Skip to main content
Log in

Cytochrome P450s in flavonoid metabolism

  • Original Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

In this review, cytochrome P450s characterized at the molecular level catalyzing aromatic hydroxylations, aliphatic hydroxylations and skeleton formation in the flavonoid metabolism are surveyed. They are involved in the biosynthesis of anthocyanin pigments and condensed tannin (CYP75, flavonoid 3′,5′-hydroxylase and 3′-hydroxylase), flavones [CYP93B, (2S)-flavanone 2-hydroxylase and flavone synthase II], and leguminous isoflavonoid phytoalexins [CYP71D9, flavonoid 6-hydroxylase; CYP81E, isoflavone 2′-hydroxylase and 3′-hydroxylase; CYP93A, 3,9-dihydroxypterocarpan 6a-hydroxylase; CYP93C, 2-hydroxyisoflavanone synthase (IFS)]. Other P450s of the flavonoid metabolism include methylenedioxy bridge forming enzyme, cyclases producing glyceollins, flavonol 6-hydroxylase and 8-dimethylallylnaringenin 2′-hydroxylase. Mechanistic studies on the unusual aryl migration by CYP93C, regulation of IFS expression in plant organs and its biotechnological applications are introduced, and flavonoid metabolisms by non-plant P450s are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2-ODD:

2-oxoacid-dependent oxidase

C4H:

cinnamate 4-hydroxylase

CHI:

chalcone isomerase

CHS:

chalcone synthase

D6aH:

3,9-dihydroxypterocarpan 6a-hydroxylase

F2H:

(2S)-flavanone 2-hydroxylase

F3′H:

flavonoid 3′-hydroxylase

F3′5′H:

flavonoid 3′,5′-hydroxylase

FNS:

flavone synthase

I2′H:

isoflavone 2′-hydroxylase

I3′H:

isoflavone 3′-hydroxylase

IFS:

2-hydroxyisoflavanone synthase

PKR:

chalcone polyketide reductase

References

  • Akashi T, Aoki T, Takahashi T, Kameya N, Nakamura I, Ayabe S (1997) Cloning of cytochrome P450 cDNAs from cultured Glycyrrhiza echinata L. cells and their transcriptional activation by elicitor-treatment. Plant Sci 126:39–47

    Article  CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (1998a) Identification of a cytochrome P450 cDNA encoding (2S)-flavanone 2-hydroxylase of licorice (Glycyrrhiza echinata L.; Fabaceae) which represents licodione synthase and flavone synthase II. FEBS Lett 431:287–90

    Article  CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (1998b) CYP81E1, a cytochrome P450 cDNA of licorice (Glycyrrhiza echinata L.), encodes isoflavone 2′-hydroxylase. Biochem Biophys Res Commun 251:67–70

    Article  CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (1999a) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol 121:821–828

    Article  CAS  Google Scholar 

  • Akashi T, Fukuchi-Mizutani M, Aoki T, Ueyama Y, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Ayabe S (1999b) Molecular cloning and biochemical characterization of a novel cytochrome 450, flavone synthase II, that catalyzes direct conversion of flavanones to flavones. Plant Cell Physiol 40:1182–1186

    CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (2005) Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol 137:882–891

    Article  PubMed  CAS  Google Scholar 

  • Anzellotti D, Ibrahim RK (2004) Molecular characterization and functional expression of flavonol 6-hydroxylase. BMC Plant Biol 4:20

    Article  PubMed  CAS  Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110

    Article  PubMed  CAS  Google Scholar 

  • Ayabe S, Akashi T, Aoki T (2002) Cloning of cDNAs encoding P450s in the flavonoid/isoflavonoid pathway from elicited leguminous cell cultures. Methods Enzymol 357:360–369

    Article  PubMed  CAS  Google Scholar 

  • Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279–291

    Article  PubMed  CAS  Google Scholar 

  • Breinholt VM, Offord EA, Brouwer C, Nielsen SE, Brosen K, Friedberg T (2002) In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids. Food Chem Toxicol 40:609–616

    Article  PubMed  CAS  Google Scholar 

  • Britsch L, Heller W, Grisebach H (1981) Conversion of flavanone to flavone, dihydroflavonol and flavonol with an enzyme system from cell cultures of parsley. Z Naturforsch 36c:742–750

    CAS  Google Scholar 

  • Brugliera F, Barri-Rewell G, Holton TA, Mason JG (1999) Isolation and characterization of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J 19:441–451

    Article  PubMed  CAS  Google Scholar 

  • Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol 49:311–343

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Barz W (1996) Cytochrome P450-dependent methylenedioxy bridge formation in Cicer arietinum. Phytochemistry 41:457–460

    Article  CAS  Google Scholar 

  • Cooper LD, Doss RP, Price R, Peterson K, Oliver JE (2005) Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin. J Exp Bot 56:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Deavours BE, Dixon RA (2005) Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol 138:2245–2259

    Article  PubMed  CAS  Google Scholar 

  • Dhaubhadel S, McGarvey BD, Williams R, Gijzen M (2003) Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol Biol 53:733–743

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (1999) Isoflavonoids: biochemistry, molecular biology, and biological functions. In: Sankawa U (ed) Comprehensive natural products chemistry, vol 1, polyketides and other secondary metabolites including fatty acids and their derivatives. Elsevier, Amsterdam, pp 773–823

    Google Scholar 

  • Frank MR, Deyneka JM, Schuler MA (1996) Cloning of wound-induced cytochrome P450 monooxygenases expressed in pea. Plant Physiol 110:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Graham MY (2005) The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in soybean. Plant Physiol 139:1784–1794

    Article  PubMed  CAS  Google Scholar 

  • Gunia W, Hinderer W, Wittkampf U, Barz W (1991) Elicitor induction of cytochrome P-450 monooxygenases in cell suspension cultures of chickpea (Cicer arietinum L.) and their involvement in pterocarpan phytoalexin biosynthesis. Z Naturforsch 46c:58–66

    Google Scholar 

  • Hagmann M, Grisebach H (1984) Enzymatic rearrangement of flavanone to isoflavone. FEBS Lett 175:199–202

    Article  CAS  Google Scholar 

  • Hakamatsuka T, Hashim MF, Ebizuka Y, Sankawa U (1991) P-450-Dependent oxidative rearrangement in isoflavone biosynthesis: reconstitution of P-450 and NADPH: P-450 reductase. Tetrahedron 47:5969–5978

    Article  CAS  Google Scholar 

  • Hakamatsuka T, Mori K, Ishida S, Ebizuka Y, Sankawa U (1998) Purification of 2-hydroxyisoflavanone dehydratase from the cell cultures of Pueraria lobata. Phytochemistry 49:497–505

    Article  CAS  Google Scholar 

  • Halbwirth H, Forkmann G, Stich K (2004) The A-ring specific hydroxylation of flavonols in position 6 in Tagetes sp. is catalyzed by a cytochrome P450 dependent monooxygenase. Plant Sci 167:129–135

    Article  CAS  Google Scholar 

  • Hashim MF, Hakamatsuka T, Ebizuka Y, Sankawa U (1990) Reaction mechanism of oxidative rearrangement of flavanone in isoflavone biosynthesis. FEBS Lett 271:219–222

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98:2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Hinderer W, Flentje U, Barz W (1987) Microsomal isoflavone 2′- and 3′-hydroxylases from chickpea (Cicer arietinum L.) cell suspensions induced for pterocarpan phytoalexin formation. FEBS Lett 214:101–106

    Article  CAS  Google Scholar 

  • Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu CY, Farcy E, Stevenson TW, Cornish EC (1993) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366:276–279

    Article  PubMed  CAS  Google Scholar 

  • Ikezawa N, Tanaka M, Nagayoshi M, Shinkyo R, Sakaki T, Inouye K, Sato F (2003) Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells. J Biol Chem 278:38557–38565

    Article  PubMed  CAS  Google Scholar 

  • Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schröder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24:797–804

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Møller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8:280–291

    Article  PubMed  CAS  Google Scholar 

  • Jung W, Yu O, Lau SM, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotechnol 18:208–212

    Article  CAS  Google Scholar 

  • Jung W, Chung IM, Heo HY (2003) Manipulating isoflavone levels in plants. J Plant Biotechnol 5:149–155

    Google Scholar 

  • Kagawa H, Takahashi T, Ohta S, Harigaya Y (2004) Oxidation and rearrangements of flavanones by mammalian cytochrome P450. Xenobiotica 34:797–810

    Article  PubMed  CAS  Google Scholar 

  • Kaltenbach M, Schröder G, Schmelzer E, Lutz V, Schröder J (1999) Flavonoid hydroxylase from Catharanthus roseus: cDNA, heterologous expression, enzyme properties and cell-type specific expression in plants. Plant J 19:183–193

    Article  PubMed  CAS  Google Scholar 

  • Kim BG, Kim SY, Song HS, Lee C, Hur HG, Kim SI, Ahn JH (2003) Cloning and expression of the isoflavone synthase gene (IFS-Tp) from Trifolium pratense. Mol Cells 15:301–306

    PubMed  CAS  Google Scholar 

  • Kitada C, Gong Z, Tanaka Y, Yamazaki M, Saito K (2001) Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens. Plant Cell Physiol 42:1338–1344

    Article  PubMed  CAS  Google Scholar 

  • Kochs G, Grisebach H (1986) Enzymic synthesis of isoflavones. Eur J Biochem 155:311–318

    Article  PubMed  CAS  Google Scholar 

  • Kochs G, Grisebach H (1987) Induction and characterization of a NADPH-dependent flavone synthase from cell cultures of soybean. Z Naturforsch 42c:343–348

    CAS  Google Scholar 

  • Kochs G, Grisebach H (1989) Phytoalexin synthesis in soybean: purification and reconstitution of cytochrome P450 3,9-dihydroxypterocarpan 6a-hydroxylase and separation from cytochrome P450 cinnamate 4-hydroxylase. Arch Biochem Biophys 273:543–553

    Article  PubMed  CAS  Google Scholar 

  • Kochs G, Werck-Reichhart D, Grisebach H (1992) Further characterization of cytochrome P450 involved in phytoalexin synthesis in soybean: cytochrome P450 cinnamate 4-hydroxylase and 3,9-dihydroxypterocarpan 6a-hydroxylase. Arch Biochem Biophys 293:187–194

    Article  PubMed  CAS  Google Scholar 

  • Latunde-Dada AO, Cabello-Hurtado F, Czittrich N, Didierjean L, Schopfer C, Hertkorn N, Werck-Reichhart D, Ebel J (2001) Flavonoid 6-hydroxylase from soybean (Glycine max L.): a novel plant P450 monooxygenase. J Biol Chem 276:1688–1695

    PubMed  CAS  Google Scholar 

  • Li X, Baudry J, Berenbaum MR, Schuler MA (2004) Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450. Proc Natl Acad Sci USA 101:2939–2944

    Article  PubMed  CAS  Google Scholar 

  • Liu CJ, Blount JW, Steele CL, Dixon RA (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc Natl Acad Sci USA 99:14578–14583

    Article  PubMed  CAS  Google Scholar 

  • Liu CJ, Huhman D, Sumner LW, Dixon RA (2003) Regiospecific hydroxylation of isoflavones by cytochrome P450 81E enzymes from Medicago truncatula. Plant J 36:471–484

    Article  PubMed  CAS  Google Scholar 

  • Lupien S, Karp F, Wildung M, Croteau R (1999) Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species: cDNA isolation, characterization, and functional expression of (−)-4S-limonene-3-hydroxylase and (−)-4S-limonene-6-hydroxylase. Arch Biochem Biophys 368:181–192

    Article  PubMed  CAS  Google Scholar 

  • Maloney AP, VanEtten HD (1994) A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family. Mol Gen Genet 243:506–514

    Article  PubMed  CAS  Google Scholar 

  • Martens S, Forkmann G (1999) Cloning and expression of flavone synthase II from Gerbera hybrids. Plant J 20:611–618

    Article  PubMed  CAS  Google Scholar 

  • Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407

    Article  PubMed  CAS  Google Scholar 

  • Matthews DE, Weiner EJ, Matthews PS, VanEtten HD (1987) Role of oxygenases in pisatin biosynthesis and in the fungal degradation of maackiain. Plant Physiol 83:365–370

    PubMed  CAS  Google Scholar 

  • Matthews DE, Plattner RD, VanEtten HD (1989) The 6a oxygen of the pterocarpan glycinol is derived from molecular oxygen. Phytochemistry 28:113–115

    Article  CAS  Google Scholar 

  • Nakayama T, Yonekura-Sakakibara K, Sato T, Kikuchi S, Fukui Y, Fukuchi-Mizutani M, Ueda T, Nakao M, Tanaka Y, Kusumi T, Nishino T (2000) Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290:1163–1166

    Article  PubMed  CAS  Google Scholar 

  • Oksman-Caldentey KM, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16:174–179

    Article  PubMed  CAS  Google Scholar 

  • Otani K, Takahashi T, Furuya T, Ayabe S (1994) Licodione synthase, a cytochrome P450 monooxygenase catalyzing 2-hydroxylation of 5-deoxyflavanone, in cultured Glycyrrhiza echinata L. cells. Plant Physiol 105:1427–1432

    PubMed  CAS  Google Scholar 

  • Overkamp S, Hein F, Barz W (2000) Cloning and characterization of eight cytochrome P450 cDNAs from chickpea (Cicer arietinum L.) cell suspension cultures. Plant Sci 155:101–108

    Article  PubMed  CAS  Google Scholar 

  • Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates RM, Chappell J (2001) Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum). Arch Biochem Biophys 393:222–235

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Gonzalez M, Rosazza JP (2004) Microbial transformations of chalcones: hydroxylation, O-demethylation, and cyclization to flavanones. J Nat Prod 67:553–558

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Kinoshita K, Akashi T, Aoki T, Ayabe S (2002) Key amino acid residues required for aryl migration catalyzed by the cytochrome P450 2-hydroxyisoflavanone synthase. Plant J 31:555–564

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Ayabe S (2005) Multiple mutagenesis of P450 isoflavonoid synthase reveals a key active-site residue. Biochem Biophys Res Commun 330:907–913

    Article  PubMed  CAS  Google Scholar 

  • Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B (2000) Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem 381:749–753

    Article  PubMed  CAS  Google Scholar 

  • Schopfer CR, Ebel J (1998) Identification of elicitor-induced cytochrome P450s of soybean (Glycine max L.) using differential display of mRNA. Mol Gen Genet 258:315–322

    Article  PubMed  CAS  Google Scholar 

  • Schopfer CR, Kochs G, Lottspeich F, Ebel J (1998) Molecular characterization and functional expression of dihydroxypterocarpan 6a-hydroxylase, an enzyme specific for pterocarpanoid phytoalexin biosynthesis in soybean (Glycine max L.). FEBS Lett 432:182–186

    Article  PubMed  CAS  Google Scholar 

  • Schröder G, Unterbusch E, Kaltenbach M, Schmidt J, Strack D, De Luca V, Schröder J (1999) Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Lett 458:97–102

    Article  PubMed  Google Scholar 

  • Shimada N, Akashi T, Aoki T, Ayabe S (2000) Induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci 160:37–47

    Article  PubMed  CAS  Google Scholar 

  • Shimada N, Aoki T, Sato S, Nakamura Y, Tabata S, Ayabe S. (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of␣general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol 131:941–951

    Article  PubMed  CAS  Google Scholar 

  • Siminszky B, Corbin FT, Ward ER, Fleischmann TJ, Dewey RE (1999) Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Natl Acad Sci USA 96:1750–1755

    Article  PubMed  CAS  Google Scholar 

  • Steele CL, Gijzen M, Qutob D, Dixon RA (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch Biochem Biophys 367:146–150

    Article  PubMed  CAS  Google Scholar 

  • Stotz G, Forkmann G (1981) Oxidation of flavanones to flavones with flower extracts of Antirrhinum majus (snapdragon). Z Naturforsch 36c:737–741

    CAS  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, Hu X, Lu G, Odelland JT, Yu O (2004) The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Mol Biol 54:623–639

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Suzuki G, Ohta H, Kato T, Igarashi T, Sakai F, Shibata D, Takano A, Masuda T, Shioi Y, Takamiya K (1996) Induction of a novel cytochrome P450 (CYP93 family) by methyl jasmonate in soybean suspension-cultured cells. FEBS Lett 383:83–86

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y (2006) Flower colour and cytochromes P450. Phytochemistry Reviews: in press

  • Tanaka Y, Yonekura K, Fukuchi-Mizutani M, Fukui Y, Fujiwara H, Ashikari T, Kusumi T (1996) Molecular and biochemical characterization of three anthocyanin synthetic enzymes from Gentiana triflora. Plant Cell Physiol 37:711–716

    PubMed  CAS  Google Scholar 

  • Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R (2002) A single-base deletion in soybean flavonoid 3′-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol 50:187–196

    Article  PubMed  CAS  Google Scholar 

  • Ueyama Y, Suzuki K, Fukuchi-Mizutani M, Fukui Y, Miyazaki K, Ohkawa H, Kusumi T, Tanaka Y (2002) Molecular and biochemical characterization of torenia flavonoid 3′-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Sci 163:253–263

    Article  CAS  Google Scholar 

  • Welle R, Grisebach H (1988) Induction of phytoalexin synthesis in soybean: enzymatic cyclization of prenylated pterocarpans to glyceollin isomers. Arch Biochem Biophys 263:191–198

    Article  PubMed  CAS  Google Scholar 

  • Wimmer G, Halbwirth H, Wurst F, Forkmann G, Stich K (1998) Enzymatic hydroxylation of 6′-deoxychalcones with protein preparations from petals of Dahlia variabilis. Phytochemistry 47:1013–1016

    Article  CAS  Google Scholar 

  • Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Yatou A, Inoue K (2001) 8-Dimethylallylnaringenin 2′-hydroxylase, the crucial cytochrome P450 mono-oxygenase for lavandulylated flavanone formation in Sophora flavescens cultured cells. Phytochemistry 58:671–676

    Article  PubMed  CAS  Google Scholar 

  • Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–793

    Article  PubMed  CAS  Google Scholar 

  • Yu O, McGonigle B (2005) Metabolic engineering of isoflavone biosynthesis. Adv Agron 86:147–190

    Article  CAS  Google Scholar 

  • Zhao P, Inoue K, Kouno I, Yamamoto H (2003) Characterization of leachianone G 2′-dimethylallyltransferase, a novel prenyl side-chain elongation enzyme for the formation of the lavandulyl group of sophoraflavanone G in Sophora flavescens Ait. cell suspension cultures. Plant Physiol 133:1306–1313

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank useful discussions by Drs. Toshio Aoki and Norimoto Shimada of Nihon University and Dr. Yuji Sawada of RIKEN Plant Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Ayabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayabe, Si., Akashi, T. Cytochrome P450s in flavonoid metabolism. Phytochem Rev 5, 271–282 (2006). https://doi.org/10.1007/s11101-006-9007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9007-3

Keywords

Navigation