rev. Nutr. 24, 345–376.

    Article  PubMed  CAS  Google Scholar 

  9. Briggs, M.R., Yokoyama, C., Wang, X., Brown, M.S., and Goldstein, J.L. (1993) Nuclear Protein that Binds Sterol Regulatory Element of Low Density Lipoprotein Receptor Promoter. I. Identification of the Protein and Delineation of its Target Nucleotide Sequence, J. Biol. Chem. 268, 14490–14496.

    PubMed  CAS  Google Scholar 

  10. Hua, X., Yokoyama, C., Wu, J., Briggs, M.R., Brown, M.S., Goldstein, J.L., and Wang, X. (1993) SREBP-2, a Second Basic-Helix-Loop-Helix-Leucine Zipper Protein that Stimulates Transcription by Binding to a Sterol Regulatory Element, Proc. Natl. Acad. Sci. USA 90, 11603–11607.

    Article  PubMed  CAS  Google Scholar 

  11. Tontonoz, P., Kim, J.B., Graves, R.A., and Spiegelman, B.M. (1993) ADD-1: A Novel Helix-Loop-Helix Transcription Factor Associated with Adipocyte Determination and Differentiation, Mol. Cell Biol. 13, 4753–4759.

    PubMed  CAS  Google Scholar 

  12. Yokoyama, C., Wang, X., Briggs, M.R., Admon, A., Wu, J., Hua, X., Goldstein, J.L., and Brown, M.S. (1993) SREBP-1, a Basic-Helix-Loop-helix-Leucine Zipper Protein that Controls Transcription of the Low Density Lipoprotein Receptor Gene, Cell 75, 187–197.

    PubMed  CAS  Google Scholar 

  13. Shimomura, I., Shimano, H., Horton, J.D., Goldstein, J.L., and Brown, M.S. (1997) Differential Expression of Exons 1a and 1c in mRNAs for Sterol Regulatory Element Binding Protein-1 in Human and Mouse Organs and Cultured Cells, J. Clin. Invest. 99, 838–845.

    Article  PubMed  CAS  Google Scholar 

  14. Brown, M.S., and Goldstein, J.L. (1997) The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor, Cell 89, 331–340.

    Article  PubMed  CAS  Google Scholar 

  15. Horton, J.D., Bashmakov, Y., Shimomura, S., and Shimano, H. (1998) Regulation of Sterol Regulatory Element Binding Proteins in Livers of Fasted and Refed Mice, Proc. Natl. Acad. Sci. USA 95, 5987–5992.

    Article  PubMed  CAS  Google Scholar 

  16. Shimomura, I., Bashmakov, Y., Ikemoto, S., Horton, J.D., Brown, M.S., and Goldstein, J.L. (1999) Insulin Selectively Increases SREBP-1c mRNA in the Livers of Rats with Streptozotocin-Induced Diabetes, Proc. Natl. Acad. Sci. USA 96, 13656–13661.

    Article  PubMed  CAS  Google Scholar 

  17. Foretz, M., Pacot, C., Dugail, I., Lemarchand, P., Guichard, C., Le Liepvre, X., Berthelier-Lubrano, C., Spiegelman, B., Kim, J.B., Ferre, P., and Foufelle, F. (1999) ADD1/SREBP-1c is Required in the Activation of Hepatic Lipogenic Gene Expression by Glucose, Mol. Cell Biol. 19, 3760–3768.

    PubMed  CAS  Google Scholar 

  18. Liang, G., Yang, J., Horton, J.D., Hammer, R.E., Goldstein, J.L., and Brown, M.S. (2002) Diminished Hepatic Response to Fasting/Refeeding and Liver X Receptor Agonists in Mice with Selective Defeciency of Sterol Regulatory Element-Binding Protein-1c, J. Biol. Chem. 277, 9520–9528.

    Article  PubMed  CAS  Google Scholar 

  19. Xu, J., Cho, H., O'Malley, S., Park, J.H., and Clarke, S.D. (2002) Dietary Polyunsaturated Fats Regulate, Rat Liver Sterol Regulatory Element Binding Proteins-1 and-2 in Three Distinct Stages and by Different Mechanisms, J. Nutr. 132, 3333–3339.

    PubMed  CAS  Google Scholar 

  20. Yang, T., Espenshade, P.J., Wright, M.E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J.L., and Brown, M.S. (2002) Crucial Step in Cholesterol Homeostasis: Sterols Promote Binding of SCAP to INSIG-1, a Membrane Protein that Facilitates Retention of SREBPs in ER, Cell 110, 489–500.

    Article  PubMed  CAS  Google Scholar 

  21. Clarke, S.D., Romsos, D.R., and Leveille, G.A. (1976) Specific Inhibition of Hepatic Fatty Acid Synthesis Exerted by Dietary Linoleate and Linolenate in Essential Fatty Acid Adequate Rats, Lipids 11, 485–490.

    Article  PubMed  CAS  Google Scholar 

  22. Jump, D.B., Clarke, S.D., MacDougald, O., and Thelen, A. (1993) Polyunsaturated Fatty Acids Inhibit S14 Gene Transcription in Rat Liver and Cultured Hepatocytes, Proc. Natl. Acad. Sci. USA 90, 8454–8458.

    Article  PubMed  CAS  Google Scholar 

  23. Clarke, S.D., and Jump, D.B. (1994) Dietary Polyunsaturated Fatty Acid Regulation of Gene Transcription, Annu. Rev. Nutr. 14, 83–98.

    Article  PubMed  CAS  Google Scholar 

  24. Soncini, M., Yet, S.-F., Moon, Y., Chun, J.-Y., and Sul, H.S. (1995) Hormonal and Nutritional Control of the Fatty Acid Synthase Promoter in Transgenic Mice, J. Biol. Chem. 270, 30339–30343.

    Article  PubMed  CAS  Google Scholar 

  25. Fukuda, H., Iritani, N., Katsurada, A., and Noguchi, T. (1996) Insulin/Glucose-, Pyruvate- and Polyunsaturated Fatty Acid-Responsive Region(s) of Rat Fatty Acid Synthase Gene Promoter, Biochem Mol Biol Int, 38, 987–996.

    PubMed  CAS  Google Scholar 

  26. Waters, K.M., Miller, C.W., and Ntambi, J.M. (1997) Localization of a Polyunsaturated Fatty Acid Response Region in Stearoyl-CoA Desaturase Gene 1, Biochim. Biophys. Acta 1349, 33–42.

    PubMed  CAS  Google Scholar 

  27. Xu, J., Nakamura, M.T., Cho, H.P., and Clarke, S.D. (1999) Sterol Regulatory Element Binding Protein-1 Expression is Suppressed by Dietary Polyunsaturated Fatty Acids: A Mechanism for the Coordinate Suppression of Lipogenic Genes by Polyunsaturated Fats, J. Biol. Chem. 274, 23577–23583.

    Article  PubMed  CAS  Google Scholar 

  28. Mater, M.K., Thelen, A.P., Pan, D.A., and Jump, D.B. (1999) Sterol Response Element-binding Protein 1c (SREBP1c) Is Involved in the Polyunsaturated Fatty Acid Suppression of Hepatic S14 Gene Transcription, J. Biol. Chem. 274, 32725–32732.

    Article  PubMed  CAS  Google Scholar 

  29. Tabor, D.E., Kim, J.B., Spiegelman, B.M., and Edwards, P.A. (1999) Identification of Conserved cis-Elements and Transcription Factors Required for Sterol-Regulated Transcription of Stearoyl-CoA Desaturase 1 and 2, J. Biol. Chem. 274, 20603–20610.

    Article  PubMed  CAS  Google Scholar 

  30. Ntambi, J.M. (1999) Regulation of Stearoyl-CoA Desaturase by Polyunsaturated Fatty Acids and Cholesterol, J. Lipid Res. 40, 1549–1558.

    PubMed  CAS  Google Scholar 

  31. Nara, T.Y., He, W.S., Tang, C., Clarke, S.D., and Nakamura, M.T. (2002) The E-box like Sterol Regulatory Element Mediates the Suppression of Human Delta-6 Desaturase Gene by Highly Unsaturated Fatty Acids, Biochem. Biophys. Res. Commun. 296, 111–117.

    Article  PubMed  CAS  Google Scholar 

  32. Kim, H.J., Takahashi, M., and Ezaki, O. (1999) Fish Oil Feeding Decreases Mature Sterol Regulatory Element-Binding Protein 1 (SREBP-1) by Down-Regulation of SREBP-1c mRNA in Mouse Liver. A possible Mechanism for Down-Regulation of Lipogenic Enzyme mRNAs, J. Biol. Chem. 274, 25892–25898.

    Article  PubMed  CAS  Google Scholar 

  33. Yahagi, N., Shimano, H., Hasty, A.H., Amemiya-Kudo, M., Okazaki, H., Tamura, Y., Izuka, Y., Shionoiri, F., Ohashi, K., Osuga, J., Harada, K., Gotoda, T., Nagai, R., Ishibashi, S., and Yamada, N. (1999) A Crucial Role of Sterol Regulatory Element-Binding Protein-1 in the Regulation of Lipogenic Gene Expression by Polyunsaturated Fatty Acids, J. Biol. Chem. 274, 35840–35844.

    Article  PubMed  CAS  Google Scholar 

  34. Dobrosotskaya, I.Y., Seegmiller, A.C., Brown, M.S., Goldstein, J.L., and Rawson, R.B. (2002) Regulation of SREBP Processing and Membrane Lipid Production by Phospholipids in Drosophila, Science 296, 879–883.

    Article  PubMed  CAS  Google Scholar 

  35. Shimada, Y., Morita, T., and Sugiyama, K. (2003) Dietary Eritadenine and Ethanolamine Depress Fatty Acid Desaturase Activities by Increasing Liver Microsomal Phosphatidylethanolamine in Rats J. Nutr. 133, 758–765.

    PubMed  CAS  Google Scholar 

  36. Xu, J., Teran-Garcia, M., Park, J.H., Nakamura, M.T., and Clarke, S.D. (2001) Polyunsaturated Fatty Acids Suppress Hepatic Sterol Regulatory Element-Binding Protein-1 Expression by Accelerating Transcript Decay, J. Biol. Chem. 276, 9800–9807.

    Article  PubMed  CAS  Google Scholar 

  37. Nakamura, M.T., Tang, A.B., Villanueva, J., Halsted, C.H., and Phinney, S.D. (1992) Reduced Tissue Arachidonic Acid Concentration with Chronic Ethanol Feeding in Miniature Pigs, Am. J. Clin. Nutr. 56, 467–474.

    PubMed  CAS  Google Scholar 

  38. Phinney, S.D., Tang, A.B., Thurmond, D.C., Nakamura, M.T., and Stern, J.S. (1993) Abnormal Polyunsaturated Lipid Metabolism in the Obese Zucker Rat, with Partial Metabolic Correction by Gamma-Linolenic Acid Administration, Metabolism 42, 1127–1140.

    Article  PubMed  CAS  Google Scholar 

  39. Kast, H.R., Nguyen, C.M., Anisfeld, A.M., Ericsson, J., and Edwards, P.A. (2001) CTP: Phosphocholine Cytidylyl Transferase, a New Sterol- and SREBP-Responsive Gene, J. Lipid Res. 42, 1266–1272.

    PubMed  CAS  Google Scholar 

  40. Leone, T.C., Weinheimer, C.J., and Kelley, D.P. (1999) A Critical Role for the Peroxisome Proliferator-Activated Receptor Alpha (Pparapha) in the Cellular Fasting Response: The PPA-Ralpha-Null Mouse as a Model of Fatty Acid Oxidation Disorders, Proc. Natl. Acad. Sci. USA 96, 7473–7478.

    Article  PubMed  CAS  Google Scholar 

  41. Le May, C., Pineau, T., Bigot, K., Kohl, C., Girard, J., and Pegorier, J.P. (2000) Reduced Hepatic Fatty Acid Oxidation in Fasting PPARalpha-Null Mice is due to Impaired Mitochondrial Hydroxymethylglutaryl-CoA Synthase Gene Expression, FEBS Lett. 475, 163–166.

    Article  PubMed  Google Scholar 

  42. Hashimoto, T., Cook, W.S., Qi, C., Yeldandi, A.V., Reddy, J.K., and Rao, M.S. (2000) Defect in Peroxisome Proliferator-Activated Receptor Alpha-Inducible Fatty Acid Oxidation Determines the Severity of Hepatic Steatosis in Response to Fasting, J. Biol. Chem. 275, 28918–28928.

    Article  PubMed  CAS  Google Scholar 

  43. Kersten, S., Seydoux, J., Peters, J.M., Gonzalez, F.J., Desvergne, B., and Wahli, W. (1999) Peroxisome Proliferator-Activated Receptor Alpha Mediates the Adaptive Response to Fasting, J. Clin. Invest. 103, 1489–1498.

    Article  PubMed  CAS  Google Scholar 

  44. Forman, B.M. Chen, J., and Evans, R.M. (1997) Hypolipidemic Drugs, Polyunsaturated Fatty Acids, and Eicosanoids are Ligands for Peroxisome Proliferator-Activated Receptors Alpha and Delta, Proc. Natl. Acad. Sci. USA 94, 4312–4317.

    Article  PubMed  CAS  Google Scholar 

  45. Kliewer, S.A., Sundseth, S.S., Jones, S.A., Brown, P.J., Wisely, G.B., Koble, C.S., Devchand, P., Wahli, W., Wilson, T.M., Lenhard, J.M., and Lehmann, J.M. (1997) Fatty Acids and Eicosanoids Regulate Gene Expression Through Direct Interaction with Peroxisome Proliferator-Activated Receptors Alpha and Gamma, Proc. Natl. Acad. Sci. USA 94, 4318–4323.

    Article  PubMed  CAS  Google Scholar 

  46. He, W.S., Nara, T.Y., and Nakamura, M.T. (2002) Delayed Induction of Delta-6 and Delta-5 Desaturases by a Peroxisome Proliferator, Biochem. Biophys. Res. Commun. 299, 832–838.

    Article  CAS  Google Scholar 

  47. Lin, Q., Ruuska, S.E., Shaw, N.S., Dong, D., and Noy, N. (1999) Ligand Selectivity of the Peroxisome Proliferator-Activated Receptor Alpha, Biochemistry 38, 185–190.

    Article  PubMed  CAS  Google Scholar 

  48. Cowart, L.A., Wei, S., Hsu, M.-H., Johnson, E.F., Krishna, M.U., Falck, J.R., and Capdevila, J.H. (2002) The CYP4A Isoforms Hydroxylate Epoxyeicosatrienoic Acids to Form High Affinity Peroxisome Proliferator-Activated Receptor Ligands, J. Biol. Chem. 277, 35105–35112.

    Article  PubMed  CAS  Google Scholar 

  49. Peters, J.M., Hennuyer, N., Staels, B., Fruchart, J.C., Fievet, C., Gonzalez, F.J., and Auwerx J. (1997) Alterations in Lipoprotein Metabolism in Peroxisome Proliferator-Activated Receptor Alpha-Deficient Mice, J. Biol. Chem. 272, 27307–27312.

    Article  PubMed  CAS  Google Scholar 

  50. Tugwood, J.D., Holden, P.R., James, N.H., Prince, R.A., and Roberts, R.A. (1998) A Peroxisome Proliferator-Activated Receptor-Alpha (PPARalpha) cDNA Cloned from Guinea-Pig Liver Encodes a Protein with Similar Properties to the Mouse PPARalpha: Implications for Species Differences in Responses to Peroxisome Proliferators, Arch. Toxicol. 72, 169–177.

    Article  PubMed  CAS  Google Scholar 

  51. Palmer, C.N., Hsu, M.H., Griffin, K.J., Raucy, J.L., and Johnson, E.F. (1998) Peroxisome Proliferator Activated Receptor-Alpha Expression in Human Liver, Mol. Pharmacol. 53, 14–22.

    PubMed  CAS  Google Scholar 

  52. Mukherjee, R., Jow, L., Noonan, D., and McDonnell, D.P. (1994) Human and Rat Peroxisome Proliferator Activated Receptors (PPARs) Demonstrate Similar Tissue Distribution but Different Responsiveness to PPAR Activators, J. Steroid Biochem. Mol. Biol. 51, 157–166.

    Article  PubMed  CAS  Google Scholar 

  53. Auboeuf, D., Rieusset, J., Fajas, L., Vallier, P., Frering, V., Riou, J.P., Staels, B., Auwerx, J., Laville, M., and Vidal, H. (1997) Tissue Distribution and Quantification of the Expression of mRNAs of Peroxisome Proliferator-Activated Receptors and Liver X Receptor-Alpha in Humans: No Alteration in Adipose Tissue of Obese and NIDDM Patients, Diabetes 46, 1319–1327.

    Article  PubMed  CAS  Google Scholar 

  54. Cheon, Y.W., Wallig, M.A., Band, M.R., Beever, J.E., and Nakamura, M.T. (2004) Role of Peroxisome Proliferator Activated Receptor-Alpha in Adaptation to Fasting in a Pig Model (abstract), FASEB J. 18, A863.

    Google Scholar 

  55. Halminski M.A., Marsh, J.B., and Harrison, E.H. (1991) Differential Effects of Fish Oil, Safflower Oil and Palm Oil on Fatty Acid Oxidation and Glycerolipid Synthesis in Rat Liver, J. Nutr. 121, 1554–1561.

    PubMed  CAS  Google Scholar 

  56. Baillie, R.A., Takada, R., Nakamura, M., and Clarke, S.D. (1999) Coordinate Induction of Peroxisomal Acyl-CoA Oxidase and UCP-3 by Dietary Fish Oil: A Mechanism for Decreased Body Fat Deposition, Prostaglandins Leukot. Essent. Fatty Acids 60, 351–356.

    Article  PubMed  CAS  Google Scholar 

  57. Ide, T., Kobayashi, H., Ashakumary, L., Rouyer I.A., Takahashi, Y., Aoyama, T., Hashimoto, T., and Mizugaki, M. (2000) Comparative Effects of Perilla and Fish Oils on the Activity and Gene Expression of Fatty Acid Oxidation Enzymes in Rat Liver, Biochim. Biophys. Acta 1485, 23–35.

    PubMed  CAS  Google Scholar 

  58. Dallongeville, J., Bauge, E., Tailleux, A., Peters, J.M., Gonzalez, F.J., Fruchart, J.C., and Staels, B. (2001) Peroxisome Proliferator-Activated Receptor Alpha is Not Rate-Limiting for the Lipoprotein-Lowering Action of Fish Oil, J. Biol. Chem. 276, 4634–4639.

    Article  PubMed  CAS  Google Scholar 

  59. Kabir, Y., and Ide, T. (1996) Activity of Hepatic Fatty Acid Oxidation Enzymes in Rats Fed Alpha- Linolenic Acid, Biochim. Biophys. Acta 1304, 105–119.

    PubMed  Google Scholar 

  60. Takada, R., Saitoh, M., and Mori, T. (1994) Dietary γ-Linolenic Acid-Enriched Oil Reduces Body Fat Content and Induces Liver Enzyme Activities Relating to Fatty Acid β-Oxidation in Rats, J. Nutr. 124, 469–474.

    PubMed  CAS  Google Scholar 

  61. Fisher, E.A., Pan, M., Chen, W., Wu, X., Wang, H., Jamil, H., Sparks, J.D., and Williams, K.J. (2001) The Triple Threat to Nascent Apolipoprotein B. Evidence for Multiple, Distinct Degradative Pathways, J. Biol. Chem. 276, 27855–27863.

    Article  PubMed  CAS  Google Scholar 

  62. Murata, M., Kaji, H., Iida, K., Okimura, Y., and Chihara, K. (2001) Dual Action of Eicosapentaenoic Acid in Hepatoma Cells: Up-Regulation of Metabolic Action of Insulin and Inhibition of Cell Proliferation, J. Biol. Chem. 276, 31422–31428.

    Article  PubMed  CAS  Google Scholar 

  63. Miller, C.W., and Ntambi, J.M. (1996) Peroxisome Proliferators Induce Mouse Liver Stearoyl-Coa Desaturase 1 Gene Expression, Proc. Natl. Acad. Sci. USA 93, 9443–9448.

    Article  PubMed  CAS  Google Scholar 

  64. Tang, C., Cho, H.P., Nakamura, M.T., and Clarke, S.D. (2003) Regulation of Human Delta-6 Desaturase Gene Transcription: Identification of a Functional Direct Repeat-1 Element, J. Lipid Res. 44, 686–695.

    Article  PubMed  CAS  Google Scholar 

  65. Li, Y., Nara, T.Y., and Nakamura, M.T. (2004) Regulation of Highly Unsaturated Fatty Acid Synthesis: A New Physiological Role of Peroxisome Proliferator-Activated Receptor Alpha (abstract), FASEB J. 18, A863.

    Article  Google Scholar 

  66. Hayhurst, G.P., Lee, Y.H., Lambert, G., Ward, J.M. and Gonzalez, F.J. (2001) Hepatocyte Nuclear Factor-4alpha (Nuclear Receptor 2A1) is Essential for Maintenance of Hepatic Gene Expression and Lipid Homeostasis, Mol. Cell Biol. 21, 1393–1403.

    Article  PubMed  CAS  Google Scholar 

  67. Hertz, R., Magenheim, J., Berman, I., and Bar-Tana, J. (1998) Fatty Acyl-CoA Thioesters are Ligands of Hepatic Nuclear Factor-4alpha, Nature 392, 512–516.

    Article  PubMed  CAS  Google Scholar 

  68. Dhe-Paganon, S., Duda, K., Iwamoto, M., Chi, Y.I., and Shoelson, S.E. (2002) Crystal Structure of the HNF4alpha Ligand Binding Domain in Complex with Endogenous Fatty Acid Ligand, J. Biol. Chem. 277, 37973–37976.

    Article  PubMed  CAS  Google Scholar 

  69. Odom, D.T., Zizlsperger, N., Gordon, D.B., Bell, G.W., Rinaldi, N.J., Murray, H.L., Volkert, T.L., Schreiber, J., Rolfe, P.A., Gifford, D.K., Fraenkel, E., Bell, G.I., and Young, R.A. (2004) Control of Pancreas and Liver Gene Expression by HNF Transcription Factors, Science 303, 1378–1381.

    Article  PubMed  CAS  Google Scholar 

  70. Repa, J.J., and Mangelsdorf, D.J. (2002) The Liver X Receptor Gene Team: Potential New Players in Atherosclerosis, Nat. Med. 8, 1243–1248.

    Article  PubMed  CAS  Google Scholar 

  71. Edwards, P.A., Kast, H.R., and Anisfeld, A.M. (2002) BAREing it All: The Adoption of LXR and FXR and Their Roles in Lipid Homeostasis, J. Lipid Res. 43, 2–12.

    PubMed  CAS  Google Scholar 

  72. Repa, J.J., Liang, G., Ou, J., Bashmakov, Y., Lobaccaro, J.M., Shimomura, I., Shan, B., Brown, M.S., Goldstein, J. L., and Mangelsdorf, D. J. (2000) Regulation of Mouse Sterol Regulatory Element-Binding Protein-1c Gene (SREBP-1c) by Oxysterol Receptors, LXRalpha and LXRbeta, Genes Dev. 14, 2819–2830.

    Article  PubMed  CAS  Google Scholar 

  73. Ou, J., Tu, H., Shan, B., Luk, A., DeBose-Boyd, R.A., Bashmakov, Y., Goldstein, J.L., and Brown, M.S. (2001) Unsaturated Fatty Acids Inhibit Transcription of the Sterol Regulatory Element-Binding Protein-1c (SREBP-1c) Gene by Antagonizing Ligand-Dependent Activation of the LXR, Proc. Natl. Acad. Sci. USA 98, 6027–6032.

    Article  PubMed  CAS  Google Scholar 

  74. Yoshikawa, T., Shimano, H., Yahagi, N., Ide, T., Amemiya-Kudo, M., Matsuzaka, T., Nakakuki, M., Tomita, S., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., Takahashi, A., Sone, H., Osuga Ji, J., Gotoda, T., Ishibashi, S., and Yamada, N. (2002) Polyunsaturated Fatty Acids Suppress Sterol Regulatory Element-Binding Protein 1c Promoter Activity by Inhibition of Liver X Receptor (LXR) Binding to LXR Response Elements, J. Biol. Chem. 277, 1705–1711.

    Article  PubMed  CAS  Google Scholar 

  75. Pawar, A., Botolin, D., Mangelsdorf, D.J., and Jump, D.B. (2003) The Role of Liver X Receptor-{alpha} in the Fatty Acid Regulation of Hepatic Gene Expression, J. Biol. Chem. 278, 40736–40743.

    Article  PubMed  CAS  Google Scholar 

  76. Yamashita, H., Takenoshita, M., Sakurai, M., Bruick, R.K., Henzel, W.J., Shillinglaw, W., Arnot, D., and Uyeda, K. (2001) A Glucose-Responsive Transcription Factor that Regulates Carbohydrate Metabolism in the Liver, Proc. Natl. Acad. Sci. USA 98, 9116–9121.

    Article  PubMed  CAS  Google Scholar 

  77. Letexier, D., Pinteur, C., Large, V., Frering, V., and Beylot, M. (2003) Comparison of the Expression and Activity of the Lipogenic Pathway in Human and Rat Adipose Tissue, J. Lipid Res. 44, 2127–2134.

    Article  PubMed  CAS  Google Scholar 

  78. Kabashima, T., Kawaguchi, T., Wadzinski, B.E., and Uyeda, K. (2003) Xylulose 5-Phosphate Mediates Glucose-Induced Lipogenesis by Xylulose 5-Phosphate-Activated Protein Phosphatase in Rat Liver, Proc. Natl. Acad. Sci. USA 100, 5107–5112.

    Article  PubMed  CAS  Google Scholar 

  79. Shih, H.M., and Towle, H.C. (1992) Definition of the Carbohydrate Response Element of the Rat S14 Gene. Evidence for a Common Factor Required for Carbohydrate Regulation of Hepatic Genes, J. Biol. Chem. 267, 13222–13228.

    PubMed  CAS  Google Scholar 

  80. Rufo, C., Teran-Garcia, M., Nakamura, M.T., Koo, S.H., Towle, H.C., and Clarke, S.D. (2001) Involvement of a Unique Carbohydrate-Responsive Factor in the Glucose Regulation of Rat Liver Fatty-Acid Synthase Gene Transcription J. Biol. Chem. 276, 21969–21975.

    Article  PubMed  CAS  Google Scholar 

  81. O'Callaghan, B.L., Koo, S.H., Wu, Y., Freake, H.C., and Towle, H.C. (2001) Glucose Regulation of the Acetyl-CoA Carboxylase Promoter PI in Rat Hepatocytes, J. Biol. Chem. 276, 16033–16039.

    Article  PubMed  Google Scholar 

  82. Kawaguchi, T., Osatomi, K., Yamashita, H., Kabashima, T., and Uyeda, K. (2002) Mechanism for Fatty Acid “Sparing” Effect on Glucose-Induced Transcription: Regulation of Carbohydrate-Responsive Element-Binding Protein by AMP-Activated Protein Kinase, J. Biol. Chem. 277, 3829–3835.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu T. Nakamura.

About this article

Cite this article

Nakamura, M.T., Cheon, Y., Li, Y. et al. Mechanisms of regulation of gene expression by fatty acids. Lipids 39, 1077–1083 (2004). https://doi.org/10.1007/s11745-004-1333-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1333-0

Keywords

Navigation