Skip to main content

Advertisement

Log in

Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Grain yield and yield components are the main important traits involved in durum wheat (Triticum turgidum L.) improvement programs. The purpose of this research was to identify quantitative trait loci (QTL) associated with yield components such as 1000 grain weight (TGW), grain weight per spike (GWS), number of grains per spike (GNS), spike number per m2 (SN), spike weight (SW), spike harvest index (SHI) and harvest index (HI) using microsatellite markers. Populations of F3 and F4 lines derived from 151 F2 individuals developed from a cross between Oste-Gata, a drought tolerant, and Massara-1, a drought susceptible durum wheat genotypes, were used. The populations were evaluated under four environmental conditions including two irrigation regimes of drought stress at terminal growth stages and normal field conditions in two growing seasons. Two hundred microsatellite markers reported for A and B genomes of bread wheat were used for parental polymorphism analysis and 30 polymorphic markers were applied to genotype 151 F2:3 families. QTL analysis was performed using genome-wide single marker regression analysis (SMA) and composite interval mapping (CIM). The results of SMA revealed that about 20% of the phenotypic variation of harvest index and TGW could be explained by Xcfd22-7B and Xcfa2114-6A markers in different environmental conditions. Similarly, Xgwm181-3B, Xwmc405-7B and Xgwm148-3B and marker Xwmc166-7B were found to be associated with SHI and GWS, respectively. A total of 20 minor and major QTL were detected; five for TGW, two for GWS, two for GNS, three for SN, five for HI, two for SHI and one for SW. The mapped QTL associated with ten markers. Moreover, some of these QTL were prominent and stable under drought stress and non drought stress environments and explained up to 49.5% of the phenotypic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CIM:

Composite interval mapping

GNS:

Number of grains per spike

GWS:

Grain weight per spike

HI:

Harvest index

QTL:

Quantitative trait loci

SHI:

Spike harvest index

SMA:

Single marker regression analysis

SN:

Spike number per m2

SW:

Spike weight

TGW:

1000 grain weight

YLD:

Grain yield

References

  • Annicchiarico P, Pecetti l (1998) Yield vs. morphophysiological trait based criteria for selection of durum wheat in a semi-arid Mediterranean region (northern Syria). Field Crops Res 59:163–173

    Article  Google Scholar 

  • Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984

    Article  CAS  Google Scholar 

  • Arzani A (2002) Grain yield performance of durum wheat germplasm under Iranian dryland and irrigated field conditions. Sabrao J Breed Genet 34:9–18

    Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (1994) Z map-a QTL Cartographer. In: Smith C, Gavora JS, Benkel J, Chesnias B, Fiarfull W, Gibson JP, Kennedy BW, Burnsid EB (eds) Proceeding 5th world congress on genetic applied to livestock production: computing strategies and software. Guelph, ON

  • Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–518

    Article  Google Scholar 

  • Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1997) Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L) cross using marker regression. Mol Breed 29:29–38

    Article  Google Scholar 

  • Bidinger FR, Nepolean T, Hash CT, Yadav RS, Howarth CJ (2007) Quantitative trait loci for grain yield in pearl millet under variable postflowering moisture conditions. Crop Sci 47:969–980

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water use efficiency and yield potential-are they compatible, dissonant or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Boyer JS, Westgate ME (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Campbell BT, Baenziger PS, Gill KS, Eskridge KM, Budak H, Erayman M, Dweikat I, Yen Y (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci 43:1493–1505

    Article  CAS  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Baum M (2007) Participatory plant breeding in water-limited environments. Exp Agric 43:411–435

    Article  Google Scholar 

  • Cuthbert JL, Somers DJ, Brule-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hinks JB (1983) A plant DNA minipreparation: ver. II. Mol Biol Plant Rep 1:19–21

    Article  CAS  Google Scholar 

  • Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Vale G (2005) Marker assisted selection in crop plants. Plant Cell Tiss Org Cult 82:317–342

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Fussell LK, Bidinger FR, Bieler P (1991) Crop physiology and breeding for drought tolerance: research and development. Field Crops Res 27:183–193

    Article  Google Scholar 

  • Gollan T, Schurr U, Schulze ED (1992) Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids and PH in the xylem sap. Plant Cell Environ 15:551–559

    Article  CAS  Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ et al (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  CAS  PubMed  Google Scholar 

  • Guttieri MJ, Stark JC, Brien K, Souza E (2001) Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci 41:327–335

    Article  Google Scholar 

  • Huang XQ, Coster H, Genal MW, Roder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    CAS  PubMed  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Roder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheat (Triticum aestivum L.). Theor Appl Genet 113:753–766

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kirigwi FM, Van Ginkel M, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  • Knott SA, Haley CS (1992) Aspects of maximum likelihood methods for the mapping of quantitative trait loci in line crosses. Genet Res 60:139–151

    Article  Google Scholar 

  • Kuchel H, Hollamby G, Langridge P, Williams K, Jefferies SP (2006) Identification of genetic loci associated with ear-emergence in bread wheat. Theor Appl Genet 113:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, Balyan HS, Gupta PK (2006) QTL analysis for grain weight in common wheat. Euphytica 151:135–144

    Article  CAS  Google Scholar 

  • Lafitte HR, Price AH, Courtois B (2004) Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet 109:1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    Article  CAS  PubMed  Google Scholar 

  • Liu JX, Liao DQ, Oane R, Estenor L, Yang XE, Li ZC, Bennett J (2006) Genetic variation in the sensitivity of anther dehiscence to drought stress in rice. Field Crops Res 97:87–100

    Article  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Ben Salem M, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    Article  PubMed  Google Scholar 

  • Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to map manager QT. Mamm Genome 10:327–334

    Article  CAS  PubMed  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    Article  CAS  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48:870–883

    CAS  PubMed  Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Ronin Y, Fahima T, Roder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Nat Acad Sci USA 100:2489–2494

    Article  CAS  PubMed  Google Scholar 

  • Peters JL, Cnudde F, Gerats T (2003) Forward genetics and map-based cloning approaches. Trends Plant Sci 8:484–491

    Article  CAS  PubMed  Google Scholar 

  • Prasad M, Kumar N, Kulwal PL, Roder MS, Balyan HS, Dhaliwal HS, Gupta PK (2003) QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet 106:659–667

    CAS  PubMed  Google Scholar 

  • Prioul JL, Quarrie S, Causse M, deVienne D (1997) Dissecting complex physiological functions through the use of molecular quantitative genetics. J Exp Bot 48:1151–1163

    Article  CAS  Google Scholar 

  • Quarrie SA, Stojanovic J, Pekic S (1999) Improving drought resistance in small-grained cereal: a case study, progress and prospects. Plant Growth Regul 29:1–21

    Article  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring X SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Rajaram S (2001) Prospects and promise of wheat breeding in the twenty-first century. In: Bedo Z, Dordrecht LL (eds) Wheat in global environments. Kluwer, The Netherlands, pp 1019–1028

    Google Scholar 

  • Rasyad A, Van Sanfold DA (1992) Genetic and maternal variances and covariances of kernel growth traits in winter wheat. Crop Sci 32:1139–1143

    Article  Google Scholar 

  • Reynolds MP (1998) Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica 100:85–94

    Article  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    CAS  PubMed  Google Scholar 

  • Salem Farag KFM (2004) The inheritance and molecular mapping of genes for post-anthesis drought tolerance (PADT) in wheat. Dissertation, Martin-Luther-Universität, Halle-Wittenberg

  • SAS Institute (2000) The SAS System for Windows. Release 8.01. SAS Inst. Inc., Cary, NC

    Google Scholar 

  • Shah MM, Gill KS, Baenzger PS, Yen Y, Kaeppler SM, Ariyarathe HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    Article  CAS  Google Scholar 

  • Slafer GA, Araus JL, Royo C, DelMoral LFG (2005) Promising ecophysiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Suenaga K, Khairallah M, William HM, Hoisington DA (2005) A new intervarietal linkage map and its application for quantitative trait locus analysis of “gigas” features in bread wheat. Genome 48:65–75

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–234

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, BeckBunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L-pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Tardieu F (1996) Drought perception by plants: do cells of draughted plants experience water stress? Plant Growth Regul 20:93–104

    Article  CAS  Google Scholar 

  • Trethowan RM, Reynolds M, Sayre K, Ortiz-Monasterio I (2005) Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146:405–413

    Article  Google Scholar 

  • Wang S, Basten CJ, Zeng Z (2004) Windows QTL cartographer. V2.0 Program in statistical genetics, North Carolina State University, North Carolina. DIALOG http://www.statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Yadav R, Courtois B, Huang N, McLaren G (1997) Mapping genes controlling root morphology and root distribution in a double haploid population of rice. Theor Appl Genet 94:619–632

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Golabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golabadi, M., Arzani, A., Mirmohammadi Maibody, S.A.M. et al. Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica 177, 207–221 (2011). https://doi.org/10.1007/s10681-010-0242-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0242-8

Keywords

Navigation