Skip to main content
Log in

Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Catharanthus roseus (The Madagaskar Periwinkle) plant is commercially valued for harbouring more than 130 bioactive terpenoid indole alkaloids (TIAs). Amongst these, two of the leaf-derived bisindole alkaloids—vinblastine and vincristine—are widely used in several anticancer chemotherapies. The great pharmacological values, low in planta occurrence, unavailability of synthetic substitutes and exorbitant market cost of these alkaloids have prompted scientists to understand the basic architecture and regulation of biosynthesis of these TIAs in C. roseus plant and its cultured tissues. The knowledge gathered over a period of 30 years suggests that the TIA biosynthesis is highly regulated by developmental and environmental factors and operates through a complex multi-step enzymatic network. Extensive spatial and temporal cross talking also occurs at inter- and intracellular levels in different plant organs during TIA biogenesis. A close association of indole, methylerythritol phosphate and secoiridoid monoterpenoid pathways and involvement of at least four cell types (epidermis, internal phloem-associated parenchyma, laticifers and idioblasts) and five intracellular compartments (chloroplast, vacuole, nucleus, endoplasmic reticulum and cytosol) have been implicated with this biosynthetic mechanism. Accordingly, the research in this area is primarily advancing today to address and resolve six major issues namely: precise localization and expression of pathway enzymes using modern in situ RNA hybridization tools, mechanisms of intra- and intercellular trafficking of pathway intermediates, cloning and functional validation of genes coding for known or hitherto unknown pathway enzymes, mechanism of global regulation of the pathway by transcription factors, control of relative diversion of metabolite flux at crucial branch points and finally, strategising the metabolic engineering approaches to improve the productivity of the desired TIAs in plant or corresponding cultured tissues. The present literature update has been compiled to provide a brief overview of some of the emerging developments in our current understanding of TIA metabolism in C. roseus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arcuri HA, Zafalon GFD, Marucci EA, Bonalumi CE, Da Silviera NJF, Machado JM, De Azevedo WF Jr, Palma MS (2010) SKPDB: a structural database of shikimate pathway enzymes. BMC Bioinformatics 11:12

    Article  PubMed  CAS  Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605

    Article  PubMed  CAS  Google Scholar 

  • Ayora-Talavera T, Chappell J, Lozoya-Gloria E, Loyola-Vargas VM (2002) Over-expression of Catharanthus roseus hairy roots of a truncated hamster 3-hydroxy-3-methylglutaryl-CoA reductase gene. Appl Biochem Biotechnol 97:135–145

    Article  PubMed  CAS  Google Scholar 

  • Barleben L, Panjikar S, Ruppert M, Koepke J, Stockigt J (2007) Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family. Plant Cell 19:2886–2897

    Article  PubMed  CAS  Google Scholar 

  • Bhadra R, Vani S, Shanks J (1993) Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnol Bioeng 41:581–592

    Article  PubMed  CAS  Google Scholar 

  • Blom TJM, Sierra M, van Vliet TB, Franke-van Dijk MEI, de Koning P, van Iren F, Verpoorte R, Libbenga KR (1991) Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don. and its conversion into serpentine. Planta 183:170–177

    Article  CAS  Google Scholar 

  • Brotherton JE, Schechter S, Ranch JP, Widholm JM (1996) Inheritance and stability of 5-methyltryptophan resistance in Datura innoxia selected in vitro. Plant Cell Physiol 37:389–394

    CAS  Google Scholar 

  • Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38:131–141

    Article  PubMed  CAS  Google Scholar 

  • Campous-Tamayo F, Hernandez-Dominguez E, Vazquez-Flota FA (2008) Vindoline formation in shoot cultures of Catharanthus roseus is synchronously activated with morphogenesis through the last biosynthetic step. Ann Bot 102:409–415

    Article  CAS  Google Scholar 

  • Canel C, Lopes-Cardoso MI, Whitmer S, Van der Fits L, Pasquali G, Van der Heijden R, Hoge JHC, Verpoorte R (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419

    Article  PubMed  CAS  Google Scholar 

  • Collu G, Unver N, Peltenburg-Looman AMG, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220

    Article  PubMed  CAS  Google Scholar 

  • Contin A, van der Heijden R, Lefeber AWM, Verpoorte R (1998) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 434:413–416

    Article  PubMed  CAS  Google Scholar 

  • Contin A, Van der Heijden R, Verpoorte R (1999) Accumulation of loganin and secologanin in vacuoles from suspension cultured Catharanthus roseus cells. Plant Sci 147:177–183

    Article  CAS  Google Scholar 

  • Costa MMR, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barcelo AR, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417

    Article  PubMed  CAS  Google Scholar 

  • De Carolis E, Chan F, Balsevich J, De Luca V (1990) Isolation and characterization of a 2-oxoglutarate dependent dioxygenase involved in the second-to-last step in vindoline biosynthesis. Plant Physiol 94:1323–1329

    Article  PubMed  Google Scholar 

  • De Luca V, Cutler AJ (1987) Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 85:1099–1102

    Article  PubMed  Google Scholar 

  • De Luca V, St-Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173

    Article  PubMed  Google Scholar 

  • De Luca, Laflamme P (2001) The expanding universe of alkaloid biosynthesis. Curr Opin Plant Biol 4:225–233

    Article  PubMed  Google Scholar 

  • De Luca V, Balsevich J, Tyler RT, Eilert U, Panchuk BD, Kurz WGW (1986) Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. J Plant Physiol 125:147–156

    Article  Google Scholar 

  • de Waal A, Meijer AH, Verpoorte R (1995) Strictosidine synthase from Catharanthus roseus: purification and characterization of multiple forms. Biochem J 306:571–580

    PubMed  Google Scholar 

  • Dethier M, De Luca V (1993) Partial purification of an N-methyltransferase involved in vindoline biosynthesis in Catharanthus roseus. Phytochemistry 32:673–678

    Article  CAS  Google Scholar 

  • El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6:277–305

    Article  CAS  Google Scholar 

  • Endo T, Goodbody AE, Vukovic J (1988) Enzymes from Catharanthus roseus cell suspension cultures that couple vindoline and catharanthine to form 3′, 4′-anhydrovinblastine. Phytochemistry 27:2147–2149

    Article  CAS  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Ann Rev Plant Mol Biol 52:29–66

    Article  CAS  Google Scholar 

  • Facchini PJ (2006) Regulation of alkaloid biosynthesis in plants. Alkaloids Chem Biol 63:1–44

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, De Luca V (2008) Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J 54:763–784

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, DiCosmo F (1991) Secondary metabolites biosynthesis in cultured cells of Catharanthus roseus (L.) Don immobilized by adhesion to glass fibers. Appl Microbiol Biotechnol 35:382–392

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, St-Pierre B (2005) Synthesis and trafficking of biosynthetic enzymes. Curr Opin Plant Biol 8:657–666

    Article  PubMed  CAS  Google Scholar 

  • Geerlings A, Memelink J, van der Heijden R, Verpoorte R (2000) Molecular cloning and analysis of strictosidine β-d-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275:3051–3056

    Article  PubMed  CAS  Google Scholar 

  • Goddijin OJM, De Kam RJ, Zanetti A, Schilperoort RA, Hoge JHC (1992) Auxin rapidly down-regulates transcription of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol Biol 18:1113–1120

    Article  Google Scholar 

  • Gueritte F, Bac NV, Langlois Y, Potier P (1980) Biosynthesis of antitumor alkaloids from Catharanthus roseus. Conversion of 20’-deoxyleurosidine into vinblastine. J. Chem. Soc. Chem. Commun, 452–453

  • Guillet G, Poupart J, Basurco J, De Luca V (2000) Expression of tryptophan decarboxylase and tyrosine decarboxylase genes in tobacco results in altered biochemical and physiological phenotypes. Plant Physiol 122:933–944

    Article  PubMed  CAS  Google Scholar 

  • Guirimand G, Burlat V, Oudin A, Lanoue A, St-Pierre B, Courdavault V (2009) Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Rep 28:1215–1234

    Article  PubMed  CAS  Google Scholar 

  • Guirimand G, Courdavault V, St-Pierre B, Burlat V (2010a) Biosynthesis and regulation of alkaloids. In: Pua EC, Davey MR (eds) Plant developmental biology-biotechnological perspective, vol 2. Springer, Heidelberg, pp 139–160

    Chapter  Google Scholar 

  • Guirimand G, Courdavault V, Lanoue A, Mahroug S, Guihur A, Blanc N, Giglioli-Guivarch N, St-Pierre B, Burlat V (2010b) Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”. BMC Plant Biol 10:182

    PubMed  Google Scholar 

  • Guirimand G, Guihur A, Pierre P, Hericourt F, Mahroug S, St-Pierre B, Burlat V, Courdavault V (2011a) Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. J Plant Physiol 168:519–628

    Article  CAS  Google Scholar 

  • Guirimand G, Ginis O, Guihur A, Pierre P, Hericourt F, Oudin A, Lanoue A, St-Pierre B, Burlat V, Courdavault V (2011b) The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J 278:749–763

    Article  PubMed  CAS  Google Scholar 

  • Hedhili S, Courdavault V, Giglioli-Guivarc’h N, Gantet P (2007) Regulation of the terpene moiety biosynthesis of Catharanthus roseus terpene indole alkaloids. Phytochem Rev 6:341–351

    Article  CAS  Google Scholar 

  • Hernandez-Dominguez E, Campos-Tamayo F, Vazquez-Flota F (2004) Vindoline synthesis in in vitro shoot cultures of Catharanthus roseus. Biotechnol Lett 26:671–674

    Article  PubMed  CAS  Google Scholar 

  • Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919

    Article  PubMed  CAS  Google Scholar 

  • Hirata K, Horiuchi M, Ando T, Miyamoto K, Miura Y (1990) Vindoline and catharanthine production in multiple shoot cultures of Catharanthus roseus. J Ferm Bioeng 70:193–195

    Article  CAS  Google Scholar 

  • Hong SB, Hughes EH, Shanks JV, San KY, Gibson SI (2003) Role of the nonmevalonate pathway in indole alkaloid production by Catharanthus roseus hairy roots. Biotechnol Prog 19:1105–1108

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Esaki N, Nakai S et al (1991) Acyclic monoterpene primary alcohol: NADP super(+)oxidoreductase of Rauwolfia serpentina cells: the key enzyme in biosynthesis of monoterpene alcohols. J Biochem 109:341–347

    PubMed  CAS  Google Scholar 

  • Irmler S, Schroder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strak D, Matern U, Schroder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24:797–804

    Article  PubMed  CAS  Google Scholar 

  • Jaggi M, Kumar S, Sinha AK (2011) Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3131-8

    PubMed  Google Scholar 

  • Knaggs AR (2001) The biosynthesis of shikimate metabolites. Nat Prod Rep 18:334–355

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dutta A, Sinha AK, Sen J (2007) Cloning, characterization and localization of a novel basic peroxidase gene from Catharanthus roseus. FEBS J 274:1290–1303

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Jaggi M, Taneja J, Sinha AK (2011) Cloning and characterization of two new class III peroxidase genes from Catharanthus roseus. Plant Physiol Biochem 49:404–412

    Article  PubMed  CAS  Google Scholar 

  • Kutchan TM (1995) Alkaloid biosynthesis—the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059–1070

    Article  PubMed  CAS  Google Scholar 

  • Kutchan TM (2005) A role for intra- and intercellular translocation in natural product biosynthesis. Curr Opin Plant Biol 8:292–300

    Article  PubMed  CAS  Google Scholar 

  • Laflamme P, St Pierre B, De Luca V (2001) Molecular and biochemical analysis of a Madagascar periwinkle root-specific minovincinine-19-hydroxy-O-acetyltransferase. Plant Physiol 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Levac D, Murata J, Kim WS, De Luca V (2008) Application of carborundum abrasion for investigating leaf epidermis: molecular cloning of Catharanthus roseus 16-hydroxy-tabersonine-16-O-methyltransferase. Plant J 53:225–236

    Article  PubMed  CAS  Google Scholar 

  • Liscombe DK, Usera AR, O’Connor SE (2010) Homologue of tocopherol C methyltransferases catalyzes N methylation in anticancer alkaloid biosynthesis. Proc Natl Acad Sci U S A 107:18793–18798

    Article  PubMed  CAS  Google Scholar 

  • Loyola-Vargas V, Mendez-Zeel M, Monforte-Gonzalez M, Miranda-Ham ML (1992) Serpentine accumulation during greening in normal and tumor tissues of Catharanthus roseus. J Plant Physiol 140:213–217

    Article  CAS  Google Scholar 

  • Loyola-Vargas VM, Galaz-Avalos RM, Rodríguez-Ku JR (2007) Catharanthus biosynthetic enzymes: the road ahead. Phytochem Rev 6:307–339

    Article  CAS  Google Scholar 

  • Luijendijk TJC, van der Meijden E, Verpoorte R (1996) Involvement of strictosidine as a defensive chemical in Catharanthus roseus. J Chem Ecol 22:1355–1366

    Article  CAS  Google Scholar 

  • Madyastha KM, Ridgway JE, Dwyer JG et al (1977) Subcellular localization of a cytochrome P-450-dependent monooxygenase in vesicles of the higher plant Catharanthus roseus. J Cell Biol 72:302–313

    Article  PubMed  CAS  Google Scholar 

  • Magnotta M, Murata J, Chen J, De Luca V (2007) Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68:1922–1931

    Article  PubMed  CAS  Google Scholar 

  • Mahroug S, Courdavault V, Thiersault M, St-Pierre B, Burlat V (2006) Epidermis is a pivotal site of at least four secondary metabolic pathways in Catharanthus roseus aerial organs. Planta 223:1191–1200

    Article  PubMed  CAS  Google Scholar 

  • Mahroug S, Burlat V, St-Pierre B (2007) Cellular and sub-cellular organization of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Phytochem Rev 6:363–381

    Article  CAS  Google Scholar 

  • McKnight TD, Roessner CA, Devagupta R, Scott AL, Nessler CL (1990) Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acid Res 18:4939

    Article  PubMed  CAS  Google Scholar 

  • McKnight TD, Bergey DR, Burnett RJ, Nessler CL (1991) Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants. Planta 185:148–152

    Article  CAS  Google Scholar 

  • Meehan TD, Coscia CJ (1973) Hydroxylation of geraniol and nerol by a monooxygenase from Vinca rosea. Biochem Biophys Res Commun 53:1043–1048

    Article  PubMed  CAS  Google Scholar 

  • Meijer AH, Lopes Cardoso MI, Voskuilen JT, de Waal A, Verpoorte R, Hoge JH (1993a) Isolation and characterization of cDNA clone from Catharanthus roseus encoding NADPH: cytochrome P-450 reductase, an enzyme essential for reactions catalysed by cytochrome P-450 mono-oxygenase in plants. Plant J 4:47–60

    Article  PubMed  CAS  Google Scholar 

  • Meijer AH, Verpoorte R, Hoge JHC (1993b) Regulation of enzymes and genes involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Plant Res 3:145–164

    Google Scholar 

  • Merillon JM, Doireau P, Guillot A, Chenieux JC, Rideau M (1986) Indole alkaloid accumulation and tryptophan decarboxylase activity in Catharanthus roseus cells cultured in three different media. Plant Cell Rep 5:23–26

    Article  CAS  Google Scholar 

  • Moreno PRH, Van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus: a literature survey II. Updating from 1988 to 1993. Plant Cell Tissue Organ Cult 42:1–25

    Article  Google Scholar 

  • Moreno-Valenzuela OA, Minero-García Y, Chan W, Mayer-Geraldo E, Carbajal E, Loyola-Vargas VM (2003) Increase in the indole alkaloid production and its excretion into the culture medium by calcium antagonists in Catharanthus roseus hairy roots. Biotechnol Lett 25:1345–1349

    Article  PubMed  CAS  Google Scholar 

  • Morgan JA, Shanks JV (1999) Inhibitor studies of tabersonine metabolism in C. roseus hairy roots. Phytochemistry 51:61–68

    Article  PubMed  CAS  Google Scholar 

  • Murata J, De Luca V (2005) Localization of tabersonine 16-hydroxylase and 16-OH-tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44:581–594

    Article  PubMed  CAS  Google Scholar 

  • Murata J, Bienzle D, Brandle JE, Sensen CW, De Luca V (2006) Expressed sequence tags from Madagascar periwinkle (Catharanthus roseus). FEBS Lett 580:4501–4507

    Article  PubMed  CAS  Google Scholar 

  • Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20:524–542

    Article  PubMed  CAS  Google Scholar 

  • Noe W, Berlin J (1984) Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol 3:281–288

    Article  CAS  Google Scholar 

  • O’Keef BR, Mahady GB, Gills JJ, Beecher CWW (1997) Stable vindoline production in transformed cell culture of Catharanthus roseus. J Nat Prod 60:261–264

    Article  Google Scholar 

  • O’Connor SE, Maresh JM (2006) Chemistry and biology of terpene indole alkaloid biosynthesis. Nat Prod Rep 23:532–547

    Article  PubMed  CAS  Google Scholar 

  • Oudin A, Courtois M, Rideau M, Clastre M (2007a) The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochem Rev 6:259–276

    Article  CAS  Google Scholar 

  • Oudin A, Mahroug S, Courdavault V, Hervouet N, Zelwer C, Rodriguez-Conception M, St-Pierre B, Burlat V (2007b) Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Mol Biol 65:13–30

    Article  PubMed  CAS  Google Scholar 

  • Ouwerkerk PBF, Memelink J (1999) Elicitor-responsive promoter regions in the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol Biol 39:129–136

    Article  PubMed  CAS  Google Scholar 

  • Papon N, Bremer J, Vansiri A, Andreu F, Rideau M, Creche J (2005) Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med 71:572–574

    Article  PubMed  CAS  Google Scholar 

  • Pasquali G, Goddijn OJM, De Waal A, Verpoorte R, Schilperoort RA, Hoge JHC, Memelink J (1992) Co-ordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 18:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Pasquali G, Erven AS, Ouwerkerk PBF, Menke FL, Memelink J (1999) The promoter of the strictosidine synthase gene from periwinkle confers elicitor-inducible expression in transgenic tobacco and binds nuclear factors GT-1 and GBF. Plant Mol Biol 39:1299–1310

    Article  PubMed  CAS  Google Scholar 

  • Pasquali G, Porto DD, Fett-Neto AG (2006) Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: recent progress related to old dilemma. J Biosci Bioeng 101:287–296

    Article  PubMed  CAS  Google Scholar 

  • Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921–934

    Article  PubMed  CAS  Google Scholar 

  • Rijhwani SK, Shanks JV (1998) Effect of elicitor dosage and exposure time on biosynthesis of indole alkaloids by Catharanthus roseus hairy root cultures. Biotechnol Prog 14:442–449

    Article  PubMed  CAS  Google Scholar 

  • Rischer H, Oresic M, Seppanen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MCE, Inze D, Oksman-Caldentey KM, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 103:5614–5619

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez S, Compagnon V, Crouch NP, St-Pierre B, De Luca V (2003) Jasmonate-induced epoxidation of tabersonine by a cytochrome P-450 in hairy root cultures of Catharanthus roseus. Phytochemistry 64:401–409

    Article  PubMed  CAS  Google Scholar 

  • Roepke J, Salim V, Wu M, Thamm AMK, Murata J, Ploss K, Boland W, De Luca V (2010) Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc Nat Acad Sci USA 107:15287–15292

    Article  PubMed  CAS  Google Scholar 

  • Roytrakul S, Verpoorte R (2007) Role of vacuolar transporter proteins in plant secondary metabolism: Catharanthus roseus cell culture. Phytochem Rev 6:383–396

    Article  CAS  Google Scholar 

  • Sanchez-Iturbe P, Galaz-Avalos RM, Loyola-Vargas VM (2005) Determination and partial purification of a monoterpene cyclase from Catharanthus roseus hairy roots. Phyton 55–69

  • Scott AI, Mizukami H, Lee S-L (1979) Characterization of a 5-methyltryptophan resistant strain of Catharanthus roseus cultured cells. Phytochemistry 18:795–798

    Article  CAS  Google Scholar 

  • Scroder G, Unterbusch E, Kaltenbach M, Schmidt J, Strack D, De Luca V, Schroder J (1999) Light induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Lett 458:97–102

    Article  Google Scholar 

  • Seth R, Mathur AK (2005) Selection of 5-methyltryptophan resistant callus lines with improved metabolic flux towards terpenoid indole alkaloid synthesis in Catharanthus roseus. Curr Sci 89:544–548

    CAS  Google Scholar 

  • Shanks JV, Bhadra R, Morgan J, Rijhwani S, Vani S (1998) Quantification of metabolites in the indole alkaloid pathways of Catharanthus roseus: implications for metabolic engineering. Biotechnol Bioeng 58:333–338

    Article  PubMed  CAS  Google Scholar 

  • Shukla AK, Shasany AK, Gupta MM, Khanuja SPS (2006) Transcriptome analysis in Catharanthus roseus leaves and roots for comparative terpenoid indole alkaloid profiles. J Exp Bot 57:3921–393

    Article  PubMed  CAS  Google Scholar 

  • Shukla AK, Shasany AK, Verma RK, Gupta MM, Mathur AK, Khanuja SPS (2010) Influence of cellular differentiation and elicitation on intermediate and late steps of terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Protoplasma 242:35–47

    Article  PubMed  CAS  Google Scholar 

  • Song HS, Brotherton JE, Gonzales RA, Widholm JM (1998) Tissue culture-specific expression of a naturally occurring tobacco feedback-insensitive anthranilate synthase. Plant Physiol 117:533–543

    Article  PubMed  CAS  Google Scholar 

  • Sottomayor M, Ros Barcelo A (2003) Peroxidase from Catharanthus roseus (L.) G. Don and the biosynthesis of alpha-3′,4′-anhydrovinblastine: a specific role for a multifunctional enzyme. Protoplasma 222:97–105

    Article  PubMed  CAS  Google Scholar 

  • Sottomayor M, Ros Barcelo A (2005) The Vinca alkaloids: From biosynthesis and accumulation in the plant cells, to uptake, activity and metabolism in animal cells. In: Atta-Ur-Rehman (ed) Studies in natural products chemistry (bioactive natural products), vol 33. Elsevier Science, Amsterdam, pp 813–857

    Google Scholar 

  • Sottomayor M, De Pinto MC, Salema R, DiCosmo F, Pedreno MA, Ros Barcelo A (1996) The vacuolar localization of a basic peroxidase isoenzyme responsible for the synthesis of a α-3’, 4’- anhydrovinblastine in Catharanthus roseus (L.) G. Don. leaves. Plant Cell Environ 19:761–767

    Article  CAS  Google Scholar 

  • Sottomayor M, Lopez-Serrano M, DiCosmo F, Ros-Barcelo A (1998) Purification and characterization of α-3′,4′-anhydrovinblastine synthase (peroxidase-like) from Catharanthus roseus (L.) G. Don. FEBS Lett 428:299–303

    Article  PubMed  CAS  Google Scholar 

  • Sottomayor M, Lopes Cardoso I, Pereira LG, Ros Barcelo A (2004) Peroxidase and the biosynthesis of terpenoid indole alkaloids in the medicinal plant Catharanthus roseus (L.) G. Don. Phytochemistry Rev 3:159–171

    Article  CAS  Google Scholar 

  • Stevens LH, Blom TJM, Verpoorte R (1993) Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep 12:573–576

    Article  CAS  Google Scholar 

  • Stockigt J, Panjikar S (2007) Structural biology in plant natural product biosynthesis—architecture of enzymes from monoterpene indole and tropane alkaloid biosynthesis. Nat Prod Rep 24:1382–1400

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre B, De Luca V (1995) A cytochrome P-450 monooxygenase catalyzes the first step in the conversion of tabersonine to vindoline in Catharanthus roseus. Plant Physiol 109:131–139

    PubMed  CAS  Google Scholar 

  • St-Pierre B, Laflamme P, Alarco AM, De Luca V (1998) The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer. Plant J 14:703–713

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900

    Article  PubMed  CAS  Google Scholar 

  • van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25:43–53

    Article  PubMed  Google Scholar 

  • van der Heijden R, Jabos DJ, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:1241–1253

    Article  Google Scholar 

  • Vazquez-Flota F, De Luca V (1998) Jasmonate modulates development and light regulated alkaloid biosynthesis in Catharanthus roseus. Phytochemisry 49:395–402

    Article  CAS  Google Scholar 

  • Vazquez-Flota FA, De Carolis ED, Alarco AM, De Luca V (1997) Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don. Plant Mol Biol 34:935–948

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Flota F, De Luca V, Carrillo-Pech M, Canto-Flick A, de Lourde Miranda-Ham M (2002) Vindoline biosynthesis is transcriptionally blocked in Catharanthus roseus cell suspension cultures. Mol Biotechnol 22:1–8

    Article  PubMed  CAS  Google Scholar 

  • Verma P, Mathur AK (2011a) Direct shoot bud organogenesis and plant regeneration from leaf explants in Catharanthus roseus. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-011-9936-4

    Google Scholar 

  • Verma P, Mathur AK (2011b) Agrobacterium tumefaciens mediated transgenic plant production via direct shoot bud organogenesis from pre-plasmolyzed leaf explants of Catharanthus roseus. Biotechnol Lett 33:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte R, Alfermann AW (2000) In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrecht

    Google Scholar 

  • Verpoorte R, van der Heijden R, Moreno PRH (1997) Biosynthesis of terpenoid indole alkaloids in Catharanthus roseus cells. In: Cordell GA (ed) The alkaloids, vol. 49. Academic, San Diego, pp 221–299

    Chapter  Google Scholar 

  • Whitmer S, Canel C, Hallard D, Goncalves C, Verpoorte R (1998) Influence of precursor availability on alkaloid accumulation by transgenic cell line of Catharanthus roseus. Plant Physiol 116:853–857

    Article  PubMed  CAS  Google Scholar 

  • Whitmer S, Canel C, van der Heijden R, Verpoorte R (2003) Long-term instability of alkaloid production by stably transformed cell lines of Catharanthus roseus. Plant Cell Tissue Organ Cult 74:73–80

    Article  CAS  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Council of Scientific and Industrial Research (CSIR), New Delhi (India) and Director, CIMAP for the financial support and encouragement during the course of this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar Mathur.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, P., Mathur, A.K., Srivastava, A. et al. Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. Protoplasma 249, 255–268 (2012). https://doi.org/10.1007/s00709-011-0291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0291-4

Keywords

Navigation