Skip to main content
Log in

Genetic mapping of QTLs for horticulture traits in a F2-3 population of bitter gourd (Momordica charantia L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

An extensive genetic linkage map was constructed for bitter gourd (Momordica charantia L.) via the study of F2 progenies derived from two cultivated inbred lines (gynoecia Z-1-4 and 189-4-1). The map included 194 loci on 11 chromosomes consisting of 26 EST-SSR loci, 28 SSR loci, 124 AFLP loci, and 16 SRAP loci. This map covered 1005.9 cM with 12 linkage groups. A total of 43 quantitative trait loci (QTLs), with a single QTL associated with 5.1–33.1 % phenotypic variance, were identified on nine chromosomes for 13 horticulture traits by analyzing the F2-3 families and the genetic linkage map. The 13 horticulture traits which were investigated in three environments included female flower ratios (FFR), first female flower node (FFFN), fruit length, fruit diameter, flesh thickness, fruit shape, fruit pedicel length, fruit length pedicel ratios, fruit weight (FW), fruit numbers per plant (FPP), yield per plant (YPP), stem diameter (SD), and internodes length (IL). One QTL cluster region was detected on Lg-5 which contained the most important QTLs for YPP, FPP, FFFN, FFR, and FW with high contributions to phenotypic variance (5.8–25.4 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alpert KB, Grandillo S, Tanksley SD (1995) fw2.2: a major QTL controlling fruit weight is common to both red-and green-fruited tomato species. Theor Appl Genet 91:994–1000

    Google Scholar 

  • Arian D, Staub Jack E (2002) QTL conditioning yield and fruit quality traits in cucumber (Cucumis sativus L.): effects of environment and genetic background. J New Seeds 4:1–30

    Google Scholar 

  • Aurand R, Faurobert M, Page D, Maingonnat JF, Brunel B, Causse M, Bertin N (2012) Anatomical and biochemical trait network underlying genetic variations in tomato fruit texture. Euphytic 187:99–116

    Article  CAS  Google Scholar 

  • Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58(3):268–271

    Article  PubMed  CAS  Google Scholar 

  • Bradeen JM, Staub JE, Wye C, Antonise R, Peleman JC (2001) Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome 44:111–119

    Article  PubMed  CAS  Google Scholar 

  • Burgess B, Mountford H, Hopkins CJ, Love C, Ling AE, Spangenberg GC, Edwards D, Batley J (2006) Identification and characterization of simple sequence repeat (SSR) markers derived in silico from Brassica oleracea genome shotgun sequences. Mol Ecol Notes 6:1191–1194

    Article  CAS  Google Scholar 

  • Causse M, Chaib J, Lecomte L, Buret M, Hospital F (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor Appl Genet 115(3):429–442

    Article  PubMed  CAS  Google Scholar 

  • Clark MS (1998) Plant molecular biology—a laboratory manual. Springer, Heidelberg

    Google Scholar 

  • Clarke JH, Mithen R, Brown JK, Dean C (1995) QTL analysis of flowering time in Arabidopsis thaliana. Mol gen genet 248(3):278–286

    Article  PubMed  CAS  Google Scholar 

  • Cui H et al (2006) Data mining for SSRs in ESTs and EST-SSR marker development in Chinese cabbage. Acta Hortic Sinica 33:549–554

    Google Scholar 

  • Dey SS, Behera TK, Munshi AD, Pal A (2010) Gynoecious inbred with better combining ability improves yield and earliness in bitter gourd (Momordica charantia L.). Euphytica 173(1):37–47

    Article  Google Scholar 

  • Diaz A, Fergany M, Formisano G et al (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111. doi:10.1186/1471-2229-11-111

    Article  PubMed  CAS  Google Scholar 

  • Fang EF, Zhang CZY, Wong JH (2012) The MAP30 protein from bitter gourd (Momordica charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Lett 324:66–74

    Article  PubMed  CAS  Google Scholar 

  • Fazio G, Chung SM, Staub JE (2003a) Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theor Appl Genet 107(5):875–883

    Article  PubMed  CAS  Google Scholar 

  • Fazio G, Staub JE, Stevens MR (2003b) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107(5):864–874

    Article  PubMed  CAS  Google Scholar 

  • Feng H, Li YF, Liu ZY, Liu J (2012) Mapping of or, a gene conferring orange color on the inner leaf of the Chinese cabbage (Brassica rapa L. ssp pekinensis). Mol Breed 29(1):235–244

    Article  Google Scholar 

  • Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, Arus P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150

    Article  PubMed  CAS  Google Scholar 

  • Fukino N, Ohara T, Sugiyama M, Kubo N, Hirai M, Sakata Y, Matsumoto S (2012) Mapping of a gene that confers short lateral branching (slb) in melon (Cucumis melo L.). Euphytica 187:133–143

    Article  CAS  Google Scholar 

  • Garcia-Mas J et al (2012) The genome of melon (Cucumis melo L.). PNAS 109:11872–11877

    Article  PubMed  CAS  Google Scholar 

  • Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, Chao S (1993) Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134(3):917–930

    PubMed  CAS  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Grover JK, Yadav SP (2004) Pharmacological actions and potential uses of momordica charantia: a review. J Ethnopharmacol 93:123–132

    Article  PubMed  CAS  Google Scholar 

  • Harel-Beja R, Tzuri G, Portnoy V et al (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121:511–533

    Article  PubMed  CAS  Google Scholar 

  • Harushima Y, Masahiro Y, Ayahiko S et al (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    PubMed  CAS  Google Scholar 

  • Hopkins CJ, Cogan NOI, Hand M, Jewell E et al (2007) Sixteen new simple sequence repeat markers from Brassica juncea expressed sequences and their cross-species amplification. Mol Ecol Notes 7:697–700

    Article  CAS  Google Scholar 

  • Huang S et al (2009) The genome of the cucumber (Cucumis sativus L.). Genetics 41:1275–1281

    PubMed  CAS  Google Scholar 

  • Kennard WC, Havey MJ (1995) Quantitative trait analysis of fruit quality in cucumber: QTL detection, confirmation, and comparison with mating-design variation. Theor Appl Genet 91:53–61

    Google Scholar 

  • Kole C, Bode AO, Phullara K (2012) The first genetic map and positions of major fruit trait loci of bitter melon (Momordica charantia). J Plant Sci Mol Breed 1(1):1–6

    Article  Google Scholar 

  • Kong Q, Xiang C, Yu Z (2006) Development of EST-SSRs in Cucumis sativus from sequence database. Mol Ecol Notes 6:1234–1236

    Article  CAS  Google Scholar 

  • Kong Q, Xiang C, Yu Z (2007) Mining and charactering microsatellites in Cucumis melo expressed sequence tags from sequence database. Mol Ecol Notes 7:281–283

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Nahm SH, Kim YM, Kim BD (2004) Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor Appl Genet 108:619–627

    Article  PubMed  CAS  Google Scholar 

  • Levi A, Thomas C, Newman M, Zhang X, Xu Y, Wehner T (2003) Massive preferential segregation and non-random assortment of linkage-groups produce quasi-linkage in an F2 mapping population of watermelon. Hortscience 38(5):782

    Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103(2–3):455–461

    Google Scholar 

  • Li XZ, Pan JS, Wang G, Tian LB, Si LT, Wu AZ, Cai R (2005) Localization of genes for lateral branch and female sex expression and construction of a molecular linkage map in cucumber (Cucumis sativus L.) with RAPD markers. Prog Nat Sci 15:143–148

    Article  CAS  Google Scholar 

  • Li S, Jia J, Wei X et al (2007) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–178

    Article  Google Scholar 

  • Meglic V, Staub JE (1996) Inheritance and linkage relationships of isozyme and morphological loci in cucumber (Cucumis sativus L.). Theor Appl Genet 92:865–872

    Article  CAS  Google Scholar 

  • Miao H, Zhang SP, Wang XW et al (2011) A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182(2):167–176

    Article  Google Scholar 

  • Minamiyama Y, Tsuro M, Hirai M (2006) An SSR-based linkage map of Capsicum annuum. Mol Breed 18:157–169

    Article  CAS  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  PubMed  CAS  Google Scholar 

  • Pan JS, Wang G, Li XZ, He HL, Wu AZ, Cai R (2005) Construction of a genetic map with SRAP markers and localization of the gene responsible for the first-flower-node trait in cucumber (Cucumis sativus L.). Prog Nat Sci 15:407–413

    Article  CAS  Google Scholar 

  • Park YH, Sensoy S, Wye C, Antonise R, Peleman J, Havey MJ (2000) A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome 43:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Ray RB, Raychoudhuri A, Steele R, Nerurkar P (2010) Bitter melon (Momordica Charantia) extract inhibits breast cancer cell proliferation by modulating cell cycle regulatory genes and promotes apoptosis. Cancer Res 70:1925–1931

    Article  PubMed  CAS  Google Scholar 

  • Serquen FC, Bacher J, Staub JE (1997) Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol Breed 3:257–268

    Article  CAS  Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics, 2nd edn. McGraw-Hill Book Company, New York

    Google Scholar 

  • Sun Z, Staub JE, Chung SM, Lower RL (2006) Identification and comparative analysis of quantitative trait loci associated with parthenocarpy in processing cucumber. Plant Breed 125:281–287

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Pan JS, Li XZ, He HL, Wu AZ, Cai R (2005) Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits. Sci China C 48:213–220

    CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Yang J, Kong QS, Xiang CP (2009) Effects of low night temperature on pigments, chl a fluorescence and energy allocation in two bitter gourd (Momordica charantia L.) genotypes. Acta physiol Plant 31(2):285–293

    Article  CAS  Google Scholar 

  • Yuan XJ, Pan JS, Cai R et al (2008a) Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164:473–491

    Article  CAS  Google Scholar 

  • Yuan XJ, Li XZ, Ret al Cai (2008b) Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breed 127(2):180–188

    Article  CAS  Google Scholar 

  • Yuste-Lisbona FJ, Capel C, Sarria E, Torreblanca R, Gomez-Guillamon ML, Lozano R, Lopez-Sese AI (2011) Genetic linkage map of melon (Cucumis melo L.) and localization of a major QTL for powdery mildew resistance. Mol Breed 27(2):181–192

    Article  Google Scholar 

  • Zalapa JE, Staub JE, Mccreight JD, Chung SM, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US western shipping melon germplasm. Theor Appl Genet 114:1185–1201

    Article  PubMed  CAS  Google Scholar 

  • Zhang WW, He HL, Cai R et al (2010) Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theor Appl Gene 120(3):645–654

    Article  CAS  Google Scholar 

  • Zhang WW, Pan JS, He HL et al (2012) Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet 124(2):249–259

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Foundation for Key Program of 2004, Ministry of Education, P. R. China (Grant No. 104134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changping Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Xiang, C. Genetic mapping of QTLs for horticulture traits in a F2-3 population of bitter gourd (Momordica charantia L.). Euphytica 193, 235–250 (2013). https://doi.org/10.1007/s10681-013-0932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0932-0

Keywords

Navigation