Skip to main content
Log in

Structure and reactivity of cellulose from bleached kraft pulps of different Eucalyptus species upgraded to dissolving pulp

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bleached kraft pulps from Eucalyptus benthamii, E. globulus, E. nitens and E. nitens × E. globulus hybrid were prepared in laboratory scale and upgraded to dissolving-grade via cold caustic extraction (CCE) and dilute acid hydrolysis. The CCE reduced the alkali solubility (S18) of bleached kraft pulps from 11.8–16.4% to 4.5–6.3% after extraction with 5% (w/v) NaOH, and to 0.9–1.7% after extraction with 10% (w/v) NaOH. The dilute acid hydrolysis with 3% H2SO4 reduced the intrinsic viscosity of CCE-treated kraft pulps from 800–900 to 110–450 ml/g. E. nitens and E. benthamii displayed the most contrasting values for S18 and intrinsic viscosity after CCE and acid hydrolysis treatments. The X-ray diffraction results showed that the crystallinity index of bleached kraft pulps followed the order: E. benthamii > E. globulus > En × Eg > E. nitens. Regarding cellulose reactivity, the Fock reactivity of the bleached kraft pulps was in the range of 34.7–41.3%. After CCE, the pulps reactivity was reduced to 13.7–25.4%, whereas after acid hydrolysis it was increased to 40.7–87.5%. E. benthamii and E. nitens pulps showed to be the less reactive pulps after pulp activation via acid hydrolysis, whereas E. globulus and the hybrid showed to be the most reactive pulps towards xanthation. It was observed that different Eucalyptus species can lead to kraft pulps with different requirements towards xanthation, and that the inherent features of wood and how they are processed are of outmost importance for the final use of kraft-based dissolving pulp from a given wood species.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal UP, Ralph SA, Baez C, Reiner RS, Verrill SP (2017) Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24:1971–1984

    Article  CAS  Google Scholar 

  • Ahvenainen P, Kontro I, Svedstrom K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086

    Article  CAS  Google Scholar 

  • Arnoul-Jarriault B, Lachenal D, Chirat C, Heux L (2015) Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment. Ind Crops Prod 65:565–571

    Article  CAS  Google Scholar 

  • Carrillo I, Valenzuela S, Elissetche JP (2017) Comparative evaluation of Eucalyptus globulus and E. nitens wood and fibre quality. IAWA J 38:105–116

    Article  Google Scholar 

  • Carrillo I, Mendonça RT, Ago M, Rojas OJ (2018a) Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose 25:1011–1029

    Article  CAS  Google Scholar 

  • Carrillo I, Vidal C, Elissetche JP, Mendonça RT (2018b) Wood anatomical and chemical properties related to the pulpability of Eucalyptus globulus: a review. South For 80:1–8

    Article  Google Scholar 

  • Carrillo-Varela I, Pereira M, Mendonça RT (2018) Determination of polymorphic changes in cellulose from Eucalyptus spp. fibres after alkalization. Cellulose 25:6831–6845

    Article  CAS  Google Scholar 

  • Chen C, Duan C, Li J, Liu Y, Ma X, Zheng L, Stavik J, Ni Y (2016) Cellulose (dissolving pulp) manufacturing processes and properties: a mini-review. BioResources 11:5553–5564

    Google Scholar 

  • Christov LP, Akhtar M, Prior BA (1998) The potential of biosulfite pulping in dissolving pulp production. Enzyme Microb Technol 23:70–74

    Article  CAS  Google Scholar 

  • Dou X, Tang Y (2017) The influence of cold caustic extraction on the purity, accessibility and reactivity of dissolving-grade pulp. Chem Sel 2:11462–11468

    CAS  Google Scholar 

  • Duan C, Jianguo L, Ma X, Chen C, Liu Y, Stavik J, Ni Y (2015a) Comparison of acid sulfite (AS)- and prehydrolysis kraft (PHK)-based dissolving pulps. Cellulose 22:4017–4026

    Article  CAS  Google Scholar 

  • Duan C, Long Y, Li J, Ma X, Ni Y (2015b) Changes of cellulose accessibility to cellulase due to fiber hornification and its impact on enzymatic viscosity control of dissolving pulp. Cellulose 22:2729–2736

    Article  CAS  Google Scholar 

  • Duan C, Verma SK, Li J, Ma X, Ni Y (2016a) Combination of mechanical, alkaline and enzymatic treatments to upgrade paper-grade pulp to dissolving pulp with high reactivity. Bioresour Technol 200:458–463

    Article  CAS  PubMed  Google Scholar 

  • Duan C, Verma SK, Li J, Ma X, Ni Y (2016b) Viscosity control and reactivity improvements of cellulose fibers by cellulase treatment. Cellulose 23:269–276

    Article  CAS  Google Scholar 

  • Duchemin B, Thuault A, Vicente A, Rigaud B, Fernandez C, Eve S (2012) Ultrastructure of cellulose crystallites in flax textile fibres. Cellulose 19(6):1837–1854

    Article  CAS  Google Scholar 

  • Dutt D, Tyagi GH (2011) Comparison of various Eucalyptus species for their morphological, chemical: pulp and paper making characteristics. Indian J Chem Technol 18:145–151

    CAS  Google Scholar 

  • Engstrom AC, Ek M, Henriksson G (2006) Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase. Biomacromolecules 7:2027–2031

    Article  CAS  PubMed  Google Scholar 

  • Fock W (1959) A modified method for determining the reactivity of viscose-grade dissolving pulps. Papier 13:92–95

    CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gehmayr V, Sixta H (2012) Pulp properties and their influence on enzymatic degradability. Biomacromol 13:645–651

    Article  CAS  Google Scholar 

  • Gehmayr V, Schild G, Sixta H (2011) A precise study on the feasibility of enzyme treatments of a kraft pulp for viscose application. Cellulose 18(2):479–491

    Article  CAS  Google Scholar 

  • Gronqvist S, Hakala TK, Kamppuri T, Vehvilainen M, Hanninen T, Liitia T, Maloney T, Suurnakki A (2014) Fibre porosity development of dissolving pulp during mechanical and enzymatic processing. Cellulose 21:3667–3676

    Article  CAS  Google Scholar 

  • Hakansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12:177–183

    Article  CAS  Google Scholar 

  • Hakansson H, Germgard U, Sens D (2005) Influence of xylan on the degradability of laboratory kraft pulps from hardwood and reed canary grass in acid hydrolysis. Cellulose 12:621–628

    Article  CAS  Google Scholar 

  • Hubbe MA, Venditti RA, Rojas OJ (2007) What happens to cellulosic fibers during papermaking and recycling? A review. BioResources 2:739–788

    CAS  Google Scholar 

  • Ibarra D, Kopcke V, Larsson PT, Jaeaeskelaeinen AS, Ek M (2010) Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp. Bioresour Technol 101:7416–7423

    Article  CAS  PubMed  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Kohnke T, Lund K, Westman (2010) Kraft pulp hornification: a closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr Polym 81:226–233

    Article  CAS  Google Scholar 

  • Kopcke V, Ibarra D, Ek M (2008) Increasing accessibility and reactivity of paper grade pulp by enzymatic treatment for use as dissolving pulp. Nord Pulp Pap Res J 23:363–368

    Article  Google Scholar 

  • Kopcke V, Ibarra D, Larsson PT, Ek M (2009) Optimization of treatments for the conversion of Eucalyptus kraft pulp to dissolving pulp. Polym Renew Resour 1:17–34

    Google Scholar 

  • Kopcke V, Ibarra D, Larsson PT, Ek M (2010) Optimization of treatment sequences for the production of dissolving pulp from birch kraft pulp. Nord Pulp Pap Res J 25(1):31–38

    Article  Google Scholar 

  • Kumar H, Christopher LP (2017) Recent trends and developments in dissolving pulp production and application. Cellulose 24:2347–2365

    Article  CAS  Google Scholar 

  • Li J, Liu Y, Duan C, Zhang H, Ni Y (2015) Mechanical pretreatment improving hemicelluloses removal from cellulosic fibers during cold caustic extraction. Bioresour Technol 136:501–506

    Article  CAS  Google Scholar 

  • Li H, Legere S, He Z, Zhang H, Li J, Yang B, Zhang S, Zhang L, Zheng L, Ni Y (2018a) Methods to increase the reactivity of dissolving pulp in the viscose rayon production process: a review. Cellulose 25:3733–3753

    Article  CAS  Google Scholar 

  • Li J, Zhang S, Li H, Ouyang X, Huang L, Ni Y, Chen L (2018b) Cellulase pretreatment for enhancing cold caustic extraction-based separation of hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol 251:1–6

    Article  CAS  PubMed  Google Scholar 

  • Mendonça RT, Jara J, González V, Elissetche J, Freer J (2008) Evaluation of the white-rot fungi Ganoderma austral and Ceriposipsis subvermispora in biotechnological applications. J Ind Microbiol Biotechnol 35:1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Miao Q, Tian C, Chen L, Huang L, Zheng L, Ni Y (2015) Combined mechanical and enzymatic treatments for improving the Fock reactivity of hardwood kraft-based dissolving pulp. Cellulose 22:803–809

    Article  CAS  Google Scholar 

  • Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Ib and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  PubMed  Google Scholar 

  • Newman RH (2004) Carbon-13 NMR evidence for cocrystal- lization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52

    Article  CAS  Google Scholar 

  • Palme A, Theliander H, Brelid H (2016) Acid hydrolysis of cellulosic fibres: comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose. Carbohydr Polym 136:1281–1287

    Article  CAS  PubMed  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnol Biofuels 3:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popescu CM, Singurel G, Popescu MC, Vasile C, Argyropoulos DS, Willfor S (2009) Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr Polym 77:851–857

    Article  CAS  Google Scholar 

  • Quintana E, Valls C, Vidal T, Roncero MB (2015) Comparative evaluation of the action of two different endoglucanases, part I: on a fully bleached, commercial acid sulfite dissolving pulp. Cellulose 22:2067–2079

    Article  CAS  Google Scholar 

  • Roselli A, Hummel M, Monshizadeh A, Maloney T, Sixta H (2014) Ionic liquid extraction method for upgrading Eucalyptus kraft pulp to high purity dissolving pulp. Cellulose 21:3655–3666

    Article  CAS  Google Scholar 

  • Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften, Göttingen

    Google Scholar 

  • Schild G, Sixta H (2011) Sulfur-free dissolving pulps and their application for viscose and lyocell. Cellulose 18:1113–1128

    Article  CAS  Google Scholar 

  • Shi Z, Yang Q, Kuga S, Matsumoto Y (2015) Dissolution of wood pulp in aqueous NaOH/urea solution via dilute acid pretreatment. J Agric Food Chem 63:6113–6119

    Article  CAS  PubMed  Google Scholar 

  • Sixta H (2006) Handbook of pulp. Weiley-Vch Verlag, Weinheim

    Book  Google Scholar 

  • Sixta H, Iakovlev M, Testova L, Roselli A, Hummel M, Borrega M, Heiningen A, Froschauer C, Schottenberger H (2013) Novel concepts of dissolving pulp production. Cellulose 20:1547–1561

    Article  CAS  Google Scholar 

  • Strunk P, Eliasson B, Hagglund C, Agnemo R (2011) The influence of properties in cellulose pulps on the reactivity in viscose manufacturing. Nord Pulp Pap Res J 26:81–89

    Article  CAS  Google Scholar 

  • Tian C, Zheng L, Miao Q, Nash C, Cao C, Ni Y (2013) Improvement in the Fock test for determining the reactivity of dissolving pulp. Tappi J 12:19–24

    Google Scholar 

  • Tian C, Zheng L, Miao Q, Cao C, Ni Y (2014) Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments. Cellulose 21:3647–3654

    Article  CAS  Google Scholar 

  • Treiber E, Rehnstroem J, Ameen C, Kolos F (1962) Über die Laboratoriumsviskosekleinstanlage zur Testung von Chemiefaserzellstoffen—a small scale laboratory viscose plant for testing rayon grade pulps. Das Papier 16:85–94

    CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spacings. J Wood Sci 47:124–128

    Article  CAS  Google Scholar 

  • Wollboldt RP, Zuckerstaetter G, Weber HK, Larsson PT, Sixta H (2010) Accessibility, reactivity and supramolecular structure of E. globulus pulps with reduced xylan content. Wood Sci Technol 44:533–546

    Article  CAS  Google Scholar 

  • Yang S, Wen Y, Zhang H, Li J, Ni Y (2018) Enhancing the Fock reactivity of dissolving pulp by the combined prerefining and poly dimethyl diallyl ammonium chloride-assisted cellulase treatment. Bioresour Technol 260:135–140

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Lin J, Tian F, Li X, Bian F, Wang J (2014) Cellulose nanofibrils generated from jute fibers with tunable polymorphs and crystallinity. J Mater Chem A 2:6402–6411

    Article  CAS  Google Scholar 

  • Zhao L, Yuan Z, Kapu NS, Chang XF, Beatson R, Trajano HL, Martinez DM (2017) Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp. Bioresour Technol 223:40–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from FONDECYT (Grant 1160306) and the provision of facilities and technical support by Instituto GEA-UdeC for XRD analysis. Isabel Carrillo-Varela thanks CONICYT-PFCHA/Doctorado Nacional/2018-21180299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regis Teixeira Mendonça.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1051 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo-Varela, I., Retamal, R., Pereira, M. et al. Structure and reactivity of cellulose from bleached kraft pulps of different Eucalyptus species upgraded to dissolving pulp. Cellulose 26, 5731–5744 (2019). https://doi.org/10.1007/s10570-019-02491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02491-0

Keywords

Navigation