Skip to main content
Log in

Aspergillus flavus fungus elicitation improves vincristine and vinblastine yield by augmenting callus biomass growth in Catharanthus roseus

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The influence of fungus elicitor Aspergillus flavus on alkaloid yield was investigated in Catharanthus roseus. The study reveals increased yield of vinblastine and vincristine in cultivated tissues. Different concentrations of extract applied to solid MS medium were: 0.05 % (T1), 0.15 % (T2), 0.25 % (T3), and 0.35 % (T4) along with control (T0). The callus biomass, embryo formation and plant regeneration were studied in response to elicitor treatments. The embryogenic callus was induced from hypocotyls of in vitro germinated seeds and various tissues were exposed to fungal elicitation. The use of A. flavus fungal elicitation improved callus biomass growth, which later differentiated into embryos, maximum somatic embryo induction being in T2 (106.53/callus mass). Biochemical analysis revealed more accumulation of sugar, protein and proline in growing tissues especially amended with elicitor. The somatic embryos germinated into plantlets on 2.24 µM BA added MS medium. The percent germination, shoot-, root length of germinated somatic embryos were high in low doses of elicitation (T1/T2). The quantitative analysis of vinblastine and vincristine yield was conducted in different elicitor treated tissues by the use of HPTLC. Vinblastine yield was maximum in germinating embryos (0.837 µg gm−1 dry weight), A. flavus elicitation at T2 improved vinblastine yield further (0.903 µg gm−1 dry weight). Compared to vinblastine, the yield of vincristine was low and on A. flavus addition, maximum vincristine yield was noted (0.216 µg gm−1 dry weight). The highest 7.88 and 15.50 % increased yield of vinblastine and vincristine respectively was noted on A. flavus elicitated tissues. In order to understand the role of elicitor on plant defense responses various antioxidant enzymes activity were investigated as the addition of elicitor induced cellular stress on tissues. Maturated and germinating somatic embryos had high SOD activity and on elicitation the activity of enzymes was further increased, indicating extra cellular stress on tissues, which yielded enriched level of vinblastine and vincristine at T2/T1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Andrade SAL, Malik S, Sawaya ACHF, Bottcher A, Mazzafera P (2013) Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol Plant 35:867–880

    Article  CAS  Google Scholar 

  • Bates L, Waldren PP, Teare JD (1973) Rapid determination of free proline of water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benkirane H, Sabounji K, Chlyah A, Chlyah H (2000) Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat. Plant Cell Tissue Org Cult 61:107–113

    Article  Google Scholar 

  • Bilgin DD, Zavala JA, Zhu JIN, Clough SJ, Ort DR, DeLucia E (2010) Biotic stress globally downregulates photosynthesis genes. Plant, Cell Environ 33(10):1597–1613

    Article  CAS  Google Scholar 

  • Binder BY, Peebles CA, Shanks JV, San KY (2009) The effects of UV-B stress on the production of terpenoidindole alkaloids in Catharanthus roseus hairy roots. Biotechnol Prog 25:861–865

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein, utilizing the principle of protein dye binding. Anal Biochem 72:248–541

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Kastell A, Mewis I, Knorr D, Smetanska I (2012) Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell Tissue Org Cult 108:401–409

    Article  CAS  Google Scholar 

  • Chen J-B, Wang S-M, Jing R-L, Mao X-G (2009) Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. J Plant Physiol 166:12–19

    Article  CAS  PubMed  Google Scholar 

  • Cheng DM, Yousef GG, Grace MH, Rogers RB, Gorelick-Feldman J, Raskin I, Lila MA (2008) In vitro production of metabolism enhancing phytoecdysteroids from Ajuga turkestanica. Plant Cell Tissue Org Cult 93(1):73–83

    Article  CAS  Google Scholar 

  • Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tissue Org Cult 106(2):279–288

    Article  CAS  Google Scholar 

  • D’Souza MR, Devaraj VR (2010) Biochemical responses of Hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiol Plant 32:341–353

    Article  Google Scholar 

  • De Schutter K, Joubes J, Cools T, Verkest A, Corellou F, Babiychuk E, Der Schueren E-V, Beeckman T, Kushnir S, Inze D, De Veylder L (2007) Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19:211–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Dey PM (1990) Methods in plant biochemistry. Carbohydarates, vol 2. Academic Press, London

    Google Scholar 

  • Dhindsa RH, Plumb-Dhindsa R, Thorpe TA (1981) Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Elkahoui S, Hernandez JA, Abdelly C, Ghrir R, Limam F (2005) Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci 168:607–613

    Article  CAS  Google Scholar 

  • Elmaghrabi AM, Ochatt S, Rogers HJ, Francis D (2013) Enhanced tolerance to salinity following cellular acclimation to increasing NaCl levels in Medicago truncatula. Plant Cell Tissue Org Cult 114:61–70

    Article  CAS  Google Scholar 

  • El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6:277–305

    Article  CAS  Google Scholar 

  • Facchini PJ, De Luca VD (2008) Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J 54:763–784

    Article  CAS  PubMed  Google Scholar 

  • Feher A (2015) Somatic embryogenesis—Stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849(4):385–402

    Article  CAS  PubMed  Google Scholar 

  • Fei L, Weathers PJ (2014) From cells to embryos to rooted plantlets in a mist bioreactor. Plant Cell Tissue Org Cult 116:37–46

    Article  CAS  Google Scholar 

  • Huttner C, Beuerle T, Scharnhop H, Ernst L, Beerhues L (2010) Differential effect of elicitors on biphenyl and dibenzofuran formation in Sorbus aucuparia cell cultures. J Agric Food Chem 58(22):11977–11984

    Article  CAS  PubMed  Google Scholar 

  • Junaid A, Mujib A, Bhat MA, Sharma MP (2006) Somatic embryo proliferation, maturation and germination in Catharanthus roseus. Plant Cell Tissue Org Cult 84:325–332

    Article  Google Scholar 

  • Junaid A, Mujib A, Sharma MP (2010) Variations in vinblastine production at different stages of somatic embryogenesis, embryo and field grown plantlets of Catharanthus roseus L. (G) Don, as revealed by HPLC. In Vitro Cell Dev Biol-Plant 46:348–353

    Article  Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res 3:1222–1239

    CAS  Google Scholar 

  • Kawana Y, Sasamoto H (2008) Stimulation effects of salts on growth in suspension culture of a mangrove plant, Sonneratia alba, compared with another mangrove, Bruguiera sexangula and nonmangrove tobacco BY-2 cells. Plant Biotechnol 25:151–155

    Article  Google Scholar 

  • Kiran Ghanti S, Sujata KG, Rao S, Udayakumar M, KaviKishor PB (2009) Role of enzymes and identification of stage-specific proteins in developing somatic embryos of chickpea (Cicer arietinum L.) In Vitro Cell. Dev Biol-Plant 45:667–672

    Article  CAS  Google Scholar 

  • Kornfeld A, Kaufman PB, Lu CR, Gibson DM, Bolling SF, Warber SL, Chang SC, Kirakosyan A (2007) The production of hypericins in two selected Hypericum perforatum shoot cultures is related to differences in black gland culture. Plant Physiol Biochem 45:24–32

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Chakraborty D, Kundu A, Pal A (2013) Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus. Proteome Sci 11:15. doi:10.1186/1477-5956-11-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovkova MY, Buzuk GN, Sokolova SM, Buzuk LN (2005) Role of elements and physiologically active compounds in the regulation of synthesis and accumulation of indole alkaloids in Catharanthus roseus L. Appl Biochem Microbiol 41:299–305

    Article  CAS  Google Scholar 

  • Martin EK, Vishal G, Susan CR (2008) Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol Pharm 5:243–256

    Article  Google Scholar 

  • Memelink J, Verpoorte R, Kijne JW (2001) Orcanization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    Article  CAS  PubMed  Google Scholar 

  • Misic D, Siler B, Zivkovic NJ, Simonovic A, Maksimovic V, Budimir S, Janosevic D, Durickovic M, Nikolic M (2012) Contribution of inorganic cations and organic compounds to osmotic adjustment in root cultures of two Centaurium species differing in tolerance to salt stress. Plant Cell Tissue Org Cult 108:389–400

    Article  CAS  Google Scholar 

  • Miura Y, Hirata K, Miyamoto K, Uchida K (1988) Formation of vinblastine from multiple shoot culture of Catharanthus roseus. Planta Med 54:8–20

    Google Scholar 

  • Moreno PRH (1995) Influence of stress factors on the secondary metabolism in suspension cultured Catharanthus roseus cells. Ph.D. thesis, Leiden University, Leiden

  • Mujib A, Samaj J (2006) Somatic embryogenesis. Springer, Berlin

    Book  Google Scholar 

  • Mujib A, Ilah A, Gandotra N, Abdin MZ (2003) In vitro application to improve alkaloid yield in Catharanthus roseus. In: Govil JN, Kumar PA, Singh VK (eds) Biotechnology and genetic engineering. Recent progress in medicinal plants, vol IV. Sci. Tech., Houston, pp 415–440

    Google Scholar 

  • Mujib A, Ilah A, Aslam J, Fatima S, Siddiqui ZH, Maqsood M (2012) Catharanthus roseus alkaloids: application of biotechnology for improving yield. Plant Growth Reg 68:111–127

    Article  CAS  Google Scholar 

  • Mukherjee AK, Basu S, Sarkar N, Ghosh AC (2001) Advances in cancer therapy with plant based natural products. Curr Med Chem 8:1467–1486

    Article  CAS  PubMed  Google Scholar 

  • Mulabagal V, Tsay HS (2004) Plant cell cultures- an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Org Cult 118:1–16

    Article  CAS  Google Scholar 

  • Mustafa NR, Kim HK, Choi YH, Erkelens C, Lefeber AW, Spijksma G, van der Heijden R, Verpoorte R (2009) Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry 70:532–539

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolezi P, Potters G, Asard H, Van Onckelen A, Dudits D, Feher A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawar KD, Yadav AV, Shouche YS, Thengane SR (2011) Influence of endophytic fungal elicitation on production of inophyllum in suspension cultures of Calophyllum inophyllum L. Plant Cell Tissue Org Cult 106(2):345–352

    Article  CAS  Google Scholar 

  • Prasad A, Mathur A, Kalra A, Gupta MM, Lal RK, Mathur AK (2013) Fungal elicitor-mediated enhancement in growth and asiaticoside content of Centella asiatica L. shoot cultures. Plant Growth Reg 69:265–273

    Article  CAS  Google Scholar 

  • Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91–102

    Article  CAS  PubMed  Google Scholar 

  • Ramani S, Jayabaskaran C (2008) Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. J Mol Signal 25(3):9

    Article  Google Scholar 

  • Rhee HS, Cho HY, Son SY, Yoon SYH, Park JM (2010) Enhanced accumulation of decursin and decursinol angelate in root cultures and intact roots of Angelica gigas Nakai following elicitation. Plant Cell Tissue Org Cult 101(3):295–302

    Article  CAS  Google Scholar 

  • Roja Rani A, Reddy VD, PrakashBabu P, Padmaja G (2005) Changes in protein profiles associated with somatic embryogenesis in peanut. Biol Plant 49:347–354

    Article  Google Scholar 

  • Saiman MZ, Mustafa NR, Pomahocova B, Verberne M, Verpoorte R, Choi YH, Schulte AE (2014) Analysis of metabolites in the terpenoid pathway of Catharanthus roseus cell suspensions. Plant Cell Tissue Org Cult 117:225–239

    Article  CAS  Google Scholar 

  • Samar F, Mujib A, Samaj J (2011) Anti-oxidant enzyme responses during in vitro embryogenesis in Catharanthus roseus. J Hort Sci Biotechnol 86(6):569–574

    Google Scholar 

  • Samar F, Mujib A, Dipti T (2015) NaCl amendment improves vinblastine and vincristine synthesis in Catharanthus roseus: a case of stress signalling as evidenced by antioxidant enzymes activities. Plant Cell Tissue Org. Cult. doi:10.1007/s11240-015-0715-5

  • Shibli RA, Kushad M, Yousef GG, Lila MA (2007) Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation. Plant Growth Reg 51:159–169

    Article  CAS  Google Scholar 

  • Siahsar B, Rahimi M, Tavasssoli A, Raissi AS (2011) Application of biotechnology in production of medicinal plants. Am-Euras J Agric Environ Sci 11:439–444

    CAS  Google Scholar 

  • Singh G, Gavrieli J, Oakey JS, Curtis WR (1998) Interaction of methyl jasmonate, wounding and fungal elicitation during sesquiterpene induction in Hyoscyamus muticus in root cultures. Plant Cell Rep 17:391–395

    Article  CAS  Google Scholar 

  • Song Y (2013) Insight into the mode of action of 2,4-Dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol 56:106–113

    Article  Google Scholar 

  • Sorrell DA, Marchbank A, McMahon K, Dickinson JR, Rogers HJ, Francis D (2002) A WEE1 homologue from Arabidopsis thaliana. Planta 215:518–522

    Article  CAS  PubMed  Google Scholar 

  • Staniszewska I, Krolicka A, Malinski E, Jojkowska E, Szafranek JZ (2003) Elicitation of secondary metabolites is in vitro cultures of Ammi majus L. Enzy Microbial Technol 33:565–568

    Article  CAS  Google Scholar 

  • Valluri JV (2009) Bioreactor production of secondary metabolites from cell cultures of periwinkle and sandalwood. Methods Mol Biol 547:325–335

    Article  CAS  PubMed  Google Scholar 

  • Van der Heijden R, Jacobs DT, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharamacognosy and biochemistry. Curr Med Chem 11:607–628

    Article  Google Scholar 

  • Verma P, Mathur AK, Srivastava A, Mathur A (2012) Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus. Protoplasma 249:255–268

    Article  CAS  PubMed  Google Scholar 

  • Vinterhalter B, Jankovic T, Sovikin L, Nikolic R, Vinterhalter D (2008) Propagation and xanthone content of Gentianella austriaca shoot cultures. Plant Cell Tissue Org Cult 94:329–335

    Article  Google Scholar 

  • Winkelmann T, Muβmann V, Serek M (2004) Cryopreservation of embryogenic cell suspension cultures of Cyclamen persicum Mill. Plant Cell Rep 23:1–8

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Dong J (2005) Elicitor-induced nitric oxide burst is essential for triggering catharanthine synthesis in Catharanthus roseus suspension cells. Appl Microbiol Biotechnol 67:40–44

    Article  CAS  PubMed  Google Scholar 

  • Zahid SH, Mujib A (2012) Accumulation of vincristine in calcium chloride elicitated Catharanthus roseus cultures. Nat Prod J 2(9):307–315

    Google Scholar 

  • Zahid SH, Mujib A, Maqsood M (2011) Liquid overlaying improves somatic embryogenesis in Catharanthus roseus. Plant Cell Tissue Org Cult 104:247–256

    Article  Google Scholar 

  • Zhao J, Hu Q, Guo YQ, Zhu WH (2001) Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Appl Microbiol Biotechnol 55:693–698

    Article  CAS  PubMed  Google Scholar 

  • Zizhen L, Tiantian Z, Xiaoqian Z, Jia Z, Changqi Z (2015) An alkaloid and a steroid from the endophytic fungus Aspergillus fumigatus. Molecules 20:1424–1433

    Article  Google Scholar 

  • Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to University Grant Commission (UGC) and Department of Botany, Hamdard University (Jamia Hamdard) for receiving financial assistance and other research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mujib.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonk, D., Mujib, A., Maqsood, M. et al. Aspergillus flavus fungus elicitation improves vincristine and vinblastine yield by augmenting callus biomass growth in Catharanthus roseus . Plant Cell Tiss Organ Cult 126, 291–303 (2016). https://doi.org/10.1007/s11240-016-0998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-0998-1

Keywords

Navigation