Skip to main content
Log in

Subtractive transcriptomes of fruit and leaf reveal differential representation of transcripts in Azadirachta indica

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Azadirachta indica produces a wide array of secondary metabolites of medicinal and agricultural importance in an organ-specific or abundant manner. We used suppression subtractive hybridization strategy to clone and identify the rare and differentially expressed transcripts in fruit and leaf which could be missed out by high-throughput sequencing. Subtractive ESTs were generated, assembled and their comparison showed that around 61.8 % and 33.9 % unigenes were unique to A. indica fruit and leaf, respectively. Around 12.3 % and 16.5 % of our unigenes were not represented in the available A. indica draft genome and transcriptomes sequences, respectively, indicating a significant fraction of novel and rare expressing transcripts. Blast2GO functional annotation could assign 721 Gene Ontology (GO) terms to 50 % of the assembled unigenes, and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping mapped 66 (27.96 %) unigenes onto 39 different pathways among which 26 (11 %) were metabolism-related. Ten cytochrome p450s were identified, and their KEGG and phylogenetic analysis indicated that five of them were secondary metabolism-related which could be functioning at specific pathway steps to synthesize organ-specific compounds. For reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, we tested three housekeeping genes to be used as internal reference, among which elongation initiation factor 4A was found to be most stable. Expression analysis of secondary metabolism-related candidates showed their variable and tissue-preferential expression indicating their relative enzymatic activities and roles in partitioning of secondary metabolites in different organs. Our small-scale subtractive ESTs being longer in read length provide a useful resource for studying organ-preferential secondary metabolic pathways operating in A. indica and would complement the available draft genome/transcriptome(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CYP:

Cytochrome p450

EST:

Expressed sequence tag

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

NCBI:

National centre for biotechnology information

RT-qPCR:

Reverse transcription quantitative polymerase chain reaction

SRA:

Sequence read archive

SSH:

Suppression subtractive hybridization

TSA:

Transcriptome shotgun assembly

References

  • Andersen CL, Jensen JL, Rntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Ayabe SI, Akashi T (2006) Cytochrome P450 in flavonoid metabolism. Phytochem Rev 5:271–282

    Article  CAS  Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum anti-fungal defense. Science 323:101–106

    Article  PubMed  CAS  Google Scholar 

  • Beuning LL, Bulley SM, Chagne D, Marsh KB, Matich AJ, Montefiori M, Newcomb RD, Schaffer RJ, Usadel B, Allan AC, Boldingh HL, Bowen JH, Davy MW, Eckloff R, Ferguson AR, Fraser LG, Gera E, Hellens RP, Janssen BJ, Klages K, Lo KR, MacDiarmid RM, Nain B, McNeilage MA, Rassam M, Richardson AC, Rikkerink EH, Ross GS, Schröder R, Snowden KC, Souleyre EJ, Templeton MD, Walton EF, Wang D, Wang MY, Wang YY, Wood M, Wu R, Yauk YK, Laing WA (2008) Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics 9:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswas K, Chattopadhyay I, Banerjee RK, Bandhopadhyay U (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 82:1336–1345

    CAS  Google Scholar 

  • Boguski MS, Toltoshev CM, Bassett DE (1994) Gene discovery in dbEST. Science 265:1993–1994

    Article  PubMed  CAS  Google Scholar 

  • Bombarely A, Merchante C, Csukasi F, Cruz-Rus E, Caballero JL, Medina-Escobar N, Blanco-Portales R, Botella MA, Muñoz-Blanco J, Sánchez-Sevilla JF, Valpuesta V (2010) Generation and analysis of ESTs from strawberry (Fragaria x ananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genomics 11:503

    Article  PubMed  PubMed Central  Google Scholar 

  • Brahmachari G (2004) Neem – an omnipotent plant: a retrospection. ChemBioChem 5:408–421

    Article  PubMed  CAS  Google Scholar 

  • Carelli M, Biazzi E, Panara F, Tava A, Scaramelli L, Porceddu A, Graham N, Odoardi M, Piano E, Arcioni S, May S, Scotti C, Calderini O (2011) Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. Plant Cell 23:3070–3081

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chapple C (1998) Molecular–genetic analysis of plant cytochrome p450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol 49:311–343

    Article  PubMed  CAS  Google Scholar 

  • Chatzopoulou FM, Makris AM, Argiriou A, Degenhardt J, Kanellis AK (2010) EST analysis and annotation of transcripts derived from a trichome-specific cDNA library from Salvia fruticosa. Plant Cell Rep 29:523–534

    Article  PubMed  CAS  Google Scholar 

  • Christoffersen RE, Percival FW, Bozak K (1995) Drug metabolism and drug interactions. In: Durst F, and O’Keefe DP, editors. Freund, UK. pp 207–219

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • da Hao C, Ge G, Xiao P, Zhang Y, Yang L (2011) The first insight into the tissue specific taxus transcriptome via Illumina second generation sequencing. PLoS One 6:e21220

    Article  CAS  PubMed Central  Google Scholar 

  • Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11:70

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchick A, Moqaddam F, Huang B, Lukyanov S, Konstantin L, Gurskaya N, Sverdlov E, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ehlting J, Hamberger B, Million-Rousseau R, Werck-Reichhard D (2006) Cytochromes P450 in phenolic metabolism. Phytochem Rev 5:239–270

    Article  CAS  Google Scholar 

  • Endo M, Kokubun Y, Higaashitani A, Tabata S, Watanabe M (2000) Analysis of expressed sequence tags of flower buds in Lotus japonicus. DNA Res 7:213–216

    Article  PubMed  CAS  Google Scholar 

  • Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40:47–59

    Article  PubMed  Google Scholar 

  • Fernández P, Paniego N, Lew S, Hopp HE, Heinz RA (2003) Differential representation of sunflower ESTs in enriched organ-specific cDNA libraries in a small scale sequencing project. BMC Genomics 4:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Galla G, Barcaccia G, Ramina A, Collani S, Alagna F, Baldoni L, Cultrera NG, Martinelli F, Sebastiani L, Tonutti P (2009) Computational annotation of genes differentially expressed along olive fruit development. BMC Plant Biol 9:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Girish K (2008) Neem – a green treasure. J Biol 4:102–111

    Google Scholar 

  • Gulyani V, Khurana P (2011) Identification and expression profiling of drought-regulated genes in mulberry (Morus sp.) by suppression subtractive hybridization of susceptible and tolerant cultivars. Tree Genet Genomes 7:725–738

    Article  Google Scholar 

  • Gupta V, Raghuvanshi S, Gupta A, Saini N, Gaur A, Khan MS, Gupta RS, Singh J, Duttamajumder SK, Srivastava S, Suman A, Khurana JP, Kapur R, Tyagi AK (2010) The water-deficit stress- and red-rot-related genes in sugarcane. Funct Integr Genomics 10:207–214

    Article  PubMed  CAS  Google Scholar 

  • Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE (2012) Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 53:1535–1545

    Article  PubMed  CAS  Google Scholar 

  • He L, Xu X, Li Y, Li C, Zhu Y, Yan H, Sun Z, Sun C, Song J, Bi Y, Shen J, Cheng R, Wang Z, Xiao W, Chen S (2013) Transcriptome analysis of buds and leaves using 454 pyrosequencing to discover genes associated with the biosynthesis of active ingredients in Lonicera japonica thunb. PLoS One 8:4

    Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krishnan NM, Pattnaik S, Deepak SA, Hariharan AK, Gaur P, Chaudhary R, Jain P, Vaidyanathan S, Bharath Krishna PG, Panda B (2011) De novo sequencing and assembly of Azadirachta indica fruit transcriptome. Curr Sci 101:1553–1561

    CAS  Google Scholar 

  • Krishnan NM, Pattnaik S, Jain P, Gaur P, Choudhary R, Vaidyanathan S, Deepak S, Hariharan AK, Krishna PB, Nair J, Varghese L, Valivarthi NK, Dhas K, Ramaswamy K, Panda B (2012) A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC Genomics 13:464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kumar AV (2003) Neem for the industry or for the common man: where does India stand. Curr Sci 84:265–267

    Google Scholar 

  • Kumar R, Wallis JG, Skidmore C, Browse J (2006) A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation. Plant J 48:920–932

    Article  PubMed  CAS  Google Scholar 

  • Lacombe E, Hawkins S, Van DJ, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima PJ (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Leplé JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefèbvre A, Joseleau JP, Grima-Pettenati J, De Rycke R, Andersson-Gunnerås S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Down-regulation of cinnamyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Korir NK, Liu L, Shangguan L, Wang Y, Han J, Chen M, Fang J (2012) Microarray analysis of differentially expressed genes engaged in fruit development between Prunus mume and Prunus armeniaca. J Plant Physiol 169:1776–1788

    Article  PubMed  CAS  Google Scholar 

  • Lin YL, Lai ZX (2010) Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Sci 178:359–365

    Article  CAS  Google Scholar 

  • Luo H, Sun C, Li Y, Wu Q, Song J, Wang D, Jia X, Li R, Chen S (2010) Analysis of expressed sequence tags from the Huperzia serrata leaf for gene discovery in the areas of secondary metabolite biosynthesis and development regulation. Physiol Plant 139:1–12

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4:R20

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra RN, Reddy PS, Nair S, Markandeya G, Reddy AR, Sopory SK, Reddy MK (2007) Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetum glaucum seedlings. Plant Mol Biol 64:713–732

    Article  PubMed  CAS  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  PubMed  CAS  Google Scholar 

  • Nelson D, Werck-Reichhart D (2011) A P450 – centric view of plant evolution. Plant J 66:194–211

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge J, Benning C (2000) Unravelling plant metabolism by EST analysis. Curr Opin Plant Biol 3:224–228

    Article  PubMed  CAS  Google Scholar 

  • Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto S, Kanehisa M (2008) KEGG atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36:W423–W426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ong WD, Voo LY, Kumar VS (2012) De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing. PLoS One 7:10

    Google Scholar 

  • Pang Y, Peel GJ, Wright E, Wang Z, Dixon RA (2007) Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol 145:601–615

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pauw B, Hilliou FA, Martin VS, Chatel G, de Wolf CJ, Champion A, Pré M, van Duijn B, Kijne JW, van der Fits L, Memelink J (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem 279:52940–52948

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  PubMed  CAS  Google Scholar 

  • Rajakani R, Narnoliya L, Sangwan NS, Sangwan RS, Gupta V (2013) Activated charcoal-mediated RNA extraction method for Azadirachta indica and plants highly rich in polyphenolics, polysaccharides and other complex secondary compounds. BMC Res Notes 6:125

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates RM, Chappell J (2001) Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum). Arch Biochem Biophys 393:222–235

    Article  PubMed  CAS  Google Scholar 

  • Ramilowski JA, Sawai S, Seki H, Mochida K, Yoshida T, Sakurai T, Muranaka T, Saito K, Daub CO (2013) Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals. Plant Cell Physiol 54:697–710

    Article  PubMed  CAS  Google Scholar 

  • Saga H, Ogawa T, Kai K, Suzuki H, Ogata Y, Sakurai N, Shibata D, Ohta D (2012) Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol Plant Microbe Interact 25:684–696

    Article  PubMed  CAS  Google Scholar 

  • Sahu BB, Shaw BP (2009) Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization. BMC Plant Biol 9:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Ballesta MT, Lluch Y, Gosalbes MJ, Zacarias L, Granell A, Lafuente MT (2003) A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citrus fruit. Planta 218:65–70

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Prot 3:1101–1108

    Article  CAS  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    Article  PubMed  CAS  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Wang Y, Li J, Zhang H, Ding L (2007) Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem 102:664–668

    Article  CAS  Google Scholar 

  • Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan XC (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun G, Yang Y, Xie F, Wen JF, Wu J, Wilson IW, Tang Q, Liu H, Qiu D (2013) Deep sequencing reveals transcriptome re-programming of Taxus × media cells to the elicitation with methyl jasmonate. PLoS One 8:4

    Google Scholar 

  • Takemura M, Fujishige K, Hyodo H, Ohashi Y, Kami C, Nishii A, Ohyama K, Kohchi T (1999) Systematic isolation of genes expressed at low levels in inflorescence apices of Arabidopsis thaliana. DNA Res 6:275–282

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1

    Article  Google Scholar 

  • Wawrzyńska A, Lewandowska M, Hawkesford MJ, Sirko A (2005) Using a suppression subtractive library-based approach to identify tobacco genes regulated in response to short-term sulphur deficit. J Exp Bot 56:1575–1590

    Article  PubMed  Google Scholar 

  • Wei YZ, Hu FC, Hu GB, Li XJ, Huang XM, Wang HC (2011) Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS One 6:e19455

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder:a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84

    Article  CAS  Google Scholar 

  • Xu L, Yuan Y, Zhang L, Wan L, Zheng Y, Zhou P, Li D (2011) Identification and characterization of differential gene expression in the mesocarp and kernel of oil palm nuts using suppression subtractive hybridization. Tree Genet Genomes 7:999–1010

    Article  Google Scholar 

  • Yong SYC, Choong CY, Cheong PL, Pang SL, Nor Amalina R, Harikrishna JA, Mat-Isa MN, Hedley P, Milne L, Vaillancourt R, Wickneswari R (2011) Analysis of ESTs generated from inner bark tissue of an Acacia auriculiformis × Acacia mangium hybrid. Tree Genet Genomes 7:143–152

    Article  Google Scholar 

  • Yuan Y, Song L, Li M, Liu G, Chu Y, Ma L, Zhou Y, Wang X, Gao W, Qin S, Yu J, Wang X, Huang L (2012) Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb. BMC Genomics 13:195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan – an integration platform for the signature recognition methods in InterPro. Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Council of Scientific and Industrial Research, Govt. of India, under the grant HCP002. Research fellowship from University Grants Commission, Govt. of India, is also acknowledged. We thank CSIR-National Botanical Research Institute, India for providing A. indica tissues. The authors wish to express their sincere thanks to the Director, CSIR-CIMAP, for encouragement and providing necessary facilities.

Data archiving statement

All the subtractive ESTs were deposited in NCBI GenBank and accessions were obtained. The GenBank ID for the fruit-specific subtractive library is LIBEST_027324 and the accession numbers of all ESTs from fruit library are: JK126220-JK126259, JK341301-JK341454, JK479929-JK480085 and JK623987-JK624163. The GenBank ID for the leaf-specific subtractive library is LIBEST_027962 and all ESTs from this library were submitted under the accession numbers: JK998954-JK999475. A complete list of GenBank accession numbers of our submitted sequences is provided in Tables S1 and S2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikrant Gupta.

Additional information

Communicated by W. Ratnam

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Snapshot representation of SRA BLAST analysis of in-house generated A. indica unigenes with A. indica var. Indica transcriptomes showing partial homology (PPT 1433 kb)

Fig. S2

Blast2GO functional annotation of A. indica unigenes. a GO-level distribution of separately assembled A. indica fruit-specific SSH library. b GO-level distribution of separately assembled A. indica leaf-specific SSH library. c Length distribution, d E-value distribution and e number of GO terms for sequences with length distribution (PPT 280 kb)

Fig. S3

Phylogenetic analysis of A. indica cytochrome p450 unigenes with Arabidopsis CYPs. A neighbor-joining tree was constructed for identified ten A. indica cytochrome p450s along with 482 full-length CYPs from Arabidopsis thaliana. Cytochrome p450 clans and families identified for A. indica CYPs are marked (PPT 2651 kb)

Fig. S4

Quality of total RNA used and specificity of real-time PCR primer pairs. a Total RNA isolated from A. indica fruit, mesocarp, leaf and endocarp (shown in triplicates). b Specific RT-PCR amplification of A. indica candidates selected for expression analysis (PPT 701 kb)

Fig. S5

Melting (dissociation) curve analysis to check specific amplification during RT-qPCR (PPT 2324 kb)

Table S1

GenBank accession numbers for all in-house A. indica subtracted ESTs from fruit-specific library (DOC 625 kb)

Table S2

GenBank accession numbers for all in-house A. indica subtracted ESTs from leaf-specific library (DOC 640 kb)

Table S3

BLAST analysis of in-house unigenes against Azadirachta indica draft genome and transcriptomes at NCBI. (Sheet-1): SRA BLAST against A. indica (var. Indica) draft genome sequence by SRA BLAST analysis. (Sheet-2): BLASTN against A. indica draft genome sequence in TSA database. (Sheet-3): SRA BLAST against A. indica (var. Indica) transcriptomes by SRA BLAST analysis (XLS 55 kb)

Table S4

BLASTX analysis of in-house A. indica unigenes against nr database of NCBI (XLS 103 kb)

Table S5

A. indica unigenes mapped in KEGG pathways with their EC numbers and pathway ID (XLS 27 kb)

Table S6

Blast2GO functional annotation of A. indica unigenes. GO terms and GO IDs associated with the unigenes are given. (Sheet-1): biological process. (Sheet-2): molecular function. (Sheet-3): cellular components (XLS 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajakani, R., Narnoliya, L., Sangwan, N.S. et al. Subtractive transcriptomes of fruit and leaf reveal differential representation of transcripts in Azadirachta indica . Tree Genetics & Genomes 10, 1331–1351 (2014). https://doi.org/10.1007/s11295-014-0764-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0764-7

Keywords

Navigation