Skip to main content

Advertisement

Log in

Cytochromes P450 in phenolic metabolism

  • Original Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Three independent cytochrome P450 enzyme families catalyze the three rate-limiting hydroxylation steps in the phenylpropanoid pathway leading to the biosynthesis of lignin and numerous other phenolic compounds in plants. Their characterization at the molecular and enzymatic level has revealed an unexpected complexity of phenolic metabolism as the major route involves shikimate/quinate esters and alcohol/aldehyde intermediates. Engineering expression of CYP73s (encoding cinnamate 4-hydroxylase), CYP98s (encoding 4-coumaroylshikimate 3′-hydroxylase) or CYP84s (encoding coniferaldehyde 5-hydroxylase) leads to modified lignin and seed phenolic composition. In particular CYP73s and CYP98s also play essential roles in plant growth and development, while CYP84 constitutes a check-point for the synthesis of syringyl lignin and sinapate esters. Although recent data shed new light on the main path for lignin synthesis, they also raised new questions. Mutants and engineered plants revealed the existence of (an) alternative pathway(s), which most likely involve(s) different precursors and oxygenases. On the other hand, phylogenetic analysis of plant genomes show the existence of P450 gene duplications in each family, which may have led to the acquisition of novel or additional physiological functions in planta. In addition to the main lignin pathway, P450s contribute to the biosynthesis of many bioactive phenolic derivatives, with potential applications in medicine and plant defense, including lignans, phenylethanoids, benzoic acids, xanthones or quinoid compounds. A very small proportion of these P450s have been characterized so far, and rarely at a molecular level. The possible involvement of P450s in salicylic acid is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd El-Mawla AMA, Schmidt W, Beerhues L (2001) Cinnamic acid is a precursor of benzoic acids in cell cultures of Hypericum androsaemum L. but not in cell cultures of Centaurium erythraea RAFN. Planta 212:288–293

    PubMed  CAS  Google Scholar 

  • Abdulrazzak N, Pollet B, Ehlting J, Larsen K, Asnaghi C, Ronseau S, Proux C, Erhardt M, Seltzer V, Renou JP, Ullmann P, Pauly M, Lapierre C, Werck-Reichhart D (2006) A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol 140:30–48

    PubMed  CAS  Google Scholar 

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109

    PubMed  CAS  Google Scholar 

  • Anterola AM, Jeon JH, Davin LB, Lewis NG (2002) Transcriptional control of monolignol biosynthesis in Pinus taeda. (Factors affecting monolignol ratios and carbon allocations in phenylpropanoid metabolism). J Biol Chem 277:18272–18280

    PubMed  CAS  Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    PubMed  CAS  Google Scholar 

  • Ayabe S-I, Akashi T (2006) Cytochrome P450 in flavonoid metabolism. Phytochem Rev, this issue

  • Bartlett DJ, Poulton JE, Butt VS (1972) Hydroxylation of p-coumaric acid by illuminated chloroplasts from spinach beet leaves. FEBS Lett 23:265–267

    CAS  Google Scholar 

  • Batard Y, Schalk M, Pierrel MA, Zimmerlin A, Durst F, Werck-Reichhart D (1997) Regulation of the cinnamate 4-hydroxylase (CYP73A1) in Jerusalem artichoke tubers in response to wounding and chemical treatments. Plant Physiol 113:951–959

    PubMed  CAS  Google Scholar 

  • Batard Y, Hehn A, Nedelkina S, Schalk M, Pallett K, Schaller H, Werck-Reichhart D (2000) Increasing expression of P450 and P450-reductase proteins from monocots in heterologous systems. Arch Biochem Biophys 379:161–169

    PubMed  CAS  Google Scholar 

  • Batz O, Logemann E, Reinold S, Hahlbrock K (1998) Extensive reprogramming of primary and secondary metabolism by fungal elicitor or infection in parsley cells. Biol Chem 379:1127–1135

    Article  PubMed  CAS  Google Scholar 

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350

    PubMed  CAS  Google Scholar 

  • Beerhues L (1996) Benzophenone synthase from cultured cells of Centaurium erythraea. FEBS Lett 383:264–266

    PubMed  CAS  Google Scholar 

  • Bell-Lelong DA, Cusumano JC, Meyer K, Chapple C (1997) Cinnamate-4-hydroxylase expression in Arabidopsis (regulation in response to development and the environment). Plant Physiol 113:729–738

    PubMed  CAS  Google Scholar 

  • Bennett GJ, Lee H-H, Das NP (1990) Biosynthesis of mangostin. Part 1. The origin of the xanthone skeleton. J Chem Soc Perkin Trans 1:2671–2676

    Google Scholar 

  • Bernards M, Lewis N (1998) The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry 47:915–933

    PubMed  CAS  Google Scholar 

  • Betz C, McCollum TG, Mayer RT (2001) Differential expression of two cinnamate 4-hydroxylase genes in ‘Valencia’ orange (Citrus sinensis Osbeck). Plant Mol Biol 46:741–748

    PubMed  CAS  Google Scholar 

  • Blee K, Choi JW, Connell AP, Jupe SC, Schuch W, Lewis NG, Bolwell GP (2001) Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco. Phytochemistry 57:1159–1166

    PubMed  CAS  Google Scholar 

  • Blount JW, Korth KL, Masoud SA, Rasmussen S, Lamb C, Dixon RA (2000) Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol 122:107–116

    PubMed  CAS  Google Scholar 

  • Blount JW, Masoud SA, Sumner L, Huhman D, Dixon RA (2002) Over-expression of cinnamate 4-hydroxylase leads to increased accumulation of acetosyringone in elicited tobacco cell-suspension cultures. Planta 214:902–910

    PubMed  CAS  Google Scholar 

  • Boatright J, Negre F, Chen X, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol 135:1993–2011

    PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    PubMed  CAS  Google Scholar 

  • Boniwell J, Butt V (1986) Flavin nucleotide-dependent 3-hydroxylation of 4-hydroxyphenylpropanoid carboxylic acids by particulate preparations from potato tubers. Z Naturforsch 41:56–60

    CAS  Google Scholar 

  • Bourgaud F, Hehn A, Larbat R, Doerper S, Gontier E, Kellner S, Matern U (2006) Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev, this issue

  • Canel C, Moraes RM, Dayan FE, Ferreira D (2000) Podophyllotoxin. Phytochemistry 54:115–120

    PubMed  CAS  Google Scholar 

  • Chapple CCS, Vogt T, Ellis BE, Somerville CR (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424

    PubMed  CAS  Google Scholar 

  • Coquoz JL, Buchala A, Metraux JP (1998) The biosynthesis of salicylic acid in potato plants. Plant Physiol 117:1095–1101

    PubMed  CAS  Google Scholar 

  • Costa MA, Bedgar DL, Moinuddin SGA, Kim KW, Cardenas CL, Cochrane FC, Shockey JM, Helms GL, Amakura Y, Takahashi H, Milhollan JK, Davin LB, Browse J, Lewis NG (2005) Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation. Phytochemistry 66:2072–2091

    PubMed  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    PubMed  CAS  Google Scholar 

  • Dua VK, Ojha VP, Roy R, Joshi BC, Valecha N, Devi CU, Bhatnagar MC, Sharma VP, Subbarao SK (2004) Anti-malarial activity of some xanthones isolated from the roots of Andrographis paniculata. J Ethnopharmacol 95:247–251

    PubMed  CAS  Google Scholar 

  • Ehlting J, Mattheus N, Aeschliman DS, Li E, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD, Samuels L, Ritland K, Ellis BE, Bohlmann J, Douglas CJ (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640

    PubMed  CAS  Google Scholar 

  • Eigtved P, Jensen OS, Kjaer A, Wieczorkowska E (1976) Biosynthesis of a quinol glucoside in cornus. Acta Chem Scand B:182–184

    Google Scholar 

  • Facchini PJ, Huber-Allanach KL, Tari LW (2000) Plant aromatic amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 54:121–138

    PubMed  CAS  Google Scholar 

  • Fahrendorf T, Dixon RA (1993) Stress responses in alfalfa (Medicago sativa L.) XVIII: Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Arch Biochem Biophys 305:509–515

    PubMed  CAS  Google Scholar 

  • Fitzpatrick PF (2003) Mechanism of aromatic amino acid hydroxylation. Biochemistry 42:14083–14091

    PubMed  CAS  Google Scholar 

  • Frank MR, Deyneka JM, Schuler MA (1996) Cloning of wound-induced cytochrome P450 monooxygenases expressed in pea. Plant Physiol 110:1035–1046

    PubMed  CAS  Google Scholar 

  • Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22:223–234

    PubMed  CAS  Google Scholar 

  • Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C (2002a) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30:47–59

    CAS  Google Scholar 

  • Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, Chapple C (2002b) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33–45

    CAS  Google Scholar 

  • Fujii T, Nakamura K, Shibuya K, Tanase S, Gotoh O, Ogawa T, Fukuda H (1997) Structural characterization of the gene and corresponding cDNA for the cytochrome P450rm from Rhodotorula minuta which catalyzes formation of isobutene and 4-hydroxylation of benzoate. Mol Gen Genet 256:115–120

    PubMed  CAS  Google Scholar 

  • Fujita M, Inoue T (1981) Further studies on the biosynthesis of mangiferin in anemarrhena asphodeloides: hydroxylation of the shikimate-derived ring. Phytochemistry 20:2183–2185

    CAS  Google Scholar 

  • Funk C, Brodelius P (1994) Vanilla Planifolia Andrews: in vitro biosynthesis of vanillin and other phenylpropanoid derivatives. In: Bajaj YPS (ed) Medicinal and aromatic plants VI. Biotechnology in agriculture and forestry, vol 26. Springer-Verlag, Berlin, Heidelberg, New York, pp. 377–402

    Google Scholar 

  • Gang DR, Beuerle T, Ullmann P, Werck-Reichhart D, Pichersky E (2002) Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Plant Physiol 130:1536–1544

    PubMed  CAS  Google Scholar 

  • Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567

    PubMed  CAS  Google Scholar 

  • Gopalakrishnan G, Banumathi B, Suresh G (1997) Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives. J Nat Prod 60:519–524

    PubMed  CAS  Google Scholar 

  • van Gorcom R, Boschloo J, Kuijvenhoven A, Lange J, van Vark A, Bos C, van Balken J, Pouwels P, van den Hondel C (1990) Isolation and molecular characterisation of the benzoate-para-hydroxylase gene (bphA) of Aspergillus niger: a member of a new gene family of the cytochrome P450 superfamily. Mol Gen Genet 223:192–197

    PubMed  Google Scholar 

  • Graf BA, Milbury PE, Blumberg JB (2005) Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food 8:281–290

    PubMed  CAS  Google Scholar 

  • Grand C (1984) Ferulic acid 5-hydroxylase: a new cytochrome P-450-dependent enzyme from higher plant microsomes involved in lignin synthesis. FEBS Lett 169:7–11

    CAS  Google Scholar 

  • Gravot A, Larbat R, Hehn A, Lievre K, Gontier E, Goergen JL, Bourgaud F (2004) Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant—Ruta graveolens—exhibiting low sensitivity to psoralen inactivation. Arch Biochem Biophys 422:71–80

    PubMed  CAS  Google Scholar 

  • Gupta P, Lewis J (1971) Biogenesis of xanthones in Gentiana lutea. J Chem Soc C: 629–631

    Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    CAS  Google Scholar 

  • Hamada K, Nishida T, Yamauchi K, Fukushima K, Kondo R, Tsutsumi Y (2004) 4-Coumarate:coenzyme A ligase in black locust (Robinia pseudoacacia) catalyses the conversion of sinapate to sinapoyl-CoA. J Plant Res 117:303–310

    PubMed  CAS  Google Scholar 

  • Hamberger B, Hahlbrock K (2004) The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc Natl Acad Sci USA 101:2209–2214

    PubMed  CAS  Google Scholar 

  • Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J (1995) Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 3:41–62

    PubMed  CAS  Google Scholar 

  • Hay AE, Helesbeux JJ, Duval O, LabaIed M, Grellier P, Richomme P (2004) Antimalarial xanthones from Calophyllum caledonicum and Garcinia vieillardii. Life Sci 75:3077–3085

    PubMed  CAS  Google Scholar 

  • Heller W, Kühnl T (1985) Elicitor induction of a microsomal 5-O-(4-coumaroyl)shikimate 3′-hydroxylase in parsley cell suspension cultures. Arch Biochem Biophys 241:453–460

    PubMed  CAS  Google Scholar 

  • Ho C, Huang Y, Chen C (2002) Garcinone E, a xanthone derivative, has potent cytotoxic effect against hepatocellular carcinoma cell lines. Planta Med 68:975–979

    PubMed  CAS  Google Scholar 

  • Hotze M, Schröder G, Schröder J (1995) Cinnamate 4-hydroxylase from Catharanthus roseus and a strategy for the functional expression of plant cytochrome P450 proteins as translational fusions with P450 reductase in Escherichia coli. FEBS Lett 374:345–350

    PubMed  CAS  Google Scholar 

  • Hübner S, Hehmann M, Schreiner S, Martens S, Lukacin R, Matern U (2003) Functional expression of cinnamate 4-hydroxylase from Ammi majus L. Phytochemistry 64:445–452

    PubMed  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229

    PubMed  CAS  Google Scholar 

  • Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 96:10045–10050

    PubMed  CAS  Google Scholar 

  • Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H-F5H-transformed Poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem 51:6178–6183

    PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Jensen S, Kjær A, Nielsen B (1975) The genus Cornus: non-flavonoid glucosides as taxonomic markers. Biochem Syst Ecol 3:75–78

    CAS  Google Scholar 

  • Jensen SR, Albach DC, Ohno T, Grayer RJ (2005) Veronica: iridoids and cornoside as chemosystematic markers. Biochem Syst Ecol 33:1031–1047

    CAS  Google Scholar 

  • Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19:6150–6161

    PubMed  CAS  Google Scholar 

  • Kamsteeg J, van Brederode J, Verschuren P, van Nigtevecht G (1981) Identification and genetic control of p-coumaroyl-coenzyme A, 3-hydroxylase isolated from petals of Silene dioica. Z Pflanzenphysiol 102:435–442

    CAS  Google Scholar 

  • Karpinska B, Karlsson M, Srivastava M, Stenberg A, Schrader J, Sterky F, Bhalerao R, Wingsle G (2004) MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Mol Biol 56:255–270

    PubMed  CAS  Google Scholar 

  • Kim YJ, Kim DG, Lee SH, Lee I (2006) Wound-induced expression of the ferulate 5-hydroxylase gene in Camptotheca acuminata. Biochim. Biophys Acta 1760:182–190

    PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36

    PubMed  CAS  Google Scholar 

  • Kneusel R, Matern U, Nicolay K (1989) Formation of trans-caffeoyl-CoA from trans-4-coumaroyl-CoA by Zn2+-dependent enzymes in cultured plant cells and its activation by an elictor-induced pH shift. Arch Biochem Biophys 269:455–462

    PubMed  CAS  Google Scholar 

  • Koiwai A, Kitano H, Fukuda M, Kisaki T (1974) Methylenedioxyphenyl and its related compounds as protectants against ozone injury to plants. Agric Biol Chem 38:301–307

    CAS  Google Scholar 

  • Kojima M, Takeuchi W (1989) Detection and characterization of p-coumaric acid hydroxylase in mung bean, Vigna mungo, seedlings. J Biochem 105:265–270

    PubMed  CAS  Google Scholar 

  • Koopmann E, Logemann E, Hahlbrock K (1999) Regulation and functional expression of cinnamate 4-hydroxylase from parsley. Plant Physiol 119:49–56

    PubMed  CAS  Google Scholar 

  • Koopmann E, Hahlbrock K (1997) Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley. Proc Natl Acad Sci USA 94:14954–14959

    PubMed  CAS  Google Scholar 

  • Kuhlmann S, Kranz K, Lücking B, Alfermann AW, Petersen M (2002) Aspects of cytotoxic lignan biosynthesis in suspension cultures of Linum nodiflorum. Phytochem Rev 1:37–43

    CAS  Google Scholar 

  • Kühnl T, Koch U, Heller W, Wellmann E (1987) Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-d-quinate/shikimate 3′-hydroxylase from carrot (Daucus carota L.) cell suspension cultures. Arch Biochem Biophys 258:226–232

    PubMed  Google Scholar 

  • Landry LG, Chapple CCS, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166

    PubMed  CAS  Google Scholar 

  • Lang D, Eisinger J, Reski R, Rensing S (2005) Representation and high-quality annotation of the Physcomitrella patens transcriptome demonstrates a high proportion of proteins involved in metabolism among mosses. Plant Biol 7:238–250

    PubMed  CAS  Google Scholar 

  • Leon J, Yalpani N, Raskin I, Lawton MA (1993) Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco. Plant Physiol 103:323–328

    PubMed  CAS  Google Scholar 

  • Leon J, Shulaev V, Yalpani N, Lawton MA, Raskin I (1995) Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proc Natl Acad Sci USA 92:10413–10417

    PubMed  CAS  Google Scholar 

  • Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 100:4939–4944

    PubMed  CAS  Google Scholar 

  • Likhitwitayawuid K, Phadungcharoen T, Krungkrai J (1998) Antimalarial xanthones from Garcinia cowa. Planta Med 64:70–72

    PubMed  CAS  Google Scholar 

  • Lindermayr C, Mollers B, Fliegmann J, Uhlmann A, Lottspeich F, Meimberg H, Ebel J (2002) Divergent members of a soybean (Glycine max L.) 4-coumarate:coenzyme. A ligase gene family Primary structures, catalytic properties, and differential expression. Eur J Biochem 269:1304–1315

    PubMed  CAS  Google Scholar 

  • Logemann E, Parniske M, Hahlbrock K (1995) Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc Natl Acad Sci USA 92:5905–5909

    PubMed  CAS  Google Scholar 

  • Long M, Millar DJ, Kimura Y, Donovan G, Rees J, Fraser PD, Bramley PM, Bolwell GP (2006) Metabolite profiling of carotenoid and phenolic pathways in mutant and transgenic lines of tomato: identification of a high antioxidant fruit line. Phytochem, in press

  • Löscher R, Heide L (1994) Biosynthesis of p-hydroxybenzoate from p-coumarate and p-coumaroyl-coenzyme A in cell-free extracts of Lithospermum erythrorhizon cell cultures. Plant Physiol 106:271–279

    PubMed  Google Scholar 

  • Marita JM, Ralph J, Hatfield RD, Chapple C (1999) NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. Proc Natl Acad Sci USA 96:12328–12332

    PubMed  CAS  Google Scholar 

  • Mason ME, Davis JM (1997) Defense response in Slash pine: chitosan treatment alters the abundance of specific mRNAs. Mol Plant-Microbe Interact 10:135–137

    PubMed  CAS  Google Scholar 

  • Matsuno M, Nagatsu A, Ogihara Y, Ellis BE, Mizukami H (2002) CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4′-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis. FEBS Lett 514:219–224

    PubMed  CAS  Google Scholar 

  • Matsuzaki F, Wariishi H (2005) Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 334:1184–1190

    PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–212

    PubMed  CAS  Google Scholar 

  • Meuwly P, Molders W, Buchala A, Metraux JP (1995) Local and systemic biosynthesis of salicylic acid in infected cucumber plants. Plant Physiol 109:1107–1114

    PubMed  CAS  Google Scholar 

  • Meyer K, Cusumano JC, Somerville C, Chapple CC (1996) Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc Natl Acad Sci USA 93:6869–6874

    PubMed  CAS  Google Scholar 

  • Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C (1998) Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci USA 95:6619–6623

    PubMed  CAS  Google Scholar 

  • Mizutani M, Ward E, Dimaio J, Ohta D, Ryals J, Sato R (1993) Molecular cloning and sequencing of a cDNA encoding mung bean cytochrome P450 (P450C4H) possessing cinnamate 4-hydroxylase activity. Biochem Biophys Res Commun 190:875–880

    PubMed  CAS  Google Scholar 

  • Mizutani M, Ohta D, Sato R (1997) Isolation of a cDNA and a genomic glone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol 113:755–763

    PubMed  CAS  Google Scholar 

  • Molog G, Empt U, Kuhlmann S, van Uden W, Pras N, Alfermann A, Petersen M (2001) Deoxypodophyllotoxin 6-hydroxylase, a cytochrome P450 monooxygenase from cell cultures of Linum flavum involved in the biosynthesis of cytotoxic lignans. Planta 214:288–294

    Article  PubMed  CAS  Google Scholar 

  • Momose K, Rudney H (1972) 3-Polyprenyl-4-hydroxybenzoate synthesis in the inner membrane of mitochondria from p-hydroxybenzoate and isopentenylpyrophosphate. A demonstration of isoprenoid synthesis in rat liver mitochondria. J Biol Chem 247:3930–3940

    PubMed  CAS  Google Scholar 

  • Morant M, Hehn A, Werck-Reichhart D (2002) Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants. BMC Plant Biol 2:7

    PubMed  Google Scholar 

  • Morant M, Schoch GA, Ullmann P, Ertunç T, Little D, Olsen CE, Petersen M, Negrel J, Werck-Roichhart D (2006) Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat. Plant Mol Biol (in press)

  • Morgenstern B (2004) DIALIGN: multiple DNA and protein sequence alignment at BiBiServ. Nucleic Acids Res 32:W33–36

    PubMed  CAS  Google Scholar 

  • Nair PM, Vining LC (1965) Cinnamic acid hydroxylase in Spinach. Phytochemistry 4:161–168

    CAS  Google Scholar 

  • Nair RB, Joy RW, IV, Kurylo E, Shi X, Schnaider J, Datla RSS, Keller WA, Selvaraj G (2000) Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds. Plant Physiol 123:1623–1634

    PubMed  CAS  Google Scholar 

  • Nair RB, Xia Q, Kartha CJ, Kurylo E, Hirji RN, Datla R, Selvaraj G (2002) Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast. Plant Physiol 130:210–220

    PubMed  CAS  Google Scholar 

  • Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554

    PubMed  CAS  Google Scholar 

  • Nedelkina S, Jupe S, Blee K, Schalk M, Werck-Reichhart D, Bolwell GP (1999) Novel characteristics and regulation of a divergent cinnamate 4-hydroxylase (CYP73A15) from french bean: engineering expression in yeast. Plant Mol Biol 39:1079–1090

    PubMed  CAS  Google Scholar 

  • Ni W, Fahrendorf T, Ballance G, Lamb C, Dixon R (1996) Stress responses in alfalfa (Medicago sativa L.). XX. Transcriptional activation of phenlpropanoid pathway genes in elicitor-induced cell suspension cultures. Plant Mol Biol 30:427–438

    PubMed  CAS  Google Scholar 

  • Ogawa D, Nakajima N, Sano T, Tamaoki M, Aono M, Kubo A, Kanna M, Ioki M, Kamada H, Saji H (2005) Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiol 46:1062–1072

    PubMed  CAS  Google Scholar 

  • Ohe T, Mashino T, Hirobe M (1997) Substituent elimination from p-substituted phenols by cytochrome. P450 ipso-substitution by the oxygen atom of the active species. Drug Metab Dispos 25:116–122

    PubMed  CAS  Google Scholar 

  • Omer C, Lenstra R, Litle P, Dean C, Tepperman J, Leto K, Romesser J, O’Keefe D (1990) Genes for two herbicide-inducible cytochromes P-450 from Streptomyces griseolus. J Bacteriol 172:3335–33445

    PubMed  CAS  Google Scholar 

  • Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci USA 96:8955–8960

    PubMed  CAS  Google Scholar 

  • Overkamp S, Hein F, Barz W (2000) Cloning and characterization of eight cytochrome P450 cDNAs from chickpea (Cicer arietinum L.) cell suspension cultures. Plant Sci 155:101–108

    PubMed  CAS  Google Scholar 

  • Panossian A, Wagner H (2005) Stimulating effect of adaptogens: an overview with particular reference to their efficacy following single dose administration. Phytother Res 19:819–838

    PubMed  CAS  Google Scholar 

  • Pasqualini S, la Torre G, Ferranti F, Ederli L, Piccioni C, Reale L, Antonielli M (2002) Salicylic acid modulates ozone-induced hypersensitive cell death in tobacco plants. Physiol Plant 115:204–212

    PubMed  CAS  Google Scholar 

  • Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, Smith C, Bevan MW, Mansfield S, Whetten RW, Sederoff RR, Campbell MM (2003) Characterisation of a pine MYB that regulates lignification. Plant J 36:743–754

    PubMed  CAS  Google Scholar 

  • Peres V, Nagem TJ, de Oliveira FF (2000) Tetraoxygenated naturally occurring xanthones. Phytochemistry 55:683–710

    PubMed  CAS  Google Scholar 

  • Peters S, Schmidt W, Beerhues L (1997) Regioselective oxidative phenol couplings of 2,3′,4,6-tetrahydroxybenzophenone in cell cultures of Centaurium erythraea RAFN and Hypericum androsaemum L. Planta 204:64–69

    Google Scholar 

  • Petersen M (1997) Cytochrome P450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45:1165–1172

    CAS  Google Scholar 

  • Petersen M (2003) Cinnamic acid 4-hydroxylase from cell cultures of the hornwort Anthoceros agrestis. Planta 217:96–101

    PubMed  CAS  Google Scholar 

  • Pi Y, Liao Z, Chai Y, Zeng H, Wang P, Gong Y, Pang Y, Sun X, Tang K (2006) Molecular cloning and characterization of a novel stem-specific gene from Camptotheca acuminata. J Biochem Mol Biol 39:68–75

    PubMed  CAS  Google Scholar 

  • Pierrel MA, Batard Y, Kazmaier M, Mignotte-Vieux C, Durst F, Werck-Reichhart D (1994) Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast. Substrate specificity of a cinnamate hydroxylase. Eur J Biochem 224:835–844

    PubMed  CAS  Google Scholar 

  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    PubMed  CAS  Google Scholar 

  • Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Srinivasa Reddy MS, Chen F, Dixon RA (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 281:8843–8853

    PubMed  CAS  Google Scholar 

  • Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates RM, Chappell J (2001) Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum). Arch Biochem Biophys 393:222–235

    PubMed  CAS  Google Scholar 

  • Ralston L, Yu O (2006) Metabolons involving plant cytochrome P450s. Phytochem Rev, this issue

  • Reddy MSS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA 102:16573–16578

    PubMed  CAS  Google Scholar 

  • Ro DK, Mah N, Ellis BE, Douglas CJ (2001) Functional characterization and subcellular localization of poplar (Populus trichocarpa × Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol 126:317–329

    PubMed  CAS  Google Scholar 

  • Rogers LA, Campbell MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164:17–30

    CAS  Google Scholar 

  • Rogers LA, Dubos C, Cullis IF, Surman C, Poole M, Willment J, Mansfield SD, Campbell MM (2005) Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. J Exp Bot 56:1651–1663

    PubMed  CAS  Google Scholar 

  • Ruegger M, Meyer K, Cusumano JC, Chapple C (1999) Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiol 119:101–110

    PubMed  CAS  Google Scholar 

  • Ruegger M, Chapple C (2001) Mutations that reduce sinapoylmalate accumulation in Arabidopsis thaliana define loci with diverse roles in phenylpropanoid metabolism. Genetics 159:1741–1749

    PubMed  CAS  Google Scholar 

  • Russel DW, Conn EE (1967) The cinnamic acid 4-hydroxylase of pea seedlings. Arch Biochem Biophys 122:256–258

    Google Scholar 

  • Saleem M, Kim H, Ali M, Lee Y (2005) An update on bioactive plant lignans. Nat Prod Rep 22:696–716

    PubMed  CAS  Google Scholar 

  • Schmidt W, Beerhues L (1997) Alternative pathways of xanthone biosynthesis in cell cultures of Hypericum androsaemum L. FEBS Lett 420:143–146

    PubMed  CAS  Google Scholar 

  • Schmidt W, Peters S, Beerhues L (2000) Xanthone 6-hydroxylase from cell cultures of Centaurium erythraea RAFN and Hypericum androsaemum L. Phytochemistry 53:427–431

    PubMed  CAS  Google Scholar 

  • Schnitzler JR-P, Madlung J, Rose A, Seitz UH (1992) Biosynthesis of p-hydroxybenzoic acid in elicitor-treated carrot cell cultures. Planta 188:594–600

    CAS  Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    PubMed  CAS  Google Scholar 

  • Schoch GA, Nikov GN, Alworth WL, Werck-Reichhart D (2002) Chemical inactivation of the cinnamate 4-hydroxylase allows for the accumulation of salicylic acid in elicited cells. Plant Physiol 130:1022–1031

    PubMed  CAS  Google Scholar 

  • Schopfer CR, Ebel J (1998) Identification of elicitor-induced cytochrome P450s of soybean (Glycine max L.) using differential display of mRNA. Mol Gen Genom 258:315–322

    CAS  Google Scholar 

  • Sewalt VJH, Ni W, Blount JW, Jung HG, Masoud SA, Howles PA, Lamb C, Dixon RA (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of l-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol 115:41–50

    PubMed  CAS  Google Scholar 

  • Shimoda K, Yamane, S-Y, Hirakawa H, Ohta S, Hirata T (2002) Biotransformation of phenolic compounds by the cultured cells of Catharanthus roseus. J Mol Catal B: Enzym 16:275–281

    CAS  Google Scholar 

  • Shimoda K, Kubota N, Sano T, Hirakawa H, Hirata T (2004) A novel hydroxylase from Catharanthus roseus participating in the hydroxylation of 2-hydroxybenzoic acid. J Biosci Bioeng 98:67–70

    PubMed  CAS  Google Scholar 

  • Sibout R, Baucher M, Gatineau M, Van Doorsselaere J, Mila I, Pollet B, Maba B, Pilate G, Lapierre C, Boerjan W, Jouanin L (2002) Expression of a poplar cDNA encoding a ferulate-5-hydroxylase/coniferaldehyde 5-hydroxylase increases S lignin deposition in Arabidopsis thaliana. Plant Physiol Biochem 40:1087–1096

    CAS  Google Scholar 

  • Stafford H, Dresler S (1972) 4-Hydroxycinnamic acid hydroxylase and polyphenolase activities in Sorghum vulgare. Plant Physiol 49:590–595

    Article  PubMed  CAS  Google Scholar 

  • Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C (1998) The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154

    PubMed  CAS  Google Scholar 

  • Tanaka Y (2006) Flower colour and cytochromes P450. Phytochem Rev, this issue

  • Taskova RM, Gotfredsen CH, Jensen SR (2005) Chemotaxonomic markers in Digitalideae (Plantaginaceae). Phytochemistry 66:1440–1447

    PubMed  CAS  Google Scholar 

  • Teutsch HG, Hasenfratz MP, Lesot A, Stoltz C, Garnier J, Jeltsch J, Durst F, Werck-Reichhart D (1993) Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc Natl Acad Sci USA 90:4102–4106

    PubMed  CAS  Google Scholar 

  • Urban P, Werck-Reichhart D, Teutsch HG, Durst F, Regnier S, Kazmaier M, Pompon D (1994) Characterization of recombinant plant cinnamate 4-hydroxylase produced in yeast. Kinetic and spectral properties of the major plant P450 of the phenylpropanoid pathway. Eur J Biochem 222:843–850

    PubMed  CAS  Google Scholar 

  • Urban P, Mignotte C, Kazmaier M, Delorme F, Pompon D (1997) Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5. J Biol Chem 272:19176–19186

    PubMed  CAS  Google Scholar 

  • Vaughan PF, Butt VS (1970) The action of o-dihydric phenols in the hydroxylation of p-coumaric acid by a phenolase from leaves of spinach beet (Beta vulgaris L.). Biochem J 119:89–94

    PubMed  CAS  Google Scholar 

  • Vlietinck A, De Bruyne T, Apers S, Pieters L (1998) Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med 64:97–109

    PubMed  CAS  Google Scholar 

  • Wang ZX, Li SM, Loscher R, Heide L (1997) 4-Coumaroyl coenzyme A 3-hydroxylase activity from cell Cultures of Lithospermum erythrorhizon and its relationship to polyphenol oxidase. Arch Biochem Biophys 347:249–255

    PubMed  CAS  Google Scholar 

  • Wang CZ, Maier UH, Keil M, Zenk MH, Bacher A, Rohdich F, Eisenreich W (2003) Phenylalanine-independent biosynthesis of 1,3,5,8-tetrahydroxyxanthone. A retrobiosynthetic NMR study with root cultures of Swertia chirata. Eur J Biochem 270:2950–2958

    PubMed  CAS  Google Scholar 

  • Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251–257

    PubMed  CAS  Google Scholar 

  • Werck-Reichhart D, Batard Y, Kochs G, Lesot A, Durst F (1993) Monospecific polyclonal antibodies directed against purified cinnamate 4-hydroxylase from Helianthus tuberosus (immunopurification, immunoquantitation, and interspecies cross-reactivity). Plant Physiol 102:1291–1298

    PubMed  CAS  Google Scholar 

  • Werck-Reichhart D (1995) Cytochromes P450 in phenylpropanoid metabolism. Drug Metabol Drug Interact 12:221–243

    PubMed  CAS  Google Scholar 

  • Whitbred JM, Schuler MA (2000) Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea. Plant Physiol 124:47–58

    PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    PubMed  CAS  Google Scholar 

  • Wu S, Zu Y, Wu M (2003) High yield production of salidroside in the suspension culture of Rhodiola sachalinensis. J Biotech 106:33–43

    CAS  Google Scholar 

  • Yalpani N, Leon J, Lawton MA, Raskin I (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103:315–321

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Yoshida K, Kondo Y, Inoue K (1998) Production of cornoside in Abeliophyllum distichum cell suspension cultures. Phytochemistry 48:273–277

    Google Scholar 

  • Yamamoto H, Inoue K, Li SM, Heide L (2000) Geranylhydroquinone 3′-hydroxylase, a cytochrome P-450 monooxygenase from Lithospermum erythrorhizon cell suspension cultures. Planta 210:312–317

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Hori M, Kuwajima H, Inoue K (2003) Formation of benzoquinol moiety in cornoside by salidroside mono-oxygenase, a cytochrome P450 enzyme, from Abeliophyllum distichum cell suspension cultures. Planta 216:432–436

    PubMed  CAS  Google Scholar 

  • Yamauchi K, Yasuda S, Hamada K, Tsutsumi Y, Fukushima K (2003) Multiform biosynthetic pathway of syringyl lignin in angiosperms. Planta 216:496–501

    PubMed  CAS  Google Scholar 

  • Ye Z-H (1996) Expression patterns of the cinnamic acid 4-hydroxylase gene during lignification in Zinnia elegans. Plant Sci 121:133–141

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the following agencies for financial support of the authors. RM-R is supported by a doctoral student stipend from the Région Alsace (04/908/19/277) and JE by a Marie Curie grant from the European Union (IRG36537).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Ehlting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlting, J., Hamberger, B., Million-Rousseau, R. et al. Cytochromes P450 in phenolic metabolism. Phytochem Rev 5, 239–270 (2006). https://doi.org/10.1007/s11101-006-9025-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9025-1

Keywords

Navigation