Skip to main content
Log in

Markers associated with a QTL for grain yield in wheat under drought

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Drought is a major abiotic stress that adversely affects wheat production in many regions of the world. The objective of this study was to identify quantitative trait loci (QTL) controlling grain yield and yield components under reduced moisture. A cross between common wheat cultivars ‘Dharwar Dry’ (drought tolerant) and ‘Sitta’ was the source of one hundred twenty-seven recombinant inbred lines evaluated for two-seasons in a field under differing soil moisture regimes in Ciudad Obregon, Sonora, Mexico. An SSR/EST-STS marker map was constructed and a grain yield QTL on the proximal region of chromosome 4AL was found to have a significant impact on performance under reduced moisture. This region was associated with QTL for grain yield, grain fill rate, spike density, grains m−2, biomass production, biomass production rate, and drought susceptibility index (DSI). Molecular markers associated with these traits explained 20, 33, 15, 23, 30, 26, and 41% of phenotypic variation, respectively on chromosome 4A. Microsatellite locus Xwmc89 was associated with all significant QTL covering a 7.7 centiMorgans (cM) region and generally explained the greatest proportion of phenotypic variation. The alleles associated with enhanced performance under drought stress were contributed by Dharwar Dry. Microsatellite marker wmc89 may be useful for marker assisted selection to enhance drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylase content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984

    Article  CAS  Google Scholar 

  • Austin DF, Lee M (1996) Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet 92:817–826

    Article  CAS  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1997) Mapping QTLs controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol Breed 3:29–38

    Article  CAS  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim S (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cox TS, Sears RG, Bequette RK, Martin TJ (1995) Germplasm enhancement in winter wheat x Triticum tauchii backcross populations. Crop Sci 35:913–919

    Article  Google Scholar 

  • Druka A, Kudrna D, Gamini Kannangara C, von Wettstein D, Kleinhofs A (2002) Physical and genetic mapping of barley (Hordeum vulgare) germin-like cDNAsPNAS 99:850–855

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29:897–912

    Article  Google Scholar 

  • Handley LL, Nevo E, Raven JA, Martínez-Carrasco R, Scrimgeour CM, Pakniyat H, Forster BP (1994) Chromosome 4 controls potential water use efficiency (δ13) in barley. J Exp Bot 45:1661–1663

    Article  CAS  Google Scholar 

  • Holland JB (2006) Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci 46:642–654

    Article  Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol 21:289–294

    CAS  Google Scholar 

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Miura H, Swada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kirigwi FM, van Ginkel M, Trethowan R, Sears RG, Rajaram S, Paulsen GM (2004) Evaluation of selection strategies for wheat adaptation across water regimes. Euphytica 135:361–371

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lantican MA, Pingali PL, Rajaram S (2002) Are marginal environments catching up? In: Ekboir J (ed) CIMMYT world wheat overview and outlook 2000–2001. Developing no-till packages for small-scale farmers. CIMMYT, Mexico, DF

    Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    CAS  PubMed  Google Scholar 

  • Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE (2003) Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci 43:577–582

    Article  CAS  Google Scholar 

  • Martins-Lopes P, Zhang H, Koebner R (2001) Detection of single nucleotide mutations in wheat using single strand conformation polymorphism gels. Plant Mol Biol Rep 19:159–162

    Article  CAS  Google Scholar 

  • Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homologous group-4 chromosomes. Theor Appl Genet 90:1007–1011

    Article  CAS  Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    PubMed  CAS  Google Scholar 

  • Rajaram S, Braun H-J, van Ginkel M (1996) CIMMYT’s approach to breed for drought tolerance. Euphytica 92:147–153

    Article  Google Scholar 

  • Richards E, Reichardt M, Rogers S (1994) Preparation of genomic DNA from plant tissue. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology, Vol. 1. John Wiley and Sons, New York, pp 231–237

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier HM, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rosegrant MW, Paisner MS, Meijer S, Witcover J (2001) Global food projections to 2020: emerging trends and alternative futures. International food policy research institute (IFPRI), Washington, DC

    Google Scholar 

  • SAS Institute (1990) SAS Users Guide. Statistics (Version 6.0). SAS Inst, Cary, NC

  • Shah MM, Gill KS, Baenziger PS, Yen Y, Kaeppler SM, Ariyarathme HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    Article  CAS  Google Scholar 

  • Smith ME, Coffman WR, Baker TC (1990) Environmental effects on selection under high and low-input conditions. In: Kang MS (ed) Genotype-by-environment interaction and plant breeding. Louisiana State University, Baton Rouge, LA, USA, pp 261–272

    Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Trethowan RM, Pfeiffer WH (2000) Challenges and future strategies in breeding wheat for adaptation to drought stressed environments: A CIMMYT wheat program perspective. In: Ribaut JM, Poland D (eds) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. A strategic planning workshop held at CIMMYT El Batan, Mexico, 21–25 June 1999. CIMMYT, Mexico DF, pp 45–48

    Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2001–2004) Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC

  • Xiao J, Li J, Yuan L, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92:230–244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Kirigwi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirigwi, F.M., Van Ginkel, M., Brown-Guedira, G. et al. Markers associated with a QTL for grain yield in wheat under drought. Mol Breeding 20, 401–413 (2007). https://doi.org/10.1007/s11032-007-9100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-007-9100-3

Keywords

Navigation