Skip to main content
Log in

Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose containing materials—from loblolly pine wood to tunicin, and evaluated moisture-induced changes in CrI and L200. It was observed that upon introduction of a small amount of water (5%) into P2O5 dried samples, for most samples, both absolute intensity of (200) reflection and its full width at half maximum declined. Moreover, (200) peak position (2θ max) increased when the samples became moist. Although the extent of such changes were material dependent, in general, a greater degree of change was associated with lower sample CrI. For CrI, maximum and minimum increases occurred for oven dried NaOH treated red pine holopulp and tunicin, respectively. For L200, maximum and minimum increases were for wood and tunicin, respectively. Moreover, 2θ max position for (200) reflection increased most for the wood and oven dried NaOH treated red pine holopulp (acid chlorite delignified milled-wood) and least for tunicin. The nonparametric statistical test “sign test” further supported these results. Observations from longer duration drying experiments, post moistening, indicated that the changes to the XRD parameters were reversible to some degree. Based on the findings it is concluded that for most cellulose materials with Segal CrI < 90% the moisture content has a significant bearing on the XRD-estimated CrI and L200 data. Consequently, it is essential that when such materials are compared, their diffractograms should be obtained under similar levels of sample moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe K, Yamamoto H (2005) Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determination by X-ray diffraction. J Wood Sci 51:334–338

    Article  CAS  Google Scholar 

  • Abe K, Yamamoto H (2006) Change in mechanical interaction between cellulose microfibril and matrix substance in wood cell wall induced by hygrothermal treatment. J Wood Sci 52:107–110

    Article  Google Scholar 

  • Agarwal UP (2016) Evolution of wood-cellulose native structure upon thermal and hydrothermal Treatments. CELL Division Abstract # 202, ACS, 251st meeting, San Diego

  • Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733

    Article  CAS  Google Scholar 

  • Agarwal UP, Reiner RS, Ralph SA (2013) Estimation of cellulose crystallinity of lignocelluloses using near-IR FT–Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. J Agric Food Chem 61:103–113

    Article  CAS  Google Scholar 

  • Agarwal UP, Ralph SA, Reiner RS, Moore RK, Baez C (2014) Impacts of fiber orientation and milling on observed crystallinity in jack pine. Wood Sci Technol 48:213–1227

    Article  Google Scholar 

  • Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144

    Article  CAS  Google Scholar 

  • Ahvenainen P, Kontro I, Svedstrom K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086

    Article  CAS  Google Scholar 

  • Armstrong RC, Wolfram C, de Jong KP, Gross R, Lewis NS, Boardman B, Ragauskas AJ, Ehrhardt-Martinez K, Crabtree G, Ramana MV (2016) The frontiers of energy. Nat Energy 1:15020

    Article  Google Scholar 

  • Astley OM, Chanliaud E, Donald AM, Gidley MJ (2001) Structure of acetobacter cellulose composites in the hydrated state. Int J Biol Macromol 29:193–202

    Article  CAS  Google Scholar 

  • Atalla RH, Whitmore RE (1978) The influence of elevated temperatures on structures in the isolation of native cellulose. J Poly Sci Poly Lett Ed 16:601405

    Google Scholar 

  • Atalla RS, Crowley MF, Himmel ME, Atalla RH (2014) Irreversible transformations of native celluloses, upon exposure to elevated temperatures. Carbohydr Poly 100:2–8

    Article  CAS  Google Scholar 

  • Awa K, Shinzawa H, Ozaki Y (2014) An effect of cellulose crystallinity on the moisture absorbability of a pharmaceutical tablet studied by near-infrared spectroscopy. Appl Spectrosc 68:625–632

    Article  CAS  Google Scholar 

  • Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Poly 89:802–809

    Article  CAS  Google Scholar 

  • Bertran MS, Dale BE (1986) Determination of cellulose accessibility by differential scanning calorimetry. J Appl Poly Sci 32:4241–4253

    Article  CAS  Google Scholar 

  • Davis MW (1998) A rapid method for compositional carbohydrate analysis of lignocellulosics by high pH anion-exchange chromatography with pulse amperometric detection (HPAE/PAD). J Wood Chem Technol 18:235–252

    Article  CAS  Google Scholar 

  • Driemeier C, Bragatto J (2013) Crystallite width determines monolayer Hydration across a wide spectrum of celluloses isolated from plants. J Phys Chem B 117:415–421

    Article  CAS  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Article  CAS  Google Scholar 

  • Fang L, Catchmark JM (2014) Structure characterization of native cellulose during dehydration and rehydration. Cellulose 21:3951–3963

    Article  CAS  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  • Fink HP, Purz HJ, Bohn A, Kunze J (1997) Investigation of the supramolecular structure of never dried bacterial cellulose. J Macromol Symp 120:207–217

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Hill SJ, Kirby NM, Mudie ST, Hawley AM, Ingham B, Franich RA, Newman RH (2010) Effect of drying and rewetting of wood on cellulose molecular packing. Holzforschung 64:421–427

    CAS  Google Scholar 

  • Hollander M, Wolfe DA, Chicken E (2014) Nonparametric statistical methods, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Hu X-P, Hsieh Y-L (2001) Effects of dehydration on the crystalline structure and strength of developing cotton fibers. Text Res J 71:231–239

    Article  CAS  Google Scholar 

  • Hulleman SHD, Van Hazendonk JM, Van Dam JEG (1994) Determination of crystallinity in native cellulose from higher plants with diffuse reflectance Fourier transform infrared spectroscopy. Carbohydr Res 261:163–172

    Article  CAS  Google Scholar 

  • Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Langan P, Petridis L, O’Neill HM, Pingali SV, Foston M, Nishiyama Y, Schulz R, Lindner B, Hanson BL, Harton S, Heller WT, Urban W, Evans B, Gnanakaran S, Ragauskas AJ, Smith JC, Davison BH (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16:63–67

    Article  CAS  Google Scholar 

  • Langford J, Wilson A (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113

    Article  CAS  Google Scholar 

  • Larsson PT, Hult E-L, Wickholm K, Pettersson E, Iversen T (1999) 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15:31–40

    Article  CAS  Google Scholar 

  • Lee JM, Pawlak JJ, Heitmann JA (2012) Dimensional and hygroexpansive behaviors of cellulose microfibrils (MFs) from kraft pulp-based fibers as a function of relative humidity. Holzforschung 66:1001–1008

    CAS  Google Scholar 

  • Lindner B, Petridis L, Langan P, Smith JC (2014) Determination of cellulose crystallinity from powder diffraction diagrams. Biopoly 103:67–73

    Article  Google Scholar 

  • Miller RG Jr (1981) Simultaneous statistical inference. Springer, New York

    Book  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Poly Sci 8:1311–1324

    Article  CAS  Google Scholar 

  • Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15:21–29

    Article  CAS  Google Scholar 

  • Nishimura H, Okano T, Asano I (1981) Fine structure of wood cell walls. I. Structural features of noncrystalline substances in wood cell walls. Mokuzai Gakkaishi 27:611–617

    Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, O’Neill H, Pingali SV, Harton S (2014) Structural coarsening of aspen wood by hydrothermal pretreatment monitored by small- and wide-angle scattering of X-ray and neutrons on oriented specimens. Cellulose 21:1015–1024

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FT-IR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  Google Scholar 

  • Peciulyte A, Karlström K, Larsson PT, Olsson E (2015) Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis. Biotechnol Biofuels 8:56

    Article  Google Scholar 

  • Reiner RS, Rudie AW (2013) Process scale-up of cellulose nanocrystal production to 25 kg per batch at the Forest Products Laboratory. In: Postek MT, Moon RJ, Rudie AJ, Bilodeau MA (eds) Production and applications of cellulose materials. TAPPI Press, Atlanta, pp 21–24

    Google Scholar 

  • Richter U, Krause T, Schempp W (1991) Untersuchungen zur Alkalibehandlung von Cellulosefasern. Teil 1. Infrarotspektroskopische und Ro¨ntgenographische Beurteilung der A¨ nderung des Ordnungszustandes. Angew Makromol Chem 185:155–167

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12:223–231

    Article  CAS  Google Scholar 

  • Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften, Göttingen, pp 98–100

    Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sisson WA (1933) X-ray analysis of fibers, part I, literature survey. Text Res J 3:295–307

    Article  Google Scholar 

  • Sugino H, Sugimoto H, Miki T, Kanayama K (2007) Fine structure changes of wood during moisture adsorption and desorption process analyzed by X-ray diffraction measurement. Mokuzai Gakkaishi 53:82–89

    Article  CAS  Google Scholar 

  • TAPPI test method (1983) Acid insoluble lignin in wood and pulp; official test method T-222 (Om). TAPPI, Atlanta

    Google Scholar 

  • Toba K, Yamamoto H, Yoshida M (2013) Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatments, using X-ray diffraction technique. Cellulose 20:633–643

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261

    Article  CAS  Google Scholar 

  • Vieira FS, Pasquini C (2014) Determination of cellulose crystallinity by terahertz-time domain spectroscopy. Anal Chem 86:3780–3786

    Article  CAS  Google Scholar 

  • Wormald P, Wickholm K, Larsson PT, Iversen T (1996) Conversions between ordered and disordered cellulose. Effects of mechanical treatment followed by cyclic wetting and drying. Cellulose 3:141–152

    Article  CAS  Google Scholar 

  • Zabler S, Paris O, Burgert I, Fratzl P (2010) Moisture changes in the plant cell wall force cellulose crystallites to deform. J Struct Biol 171:133–141

    Article  CAS  Google Scholar 

  • Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Akira Isogai (Tokyo University) for providing Tunicate cellulose. The authors acknowledge Fred Matt of the FPL Analytical Chemistry and Microscopy Laboratory Unit for carrying out the composition analyses of the samples. The authors gratefully acknowledge use of X-ray facilities and instrumentation supported by NSF through the University of Wisconsin Materials Research Science and Engineering Center (DMR-1121288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh P. Agarwal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 681 kb)

Supplementary material 2 (XLSX 317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, U.P., Ralph, S.A., Baez, C. et al. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24, 1971–1984 (2017). https://doi.org/10.1007/s10570-017-1259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1259-0

Keywords

Navigation