Skip to main content
Log in

Sulfur-free dissolving pulps and their application for viscose and lyocell

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, the concept of multifunctional alkaline pulping has been approved to produce high-purity and high-yield dissolving pulps. The selective removal of hemicelluloses was achieved by either water autohydrolysis (PH) or alkaline extraction (E) both applied as pre-treatments prior to cooking. Alternatively, hemicelluloses were isolated after oxygen delignification in a process step denoted as cold caustic extraction (CCE). Eucalyptus globulus wood chips were used as the raw material for kraft and soda-AQ pulping. In all process modifications sulfur was successfully replaced by anthraquinone. By these modifications purified dissolving pulps were subjected to TCF bleaching and comprehensive viscose and lyocell application tests. All pulps met the specifications for dissolving pulps. Further more, CCE-pulps showed a significantly higher yield after final bleaching. Morphological changes such as ultrastructure of the preserved outer cell wall layers, specific surface area and lateral fibril aggregate dimension correlated with the reduced reactivity towards regular viscose processing. The residual xylan after alkali purification depicted a lower content of functional groups and a higher molecular weight and was obviously entrapped in the cellulose fibril aggregates which render the hemicelluloses more resistant to steeping in the standard viscose process. Simultaneously, the supramolecular structure of the cellulose is partly converted from cellulose I to cellulose II by the alkaline purification step which did not influence the pulps reactivity significantly. Nevertheless, these differences in pulp parameters did not affect the lyocell process due to the outstanding solubility of the pulps in NMMO. Laboratory spinning revealed good fiber strength for both, regular viscose and lyocell fibers. The high molecular weight xylan of the CCE-treated pulps even took part in fiber forming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AEC:

Anion exchange chromatography

AH:

Acid hydrolysis

as,BET :

Specific surface area according to Brunauer, Emmett and Teller

AQ:

Anthraquinone

CBC:

Continuous batch cooking

CCE:

Cold caustic extraction

CRI:

Crystallinity index

DP:

Degree of polymerisation

E:

Alkaline pre-extraction

EA:

Effective alkali

FE-SEM:

Scanning electron microscope

HCE:

Hot caustic extraction

HexA:

Hexenuronic acid

K:

Kraft pulp

LFAD:

Lateral fibril aggregate dimension

MALLS:

Multi-angel laser light scattering

MWD:

Molecular weight distribution

Mw:

Molecular weight

n.d.:

Not determined

NMMO:

N-methyl-morpholine-N-oxid

O:

Oxygen-bleaching-stage

Odp:

Oven dry pulp

Odw:

Oven dry wood

P:

Hydrogenperoxide bleaching stage

PAD:

Pulsed amperometric detection

PDI:

Polydispersity index

PH:

Prehydrolysis

PW:

Primary cell wall

SAQ:

Soda-AQ pulp

SEC:

Size exclusion chromatography

S1:

Secondary cell wall 1

S2:

Secondary cell wall 2

TCF:

Total chlorine free

WRV:

Water retention value

Z:

Ozone bleaching stage

References

  • Al-Dajani WW, Tschirner UW (2008) Pre-extraction of hemicelluloses and subsequent kraft pulping part I: alkaline extraction. Tappi J 7(6):3–8

    CAS  Google Scholar 

  • Al-Dajani WW, Tschirner UW (2010) Pre-extraction of hemicelluloses and subsequent ASA and ASAM pulping: comparison of autohydrolysis and alkaline extraction. Holzforschung 64:411–416

    Article  CAS  Google Scholar 

  • Barrett EP, Joyner LG, Hallender PP (1951) the determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  • Bartunek R (1967) Die Eigenschaften der Zellstoffe und ihr Einfluß auf den Viskoseprozeß. In: Götze K (ed) Chemiefasern nach dem Viskoseprozess. Springer-Verlag, Berlin/Heidelberg, pp 194–218

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 73:309–319

    Article  Google Scholar 

  • Chunillal V, Bush T, Larsson PT, Iversen T, Kindness A (2010) A CP/MAS 13C-NMR-study of cellulose fibril aggregation in eucalyptus dissolving pulps during drying and the correlation between aggregate dimensions and chemical reactivity. Holzforschung 64(6):693–698

    Article  Google Scholar 

  • Corbett WM, Kidd J (1958) Some aspects of alkali refining of pulps. Tappi 41(3):340–355

    Google Scholar 

  • Duchesne I, Hult E-L, Molin U, Daniel G, Iversen T, Lennholm H (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8:103–111

    Article  CAS  Google Scholar 

  • Duchesne I, Takabe K, Daniel G (2003) Ultrastructural localisation of glucomannan in kraft pulp fibres. Holzforschung 57:62–68

    Article  CAS  Google Scholar 

  • Engström N, Vikkula A, Teleman A, Vuorinen T (1995) Structure of hemicelluloses in pine kraft cooking liquors. In: 8th international symposium on wood and pulping chemistry, Stockholm, proceedings 3. pp 195–200

  • Gehmayr V, Sixta H (2010) Feasibility of enzymatic bio-bleaching techniques of a kraft pulp for viscose application. International Workshop on Wood Biorefinery and Tree Biotechnology, Örnsköldsvik

    Google Scholar 

  • Gehmayr V, Schild G, Sixta H (2011) A precise study on the feasibility of enzyme treatments of a kraft pulp for viscose application. Cellulose online first

  • Gellerstedt G, Li J (1996) An HPLC method for the quantitative determination of hexeneuronic acid groups in chemical pulps. Carbohydr Res 294:41–51

    CAS  Google Scholar 

  • Gellerstedt G, Li J (1997) The distribution to kappa number from hexenuronic acid groups in pulp xylan. Carbohydr Res 302:213–218

    Article  Google Scholar 

  • Henriksson G, Christiernin M, Agnemo R (2005) Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp. J Ind Microbiol Biotechnol 32:211–214

    Article  CAS  Google Scholar 

  • Hinck JF, Casebier RL, Hamilton JK (1985) Dissolving pulp manufacture. In: Ingruber OV, Kocurek MJ, Wong A (eds) Sulfite science & technology. TAPPI, CPPA, Atlanta, pp 213–243

    Google Scholar 

  • Hult E-L, Larsson PT, Iversen T (2001) A CP/MAS 13C-NMR study of supermolecular changes in the cellulose and hemicellulose structure during kraft pulping. Nord Pulp Pap Res J 16(1):33–39

    Article  CAS  Google Scholar 

  • Jackson LS, Heitmann JA Jr, Joyce TW (1998) Production of dissolving pulp from recovered paper using enzymes. Tappi 81(3):171–178

    CAS  Google Scholar 

  • Janzon R, Puls J, Saake B (2006) Upgrading of paper-grade pulps to dissolving pulps by nitren extaction: optimization of extraction parameters and application to different pulps. Holzforschung 60:347–354

    Article  CAS  Google Scholar 

  • Janzon R, Puls J, Bohn A, Potthast A, Saake B (2008) Upgrading of paper grade pulps to dissolving pulps by nitren extaction: yields, molecular and supramolecular structures of nitren extracted pulps. Cellulose 15:739–750

    Article  CAS  Google Scholar 

  • Köpcke V, Ibarra D, Ek M (2008) Increasing accessibility and reactivity of paper grade pulp by enzymatic treatment for use as dissolving pulp. Nord Pulp Pap Res J 23(4):363–368

    Article  Google Scholar 

  • Krässig H (1984) Struktur und Reaktivität von Cellulosefasern. Das Papier 38(12):571–582

    Google Scholar 

  • Kvarnlöf N, Jönsson LJ, Söderlund C-A, Germgard U (2008a) Modification of the viscose process to suit the use of dissolving pulps pre-treated with enzyme. Paperi ja Puu 90(4):50–55

    Google Scholar 

  • Kvarnlöf N, Jönnson LJ, Söderlung C-A, Germgard U (2008b) Enzyme pretreatment to improve the cellulose reactivity in the viscose process In: The 10th EWLP, KTH Stockholm, Sweden, 25–28 Aug. p 4

  • Le Moigne N, Montes E, Pannetier C, Höfte H, Navard P (2008) Gradient in dissolution capacity of successively deposited cell wall layers in cotton fibers. Macromol Symp 262:65–71

    Article  Google Scholar 

  • Le Moigne L, Bikard J, Navard P (2010) Rotation and contraction of native and regenerated cellulose fibers upon swelling and dissolution: the role of morphological and stress unbalances. Cellulose 17:507–519

    Article  Google Scholar 

  • Leschinsky M, Zuckerstätter G, Weber HK, Patt R, Sixta H (2008a) Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 1: comparison of different lignin fractions formed during water prehydrolysis. Holzforschung 62(6):645–652

    Article  CAS  Google Scholar 

  • Leschinsky M, Zuckerstätter G, Weber HK, Patt R, Sixta H (2008b) Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 2: influence of autohydrolysis intensity. Holzforschung 62(6):653–658

    Article  CAS  Google Scholar 

  • Luo M, Neogi A (2004) Lyocell fiber from unbleached pulp. Weyerhaeuser company, USA, Patent No. US 9,790,527 B1

  • Okamoto T, Meshitsuka G (2010) The nanostructure of kraft pulp: evaluation of various mild drying methods using field emission scanning electron microscopy. Cellulose 17:1171–1182

    Article  CAS  Google Scholar 

  • Oksanen T, Buchert J, Viikari L (1997) The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung 51:355–360

    Article  CAS  Google Scholar 

  • Philipp B, Rehder W, Lang H (1965) Zur Carboxylbestimmung in Chemiezellstoffen. Das Papier 19:1–9

    CAS  Google Scholar 

  • Puls J, Janzon R, Saake B (2006) Comparative removal of hemicelluloses from paper pulps using nitren, cuen, NaOH and KOH. Lenzinger Berichte 86:63–70

    CAS  Google Scholar 

  • Rahkamo L, Siika-aho M, Viikari L, Leppänen T, Buchert J (1998) Effects of cellulase and hemicellulase on alkaline solubility of dissolving pulps. Holzforschung 52(6):630–645

    Article  CAS  Google Scholar 

  • Röder T, Moosbauer J, Fasching M, Bohn A, Fink H-P, Baldinger T, Sixta H (2006) Crystallinity determination of native cellulose—comparison of analytical methods. Lenzinger Berichte 86:85–89

    Google Scholar 

  • Rydholm SA (1985) Pulping processes. Robert E. Krieger Publishing Co., Inc., Malabar, pp 992–1023

    Google Scholar 

  • Schelosky N, Röder T, Baldinger T (1999) Molmassenverteilung cellulosischer Produkte mittels Größenausschlusschromatographie in DMAc/LiCl. Das Papier 53(12):728–738

    CAS  Google Scholar 

  • Schild G, Sixta H (2009) Multifunctional alkaline pulping. In: The 4th workshop on cellulose, regenerated cellulose and cellulose derivatives, Karlstad, Sweden, Abstract 7–10

  • Schild G, Sixta H, Testova L (2010) Multifunctional alkaline pulping, delignification and hemicellulose extraction. Cellul Chem Technol 44(1–3):35–45

    CAS  Google Scholar 

  • Sears KD, Hinck JF, Sewell CG (1982) High reactive wood pulps for cellulose acetate production. J Appl Polym Sci 27(12):4599–4610

    Article  CAS  Google Scholar 

  • Sixta H (2006a) Pulp purification. In: Sixta H (ed) Handbook of pulp, vol 1. Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, pp 933–965

    Chapter  Google Scholar 

  • Sixta H (2006b) Pulp properties and applications. In: Sixta H (ed) Handbook of pulp, vol 2. Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, pp 1009–1067

    Chapter  Google Scholar 

  • Sixta H, Schild G (2009) A new generation kraft process. Lenzinger Berichte 87:26–37

    CAS  Google Scholar 

  • Sixta H, Schelosky N, Milacher W, Baldinger T, Röder T (2001) Characterization of alkali-soluble pulp fractions by chromatography. In: Proceedings of the 11th ISWPC, Nice, France. pp 655–658

  • Sixta H, Harms H, Dpia S, Parajo JC, Puls J, Saake B, Fink H-P, Röder T (2004) Evaluation of new organosolv dissolving pulps. Part I: preperation, analytical characterization and viscoes processability. Celluose 11:73–83

    Article  CAS  Google Scholar 

  • Sixta H, Potthast A, Krotschek AW (2006) Chemical pulping processes. In: Sixta H (ed) Handbook of pulp, vol 1. Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, pp 109–509

    Chapter  Google Scholar 

  • Sixta H, Promberger A, Borgards A, Möslinger R (2007a) Process for production of chemical cellulose pulp. Lenzing Aktiengesellschaft, Austria. WO 2007128026. 48 pp

  • Sixta H, Promberger A, Borgards A, Möslinger R (2007b) Kraft process for production of cellulose pulp. Lenzing Aktiengesellschaft, Austria. WO 2007128024. 50 pp

  • Stephens RS (1998) Cellulose treatment and the resulting product. Weyerhaeuser Company, USA, WO 99/16960 PCT/US98/20303

  • Treiber E, Rehnstroem J, Ameen C, Kolos F (1962) Über die Laboratoriumsviskosekleinstanlage zur Testung von Chemiefaserzellstoffen—a small scale laboratory viscose plant for testing rayon grade pulps. Das Papier 16:85–94

    CAS  Google Scholar 

  • Wallis AFA, Wearne RH (1990) Chemical cellulose from radiata pine kraft pulp. Appita 43(5):355–366

    CAS  Google Scholar 

  • Wayman A, Sherk DL (1956) Caustic extraction of refined sulphite pulp. Tappi J 39(11):786–790

    CAS  Google Scholar 

  • Wizani W, Krotscheck A, Schuster J, Lackner K (1994) Viscose production process. Verfahren zur Herstellung von Viskosezellstoffen, WO9412719 PCT Pub. Germany

  • Wollbodt R P, Zuckerstätter G, Weber H K (2010) Accessibility, reactivity and supramolecular structure of E. globulus pulps with reduced xylan content. Wood Science and Technology

  • Zang Z, Chi C, Liu X (2008) Hemicellulose pre-extraction and the influence on eucalyptus alkaline pulping. In: Abstract of papers, 10th European workshop on lignocellulosics and pulp, EWLP Stockholm

  • Zuckerstätter G, Schild G, Wollboldt P, Röder T, Weber HK, Sixta H (2009) The elucidation of cellulose supramolecular structure by 13C CP-MAS NMR. Lenzinger Berichte 87:38–46

    Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Austrian government, the provinces of Lower Austria, Upper Austria, and Carinthia as well as by the Lenzing AG. We also express our gratitude to the Johannes Kepler University, Linz, the University of Natural Resources and Applied Life Sciences, Vienna, and the Lenzing AG for their in-kind contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Schild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schild, G., Sixta, H. Sulfur-free dissolving pulps and their application for viscose and lyocell. Cellulose 18, 1113–1128 (2011). https://doi.org/10.1007/s10570-011-9532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9532-0

Keywords

Navigation