Skip to main content
Log in

Role of enzymes and identification of stage-specific proteins in developing somatic embryos of chickpea (Cicer arietinum L.)

  • Embryogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Accumulation of proline, activities of peroxidase (POX), catalase (CAT), phenylalanine ammonia lyase (PAL) and malate dehydrogenase (MDH) were studied during different developmental stages of somatic embryos in chickpea. Callus cultures that did not form somatic embryos served as control. While increased levels of proline and POX activity were noticed in globular stages of embryos, CAT activity increased during early and late heart-shaped embryo formation indicating tissue-specific activation of these enzymes. The activity of PAL reached a peak during torpedo and cotyledonary stages of embryo development. On the other hand, MDH activity enhanced during the germination of somatic embryos inferring more requirement of energy during this stage. Electrophoretic (sodium dodecyl sulfate polyacrylamide gel electrophoresis) pattern of proteins revealed that ten bands are associated with non-embryogenic tissues, whereas 11 bands with globular, heart, torpedo and cotyledonary stages of embryo development and nine bands during the germination stage of embryos. Two extra stage-specific protein bands with molecular masses of 16 and 18 kDa appeared during globular, heart, torpedo, and cotyledonary stages. But, these bands disappeared during germination of embryos and are absent in non-embryogenic cultures. This study thus may help in the identification of proteins and the role of above enzymes during different developmental stages of somatic embryo induction and their maturation in a recalcitrant leguminous crop plant chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Bagnoli F.; Capuana M.; Racchi M. L. Developmental changes of catalase and superoxide dismutase isoenzymes in zygotic and somatic embryos of horse chestnut. Aust. J. Plant Physiol. 25: 909–913; 1998.

    Article  CAS  Google Scholar 

  • Bates L. S.; Waldren R. P.; Teare I. D. Rapid determination of free proline for water stress studies. Plant Soil. 39: 205–207; 1973. doi:10.1007/BF00018060.

    Article  CAS  Google Scholar 

  • Bewley J. D.; Black M. Seeds physiology of development and germination. 2nd ed. Plenum Press, New York1994.

    Google Scholar 

  • Brueske C. H. Phenylalanine ammonia lyase activity in tomato roots infected and resistant to the root-knot nematode (Meloidogyne incogni). Physiol. Plant Pathol. 16: 409–414; 1980.

    CAS  Google Scholar 

  • Chengalrayan K.; Hazra S.; Gallo-Meagher M. Histological analysis of somatic embryogenesis and organogenesis induced from mature zygotic embryo-derived leaflets of peanut (Arachis hypogaea L.). Plant Sci. 161: 415–421; 2001. doi:10.1016/S0168-9452(01)00439-3.

    Article  CAS  Google Scholar 

  • Cordewener J.; Booij H.; Vander Zett H.; Van Engelen F.; VanKammen A.; deVries S. C. Tunicamycin-inhibited carrot somatic embryogenesis can be restored by secreted cationic peroxidase isoenzymes. Planta. 184: 478–486; 1991. doi:10.1007/BF00197895.

    Article  CAS  Google Scholar 

  • Cvikova M.; Hrubcova M.; Vagner M.; Machackova I.; Eder J. Phenolic acids and peroxdase activity in alfalfa (Medicago sativa L.) embrogenic culture after ethphone treatment. Physiol. Plant. 91: 226–233; 1994. doi:10.1111/j.1399-3054.1994.tb00423.x.

    Article  Google Scholar 

  • Dhindsa P. L. P.; Dhindsa R. S.; Thrope T. A. Non-autotrophic CO2 fixation during shoot formation in tobacco callus. J. Exp. Bot. 30: 759–776; 1979. doi:10.1093/jxb/30.4.759.

    Article  Google Scholar 

  • Dhindsa R. S.; Beasley C. A.; Ting I. P. Osmoregulation in cotton fiber. Plant Physiol. 56: 394–398; 1975.

    Article  CAS  PubMed  Google Scholar 

  • Dhindsa R. S.; Dhindsa P.; Thorpe T. S. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of SOD and catalase. J. Exp. Bot. 32: 93–101; 1981. doi:10.1093/jxb/32.1.93.

    Article  CAS  Google Scholar 

  • Dodeman V. L.; Ducreux G. Total protein expression during induction and development of carrot somatic embryos. Plant Sci. 120: 57–69; 1996. doi:10.1016/S0168-9452(96)04487-1.

    Article  CAS  Google Scholar 

  • Evans J. J. Peroxidase from extreme dwarf tomatoes, identification, isolation and partial purification. Plant Physiol. 43: 1037–1041; 1968.

    Article  CAS  PubMed  Google Scholar 

  • Fellers J. P.; Guenzi A. C.; Porter D. R. Marker proteins associated with somatic embryogenesis of wheat callus cultures. J. Plant Physiol. 151: 201–208; 1997.

    CAS  Google Scholar 

  • Fowler M. W. Role of the malic enzymes reaction in plant roots. Utilization of (2, 3-14 C) malate and (1-14 C) pyruvate by pea root apices and measurement of enzyme activity. Biochem. Biophy. Acta. 372: 245–254; 1974.

    CAS  Google Scholar 

  • Goldberg R.; Imberty A.; Liberman M.; Prat R. Relationships between peroxidatic activities and cell wall plasticity. In: Greppin H.; Penel C.; Gaspar T. (eds) Molecular and physiological aspects of plant peroxidases. University of Geneva Press, Geneva, Switzerland, pp 208–220; 1986.

    Google Scholar 

  • Gupta, Y. P. Nutritive value of food legumes. In: Arora S. K. (ed) Chemistry and Biochemistry of Legumes Oxford and IBH Publishing Co. New Delhi, pp 287–327; 1982.

  • Ibrahim R. K.; Edgar D. Phenolic synthesis in Perilla cell suspension cultures. Phytochemistry 15: 129–131; 1976. doi:10.1016/S0031-9422(00)89067-6.

    Article  CAS  Google Scholar 

  • Kavi Kishor P. B. Activities of phenylalanine and tyrosine-ammonia lyases and amino transferases during organogenesis in callus cultures of rice. Plant Cell Physiol. 30: 25–29; 1989.

    Google Scholar 

  • Kavi Kishor P. B.; Mehta A. R. Changes in some enzyme activities during growth and organogenesis in dark grown tobacco callus culture. Plant Cell Physiol. 29: 255–259; 1988.

    Google Scholar 

  • Kiran G.; Kaviraj C. P.; Jogeswar G.; Kavi Kishor P. B.; Rao, S. Direct and high frequency somatic embryogenesis and plant regeneration from hypocotyls of chickpea (Cicer arietinum L.), a grain legume. Curr. Sci. 89: 1012–1018; 2005.

    Google Scholar 

  • Kormutak A.; Salaj T.; Matusova R.; Vookova B. Biochemistry of zygotic and somatic embryogenesis in silver fir (Abies alba Mill.). Acta Biologica. 45: 59–62; 2003.

    Google Scholar 

  • Kumar V. D.; Kirti P. B.; Sachan J. K. S.; Chopra V. L. Picloram induced somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Sci. 109: 207–213; 1995. doi:10.1016/0168-9452(95)04167-S.

    Article  Google Scholar 

  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature 227: 680–685; 1970. doi:10.1038/227680a0.

    Article  CAS  PubMed  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol. 15: 473–497; 1962. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Murthy B. N. S.; Jerrin V.; Rana P. S.; Filetcher R. A.; Praveen K. S. In virtro regeneration of chickpea (Cicer arietinum L.) stimulation of direct organogenesis and somatic embryogenesis, by thidiazron. Plant Growth Reg. 19: 233–240; 1996. doi:10.1007/BF00037796.

    Article  CAS  Google Scholar 

  • Ochoa S. Malic dehydrogenase from pig heart. Methods Enzymol. 1: 735–739; 1955. doi:10.1016/0076-6879(55)01128-2.

    Article  CAS  Google Scholar 

  • Roja Rani A.; Reddy V. D.; Prakash Babu P.; Padmaja G. Changes in protein profiles associated with somatic embryogenesis in peanut. Biol. Plant. 49: 347–354; 2005. doi:10.1007/s10535-005-0006-9.

    Article  Google Scholar 

  • Sagare A. P.; Suhasini K.; Krishnamurthy K. V. Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum). Plant Cell Rep. 12: 652–655; 1993. doi:10.1007/BF00232818.

    Article  Google Scholar 

  • Stirn S.; Jacobsen H. J. Marker proteins for embryogenic differentiation patterns in pea callus. Plant Cell Rep. 6: 50–54; 1987. doi:10.1007/BF00269738.

    Article  CAS  Google Scholar 

  • Venkatachalam P.; Kavi Kishor P. B.; Jayabalan N. High frequency somatic embryogenesis and efficient plant regeneration from hypocotyl explants of groundnut (Arachis hypogaea. L.). Curr. Sci. 72: 271–275; 1997.

    Google Scholar 

  • Whetten R. W.; MacKay J. J.; Sederoff R. R. Recent advances in understanding lignin biosynthesis. Ann. Rev. Plant Physiol. Mol. Biol. 49: 585–609; 1998. doi:10.1146/annurev.arplant.49.1.585.

    Article  CAS  Google Scholar 

  • Willekens H.; Inze D.; Van Montagu M.; Van Camp W. Catalases in plants. Mol. Breed. 1: 207–228; 1995. doi:10.1007/BF02277422.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Kavi Kishor.

Additional information

Editor: Rida A. Shibli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiran Ghanti, S., Sujata, K.G., Rao, S. et al. Role of enzymes and identification of stage-specific proteins in developing somatic embryos of chickpea (Cicer arietinum L.). In Vitro Cell.Dev.Biol.-Plant 45, 667–672 (2009). https://doi.org/10.1007/s11627-009-9197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9197-7

Keywords

Navigation