Skip to main content
Log in

Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The capacity of dissolving pulp to react with carbon disulfide under the defined conditions, known as the “Fock reactivity,” is an important parameter in determining the processability, end-product quality, and environmental impact in downstream rayon production. This study was aimed at improving the reactivity of kraft-based dissolving pulp by mechanical treatments, such as grinding and PFI refining, which can induce additional accessible surfaces in the compact cellulose structure via fiber cutting and fibrillation, respectively. Results showed that the Fock reactivity of a kraft-based dissolving pulp was increased from 49.3 to 71.8 % by 6-min grinding treatment under the conditions studied. Such a treatment led to increases in the fines content and specific surface area while decreasing the fiber length, intrinsic viscosity, and the crystalline ratio of cellulose. PFI refining can also result in changes in the fiber morphology and cellulose structure; a 25,000 PFI revolution treatment led to an increase in the Fock reactivity from 49.3 to 58.3 % for the same dissolving pulp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aimin T, Hongwei Z, Gang C, Guohui X, Wenzhi L (2005) Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose. Ultrason Sonochem 12(6):467–472. doi:10.1016/j.ultsonch.2004.07.003

    Article  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861. doi:10.1016/j.biortech.2009.11.093

    Article  CAS  Google Scholar 

  • Bhardwaj NK, Hoang V, Nguyen KL (2007) Effect of refining on pulp surface charge accessible to polydadmac and FTIR characteristic bands of high yield kraft fibres. Bioresour Technol 98(4):962–966. doi:10.1016/j.biortech.2006.03.001

    Article  CAS  Google Scholar 

  • Bismarck A, Aranberri-Askargorta I, Springer J (2002) Surface characterization of flax, hemp and cellulose fibers; surface properties and the water uptake behavior. Polym Compos 23(5):872–894

    Article  CAS  Google Scholar 

  • Bui HM, Lenninger M, Manian AP, Abu-Rous M, Schimper CB, Schuster KC, Bechtold T (2008) Treatment in swelling solutions modifying cellulose fiber reactivity—Part 2: accessibility and reactivity. Macromol Symp 262(1):50–64. doi:10.1002/masy.200850206

    Article  CAS  Google Scholar 

  • Christoffersson KE (2005) Dissolving pulp: multivariate characterisation and analysis of reactivity and spectroscopic properties. Umeå University, Umeå, Sweden

    Google Scholar 

  • Christoffersson KE, Sjöström M, Edlund U, Lindgren Å, Dolk M (2002) Reactivity of dissolving pulp: characterisation using chemical properties, NMR spectroscopy and multivariate data analysis. Cellulose 9(2):159–170

    Article  Google Scholar 

  • Ciolacu D, Ciolacu F, Popa V (2011) Amorphous cellulose—structure and characterization. Cellul Chem Technol 45(1–2):13–21

    CAS  Google Scholar 

  • Dupon A-L (2003) Gelatine sizing of paper and its impact on the degradation of cellulose during aging: a study using size-exclusion chromatography. University of Amsterdam, Amsterdam, Netherlands

    Google Scholar 

  • Engström A-C, Ek M, Henriksson G (2006) Improved accessibility and reactivity of dissolving pulp for the viscose process pretreatment with monocomponent endoglucanase. Biomacromolecules 7(6):2027–2031

    Article  Google Scholar 

  • Fan J, Li Y (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohydr Polym 88(4):1184–1188. doi:10.1016/j.carbpol.2012.01.081

    Article  CAS  Google Scholar 

  • Filpponen I, Argyropoulos DS (2008) Determination of cellulose reactivity by using phosphitylation and quantitative 31P NMR spectroscopy. Ind Eng Chem Res 47:8906–8910

    Article  CAS  Google Scholar 

  • Gehmayr V, Sixta H (2012) Pulp properties and their influence on enzymatic degradability. Biomacromolecules 13(3):645–651

    Article  CAS  Google Scholar 

  • Gehmayr V, Potthast A, Sixta H (2012) Reactivity of dissolving pulps modified by TEMPO-mediated oxidation. Cellulose 19(4):1125–1134. doi:10.1007/s10570-012-9729-x

    Article  CAS  Google Scholar 

  • Han SO, Choi HY (2010) Morphology and surface properties of natural fiber treated with electron beam. Microsc Sci Technol Appl Educ 3:1880–1887

    Google Scholar 

  • He B (2010) Paper making principles and engineering, 3rd edn. China Light Industry Press, Beijing

    Google Scholar 

  • Henriksson G, Christiernin M, Agnemo R (2005) Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp. Ind Microbiol Biotechnol 32:211–214

    Article  CAS  Google Scholar 

  • Ibarra D, Köpcke V, Larsson PT, Jaaskelainen AS, Ek M (2010) Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp. Bioresour Technol 101(19):7416–7423

    Article  CAS  Google Scholar 

  • Isogai T, Yanagisawa M, Isogai A (2008) Degrees of polymerization (DP) and DP distribution of cellouronic acids prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation. Cellulose 16(1):117–127. doi:10.1007/s10570-008-9245-1

    Article  Google Scholar 

  • Kelsey RG, Shafizadeh F (1980) Enhancement of cellulose accessibility and enzymatic hydrolysis by simultaneous wet milling. Biotechnol Bioeng 22(5):1025–1036

    Article  CAS  Google Scholar 

  • Kim CH, Yang JK, Park JY (2000) Quantification of crystallinity change in celluloses during refining. J Korea TAPPI 32(5):8–13

    CAS  Google Scholar 

  • Kline E (1954) Xanthates. In: Ott E, Spurlin HM, Grafflin MW (eds) Cellulose and cellulose derivatives, vol V. Interscience Publishers Inc., New York

    Google Scholar 

  • Köpcke V (2010) Conversion of wood and non-wood paper-grade pulps to dissolving-grade pulps. Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden

  • Krässig HA (1993) Cellulose: structure, accessibility, and reactivity. Polymer monographs, vol 11. Gordon and Breach Science, Yverdon, Switzerland; Philadelphia

  • Kunze J, Fink H-P (2005) Structural changes and activation of cellulose by caustic soda solution with urea. Macromol Symp 223(1):175–188. doi:10.1002/masy.200550512

    Article  CAS  Google Scholar 

  • Kvarnlöf N, Germgård U, Jönsson LJ, Söderlund C-A (2007) Optimization of the enzymatic activation of a dissolving pulp before viscose manufacture. Tappi J 6(6):14–19

    Google Scholar 

  • Li Q, Gao Y, Wang H, Li B, Liu C, Yu G, Mu X (2012) Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification. Bioresour Technol 125:193–199

    Article  CAS  Google Scholar 

  • Lin Q (1965) Chemical fiber technology (chemical fiber technology). China financial and economic publishing house, Beijing, China

    Google Scholar 

  • Miao Q, Chen L, Huang L, Tian C, Zheng L, Ni Y (2014) A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment. Bioresour Technol 154:109–113

    Article  CAS  Google Scholar 

  • Millett MA, Effland MJ, Caulfield DF (1979) Influence of fine grinding on the hydrolysis of cellulosic materials-acid vs. enzymatic. In: Ross D. Brown J, Jurasek L (eds) Hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis, vol 181. pp 71–89

  • Mou H, Li B, Heikkilä E, Iamazaki E, Zhan H, Fardim P (2013) Low consistency refining of eucalyptus pulp: effects on surface chemistry and interaction with FWAs. BioResources 8(4):5995–6013

    Article  Google Scholar 

  • Östberg L, Håkansson H, Germgård U (2012) Some aspects of the reactivity of pulp intended for high-viscosity viscose. BioResources 7(1):743–755

    Google Scholar 

  • Peng H, Li H, Luo H, Xu J (2013) A novel combined pretreatment of ball milling and microwave irradiation for enhancing enzymatic hydrolysis of microcrystalline cellulose. Bioresour Technol 130:81–87. doi:10.1016/j.biortech.2012.10.167

    Article  CAS  Google Scholar 

  • Rajagopal S, Stepanik T, Free D, Hidasi G, Poggi T (1994) Enhancement of cellulose reactivity in viscose production using electron processing technology. Paper presented at the the Akzo Nobel sponsored conference on Challenges in Cellulosic Man-Made Fibres, Stockholm

  • Roffael E (1988) Study on reactivity of differently prepared viscose pulps. Holzforschung 42(2):135–136

  • Schild G, Sixta H (2011) Sulfur-free dissolving pulps and their application for viscose and lyocell. Cellulose 18(4):1113–1128. doi:10.1007/s10570-011-9532-0

    Article  CAS  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36(1):23–40. doi:10.1016/j.vibspec.2004.02.003

    Article  CAS  Google Scholar 

  • Sixta H (2006) Handbook of pulp, vol 2. Wiley, KGaA, Weinheim

    Book  Google Scholar 

  • Sixta H, Harms H, Dapia S, Parajo JC, Puls J, Saake B, Fink H-P, Röder T (2004) Evaluation of new organosolv dissolving pulps. Part I: preparation, analytical characterization and viscose processability. Cellulose 11(1):73–83

    Article  CAS  Google Scholar 

  • Sixta H, Iakovlev M, Testova L, Roselli A, Hummel M, Borrega M, Heiningen A, Froschauer C, Schottenberger H (2013) Novel concepts of dissolving pulp production. Cellulose 20(4):1547–1561. doi:10.1007/s10570-013-9943-1

    Article  CAS  Google Scholar 

  • Strunk P (2012) Characterization of cellulose pulps and the influence of their properties on the process and production of viscose and cellulose ethers. Umeå University, Umeå, Sweden

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  • Tian C, Zheng L, Miao Q, Nash C, Cao C, Ni Y (2013) Improvement in the Fock test for determining the reactivity of dissolving pulp. Tappi J 12(11):19–24

    Google Scholar 

  • Xu M, Xu M, Dai H, Wang S, Wu W (2013) The effects of ball milling and PFI pretreatment on the cellulose structure and fibermorphology. J Cell Sci Technol 21(2):46–52

    CAS  Google Scholar 

  • Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2006) Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuels 20:807–811

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Canada Research Chairs and NSERC CRD program, and the Tianjin Municipal Science and Technology Commission (grant no. 12ZCZDGX01100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Tian or Yonghao Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Zheng, L., Miao, Q. et al. Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments. Cellulose 21, 3647–3654 (2014). https://doi.org/10.1007/s10570-014-0332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0332-1

Keywords

Navigation