Skip to main content

Advertisement

Log in

Identification and expression profiling of drought-regulated genes in mulberry (Morus sp.) by suppression subtractive hybridization of susceptible and tolerant cultivars

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Mulberry, the backbone of sericulture industry, is a rainfed crop, and its biomass production is affected adversely under drought conditions. In this study, genes expressed differentially during drought stress response have been examined by PCR-Select subtractive hybridization. The sensitive and tolerant genotypes were identified based on physiological evaluation by determination of proline content, electrolyte leakage, and measurement of relative water content. In total, 1,920 clones were sequenced, representing 208 contigs and 151 singletons. The expressed sequence tags generated from this subtracted cDNA library comprises a broad repertoire of stress-responsive genes, which contribute to the process of drought tolerance in mulberry. Additionally, 23% of the cDNA library is represented by transcripts of unknown function. The expression of a select number of these drought-inducible genes was studied based on cDNA macroarray and Northern blot analyses. In order to unravel the crosstalk with other abiotic stresses, expression profile of Arabidopsis homologs of selected genes in response to a wide range of different stresses was studied using Genevestigator as a reference expression database. The results of this study show that subtractive hybridization coupled with validation steps for differential screening is an effective method for identification of stress/drought-induced genes in plants with limited sequence information available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Baldwin JC, Dombrowski JE (2006) Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis. Plant Sci 171:459–469

    Article  CAS  Google Scholar 

  • Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benavides J (2000) Utilisation of Mulberry in animal production systems. In: Sanchez (ed), “Mulberry for Animal Production”http://www.fao.org/ag/AGA/AGAP/FRG/Mulberry/Papers/PDF/Benavid.pdf

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unravelling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol 9:180–188

    Article  PubMed  CAS  Google Scholar 

  • Chauhan H, Khurana N, Tyagi AK, Khurana JP, Khurana P (2010) Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Mol Biol. doi:10.1007/s11103-010-9702-8

    PubMed  Google Scholar 

  • Chen Z, Zang J, Whetstine J, Hong X, Davrazou F, Kutateladze TG, Simpson M, Mao Q, Pan CH, Dai S, Hagman J, Hansen K, Shi Y, Zhang G (2006) Structural insights into histone demethylation by JMJD2 family members. Cell 125:691–702

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  PubMed  CAS  Google Scholar 

  • Das M, Tetoriya M, Haq QMR, Khurana P (2010) Screening and expression analysis of HAL3a, dehydrin, ABC transporter and NHX1 in ten genotypes of mulberry for abiotic stress tolerance. (Sericologia In press)

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive. Planta 228(1):191–201

    Article  PubMed  CAS  Google Scholar 

  • Gorantla M, Babu PR, Reddy Lachagari VB, Alex Feltus F, Paterson AH, Reddy AR (2005) Functional genomics of drought stress response in rice: transcript mapping of annotated unigenes of an indica rice (Oryza sativa L. cv. Nagina 22). Curr Sci 89(3):496–514

    CAS  Google Scholar 

  • Guha A, Sengupta D, Rasineni GK, Reddy AR (2010a) An integrated approach to understand drought tolerance in mulberry (Morus indica L.). Flora 205:144–151

    Google Scholar 

  • Guha A, Sengupta D, Reddy AR (2010b) Physiological optimality, allocation trade-offs and antioxidant protection linked to better leaf yield performance in drought exposed mulberry. J Sci Food Agric 90:2649–2659

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Huang Y, Kieber J, Luan S (1998) Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis. Plant J 16:581–589

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Madan A (1999) A DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Huang HLS, Shi Y, Song Y, Zhao J, Wang F, Wang Li Y (2007) Isolating soil drought-induced genes from maize seedling leaves through suppression subtractive hybridization. Agric Sci China 6:647–651

    Google Scholar 

  • Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-Box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    Article  PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Martin C (1999) Multi-functionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  PubMed  CAS  Google Scholar 

  • Jung HW, Kim W, Hwang BK (2003) Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ 26:915–928

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi R, Girke T, Bray EA, Bailey-Serres JN (2004) Differential mRNA translation contributes to gene regulation under nonstress and dehydration stress conditions in Arabidopsis thaliana. Plant J 38:823–839

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  PubMed  CAS  Google Scholar 

  • Keller G, Marchal T, SanClemente H, Navarro M, Ladouce N, Wincker P, Couloux A, Teulières C, Marque C (2008) Development and functional annotation of an 11,303-EST collection from Eucalyptus for studies of cold tolerance. Tree Genet Genomes 5(2):317–327

    Article  Google Scholar 

  • Khurana P, Vishnudasan D, Chhibbar AK (2008) Genetic approaches towards overcoming water deficit in plants – special emphasis on LEAs. Physiol Mol Biol Plants 14(4):277–298

    Article  CAS  Google Scholar 

  • Klein M, Perfus-Barbeoch L, Frelet A, Gaedeke N, Reinhardt D, Mueller-Roeber B, Martinoia E, Forestier C (2003) The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signaling and water use. Plant J 33:119–129

    Article  PubMed  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  PubMed  CAS  Google Scholar 

  • Lal S, Khurana P (2009) Differential screening for salinity tolerance in high yielding Indian mulberry, Morus indica genotypes. Sericologia 49:3–8

    Google Scholar 

  • Lal S, Bhatnagar S, Khurana P (2006) Screening of Indian mulberry for abiotic stress tolerance and ameliorative effect of calcium on salinity stress. Physiol Mol Biol Plants 12:193–199

    CAS  Google Scholar 

  • Lal S, Ravi V, Khurana JP, Khurana P (2009) Repertoire of leaf expressed sequence tags (ESTs) and partial characterization of stress-related and membrane transporter genes from mulberry (Morus indica L.). Tree Genet Genomes 5:359–374

    Article  Google Scholar 

  • Lang P, Zhang CK, Ebel RC, Dane F, Dozier WA (2005) Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene 359:111–118

    Article  PubMed  CAS  Google Scholar 

  • Lim J, Hilariutta Y, Specht CD, Jung J, Sims L, Bruce WB, Diehn S, Benfey PN (2000) Molecular analysis of the Scarecrow gene in maize reveals a common basis for radial patterning in diverse meristems. Plant Cell 12:1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Lindorff-Larsen K, Winther JR (2001) Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases. FEBS Lett 488:145–148

    Article  PubMed  CAS  Google Scholar 

  • Machida T, Murasea H, Katoa E, Honjohb K, Matsumotob K, Miyamotob T, Iio M (2008) Isolation of cDNAs for hardening-induced genes from Chlorella vulgaris by suppression subtractive hybridization. Plant Sci 175(3):238–246

    Article  CAS  Google Scholar 

  • Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4:1–14

    Article  Google Scholar 

  • Mishra RN, Reddy PS, Nair S, Markandeya G, Reddy AR, Sopory SK, Reddy MK (2007) Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetum glaucum seedlings. Plant Mol Biol 64:713–732

    Article  PubMed  CAS  Google Scholar 

  • Nanjo T, Futamura N, Nishiguchi M, Igasaki T, Shinozaki K, Shinohara K (2004) Characterization of full-length enriched expressed sequence tags of stress-treated poplar leaves. Plant Cell Physiol 45(12):1738–1748

    Article  PubMed  Google Scholar 

  • Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge J, Benning C (2000) Unraveling plant metabolism by EST analysis. Curr Opin Plant Biol 3:224–228

    PubMed  CAS  Google Scholar 

  • Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed  CAS  Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK, Khurana P (2006) The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis. Tree Genet Genomes 3:49–59

    Article  Google Scholar 

  • Renault L, Kuhlmann J, Henkel A, Wittinghofer A (2001) Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 105(2):245–255

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  PubMed  CAS  Google Scholar 

  • Roche J, Hewezi T, Bouniols A, Gentzbittel L (2007) Transcriptional profiles of primary metabolism and signal transduction-related genes in response to water stress in field-grown sunflower genotypes using a thematic cDNA microarray. Planta 26(3):6016–6017

    Google Scholar 

  • Salekdeh GH, Reynolds M, Bennett J, Boyer J (2009) Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci 14(9):488–495

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9(5):236–243

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water stress response. Plant Physiol 115:327–334

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    Article  PubMed  CAS  Google Scholar 

  • Talamucci P, Pardini A, Argenti C (2000) Effects of the grazing animals and the cutting on the production and the intake of a Morus alba-Subterranean clover association. FAO Electronic Conference on Mulberry for Animal production http://www.fao.org/ag/aga/agap/frg/mulberry/home.htm

  • Ueda A, Shi W, Nakamura T, Takabe T (2002) Analysis of salt-inducible genes in barley roots by differential display. J Plant Res 115:119–130

    Article  PubMed  CAS  Google Scholar 

  • Valente MAS, Faria JAQA, Soares-Ramos JRL, Reis PAB, Pinheiro GL, Piovesan ND, Morais AT, Menezes CC, Cano MAO, Fietto LG, Loureiro ME, Aragão FJL, Fontes EPB (2009) The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot 60(2):533–546

    Article  PubMed  CAS  Google Scholar 

  • Wagner D (2003) Chromatin regulation of plant development. Curr Opin Plant Biol 6:20–28

    Article  PubMed  CAS  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhang H, Li Z (2007) Analysis of gene expression profile induced by water stress in upland rice (Oryza sativa L. var. IRAT109) seedlings using subtractive expressed sequence tags library. J Integ Plant Biol 49:1455–1463

    Article  CAS  Google Scholar 

  • Wong Y, Ho C, Nguyen PD, Teo S, Harikrishna JA, Rahim RA, Wong MCVL (2007) Isolation of salinity tolerant genes from the mangrove plant, Bruguiera cylindrica by using suppression subtractive hybridization (SSH) and bacterial functional screening. Aquat Bot 86:117–122

    Article  CAS  Google Scholar 

  • Yu X, Li L, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci 105:7618–7623

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field crop Res 97:111–119

    Article  Google Scholar 

  • Zhang Y, Xu W, Li Z, Deng XW, Wu W, Xue Y (2008) F-Box Protein DOR functions as a novel inhibitory factor for Abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol 148:2121–2133

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y, Gao P, Zhang J, Bai Y, Wang G (2004) Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol 55(6):807–823

    PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

  • Zimmermann P, Hoffmann MH, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants received from the Department of Biotechnology (DBT), Government of India, New Delhi. VG acknowledges University Grants Commission (UGC) for the award of research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit Khurana.

Additional information

Communicated by J. Dean

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Table 1

Contig assembly statistics of Morus sp. mature leaf cDNA library (DOC 29 kb)

Supplementary Table 2

List of differentially expressed genes from dehydration stress subtractive cDNA library of mulberry (XLS 268 kb)

Supplementary Table 3

List of conserved domains of mulberry genes with unknown functions in Arabidopsis (DOC 105 kb)

Supplementary Fig. 1

Occurrence of ESTs in contigs. Number above each bar represents frequency of contigs (PPT 86 kb)

Supplementary Fig. 2

Representative cDNA macroarray hybridization of water stress-inducible genes. 32P-labeled probes prepared from reverse-transcribed total RNA isolated from leaves of control K-2 genotype (a) and 2-h-stressed AR-12 genotype (b). Red arrows indicate clones were induced in the tolerant genotype AR-12, which were absent from sensitive genotype K-2 under control conditions (PPT 234 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulyani, V., Khurana, P. Identification and expression profiling of drought-regulated genes in mulberry (Morus sp.) by suppression subtractive hybridization of susceptible and tolerant cultivars. Tree Genetics & Genomes 7, 725–738 (2011). https://doi.org/10.1007/s11295-011-0369-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0369-3

Keywords

Navigation