Skip to main content
Log in

Phytoremediation of heavy metals: mechanisms, methods and enhancements

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Polluted soil and water impact the quality of food and nutrients of human and animal biota. Soil and water are mainly polluted by effluent discharges from industries, which are broadly classified into metallic and nonmetallic pollutant-bearing effluents. In order to tackle this problem, a plant-based technology called phytoremediation is used to clean contaminated lands. Phytoremediation is based upon several processes such as phytodegradation, phytovolatilization, phytoaccumulation and phytoextraction. These methods are efficient, eco-friendly and economic. This paper reviews the methods and mechanisms involved in phytoremediation of heavy metals, and enhancement processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TPH:

Total petroleum products

PAH:

Polycyclic aromatic hydrocarbons

CDTA:

Cyclohexane-1,2-diamine tetra-acetic acid

EDTA:

Ethylene diamine tetra-acetic acid

DTPA:

Diethylenetriamine pentaacetic acid

EGTA:

Ethylene glycol-bis-(beta-amino-ethyl ether) N,N,N′,N′-tetra-acetic acid

NTA:

Nitrilo triacetic acid

MMA:

Monomethylarsenate

References

  • Abioye OP, Agamuthu P, Abdul Aziz A (2010) Phytoaccumulation of zinc and iron by jatropha curcas grown in used lubricating oil-contaminated soil. Malays J Sci 29:207–213

    Article  CAS  Google Scholar 

  • Adhikari T, Kumar A (2012) Phytoaccumulation and tolerance of Riccinus communis L. to nickel. Int J Phytoremediat 14:481–492. https://doi.org/10.1080/15226514.2011.604688

    Article  CAS  Google Scholar 

  • Ahlfeld DP, Heidari M (1994) Applications of optimal hydraulic control to ground-water systems. J Water Resour Plan Manag 120:350–365. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:3(350)

    Article  Google Scholar 

  • Alam MM, Alothman ZA, Naushad M (2013) Analytical and environmental applications of polyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite cation-exchangers. J Ind Eng Chem 19:1973–1980

    Article  CAS  Google Scholar 

  • Ali NA, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM et al (2004) Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotechnol 3:55–70. https://doi.org/10.1023/B:RESB.0000040057.45006.34

    Article  CAS  Google Scholar 

  • AlOthman ZA, Naushad M, Nilchi A (2011) Development, characterization and ion exchange thermodynamics for a new crystalline composite cation exchange material: application for the removal of Pb2+ ion from a standard sample (Rompin Hematite). J Inorg Organomet Polym 21:547–559

    Article  CAS  Google Scholar 

  • AlOthman ZA, Alam MM, Naushad M (2013) Heavy toxic metal ion exchange kinetics: validation of ion exchange process on composite cation exchanger nylon 6, 6 Zr (IV) phosphate. J Ind Eng Chem 19:956–960

    Article  CAS  Google Scholar 

  • Alpaslan B, Yukselen MA (2002) Remediation of lead contaminated soils by. Water Air Soil Pollut 133:253–263

    Article  CAS  Google Scholar 

  • Alqadami AA, Naushad M, Abdalla MA et al (2017a) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. J Clean Prod 156:426–436

    Article  CAS  Google Scholar 

  • Alqadami AA, Naushad M, Alothman ZA, Ghfar AA, Abdalla MA et al (2017b) Novel metal–organic framework (MOF) based composite material for the sequestration of U (VI) and Th(IV) metal ions from aqueous environment. ACS Appl Mater Interfaces 9:36026–36037

    Article  CAS  Google Scholar 

  • Altinozlu H, Karagoz A, Polat T, Unver I (2012) Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turk J Bot 36:269–280. https://doi.org/10.3906/bot-1101-10

    Article  CAS  Google Scholar 

  • Alvarenga P, Gonçalves AP, Fernandes RM et al (2008) Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci Total Environ 406:43–56. https://doi.org/10.1016/j.scitotenv.2008.07.061

    Article  CAS  Google Scholar 

  • Anawar HM, Garcia-Sanchez A, Alam MTK, Rahman MM (2008) Phytofiltration of water polluted with arsenic and heavy metals. Int J Environ Pollut 33:292–312. https://doi.org/10.1504/IJEP.2008.0194

    Article  CAS  Google Scholar 

  • Arora A, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microbiol Biotechnol 22:97–100. https://doi.org/10.1007/s11274-005-9000-9

    Article  CAS  Google Scholar 

  • Arthur E, Crews H, Morgan C (2000) Optimizing plant genetic strategies for minimizing environmental contamination in the food chain: report on the MAFF funded joint JIC/CSL workshop held at the John Innes Centre, October 21–23, 1998. Int J Phytoremediat 2:1–21

    Article  Google Scholar 

  • Arthur EL, Rice PJ, Rice PJ et al (2005) Phytoremediation—an overview. CRC Crit Rev Plant Sci 24:109–122

    Article  CAS  Google Scholar 

  • Ashraf M, Ahmad MSA, Ozturk M (2010) Plant adaptation and phytoremediation. Springer, Berlin

    Book  Google Scholar 

  • Awual MR, Hasan MM, Eldesoky GE et al (2016) Facile mercury detection and removal from aqueous media involving ligand impregnated conjugate nanomaterials. Chem Eng J 290:243–251

    Article  CAS  Google Scholar 

  • Ayoub K, van Hullebusch ED, Cassir M, Bermond A (2010) Application of advanced oxidation processes for TNT removal: a review. J Hazard Mater 178:10–28. https://doi.org/10.1016/j.jhazmat.2010.02.042

    Article  CAS  Google Scholar 

  • Bagga DK, Peterson S (2001) Phytoremediation of arsenic-contaminated soil as affected by the chelating agent CDTA and different levels of soil pH. Remediation 12:77–85. https://doi.org/10.1002/rem.1027

    Article  Google Scholar 

  • Baghour M, Moreno DA, Hernández J et al (2001) Influence of root temperature on phytoaccumulation of As, Ag, Cr, and Sb in potato plants (Solanum Tuberosum L. var. Spunta). J Environ Sci Heal Part A Toxic Hazard Subst Environ Eng 36:1389–1401. https://doi.org/10.1081/ESE-100104886

    Article  CAS  Google Scholar 

  • Bakar A, Farid A, Yusoff I, Fatt NT, Othman F, Ashraf MA (2013) Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata). BioMed Res Int 2013:1–7

    Google Scholar 

  • Bandara T, Herath I, Kumarathilaka P et al (2015) Role of fungal-bacterial co-inoculation and woody biochar on soil enzyme activity and heavy metal immobilization in serpentine soil. J Soils Sediments 17:665–673

    Article  CAS  Google Scholar 

  • Bani A, Pavlova D, Echevarria G et al (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serbica 34:3–14

    Google Scholar 

  • Bañuelos GS, Ajwa HA, Mackey B et al (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639. https://doi.org/10.2134/jeq1997.00472425002600030008x

    Article  Google Scholar 

  • Bañuelos GS, Arroyo I, Pickering IJ et al (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608

    Article  CAS  Google Scholar 

  • Barznji DAM (2014) Role of aquatic plants in improving water quality. UJPBS 2:12–16

    Google Scholar 

  • Bauddh K, Singh RP (2012) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Phytoremediation 14:772–785. https://doi.org/10.1080/15226514.2011.619238

    Article  CAS  Google Scholar 

  • Bennicelli R, Stȩpniewska Z, Banach A et al (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146. https://doi.org/10.1016/j.chemosphere.2003.11.015

    Article  CAS  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  CAS  Google Scholar 

  • Bernard S, Enayati A, Redwood L et al (2001) Autism: a novel form of mercury poisoning. [Review] [181 refs]. Med Hypotheses 56:462–471

    Article  CAS  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Phytoremediation toxic met using plants to clean up environ. pp 71–88

  • Bhadra R, Spanggord RJ, Wayment DG et al (1999) Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ Sci Technol 33:3354–3361. https://doi.org/10.1021/es990436i

    Article  CAS  Google Scholar 

  • Bianchi V, Toso RD, Debetto P et al (1980) Mechanisms of chromium toxicity in mammalian cell cultures. Toxicology 17:219–224. https://doi.org/10.1016/0300-483X(80)90097-9

    Article  CAS  Google Scholar 

  • Bidar G, Garçon G, Pruvot C et al (2006) Behavior of Lolium perenne and Trifolium repens growing in a heavy metal contaminated field: Cd, Pb, Zn—Uptake and toxicity. Difpolmine Conf 147:546–553

    Google Scholar 

  • Bolan NS, Adriano DC, Naidu R (2003) Role of phosphorus in (Im)mobilization and bioavailability of heavy metals in the soil-plant system. In: Reviews of environmental contamination and toxicology. Springer, pp 1–44

  • Boonyapookana B, Upatham ES, Kruatrachue M et al (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytoremediat 4:87–100. https://doi.org/10.1080/15226510208500075

    Article  CAS  Google Scholar 

  • Boonyapookana B, Parkpian P, Techapinyawat S et al (2005) Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). J Environ Sci Heal Part A Toxic Hazard Subst Environ Eng 40:117–137. https://doi.org/10.1081/ESE-200033621

    Article  CAS  Google Scholar 

  • Brunner I, Luster J, Günthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568. https://doi.org/10.1016/j.envpol.2007.07.006

    Article  CAS  Google Scholar 

  • Burken JG, Shanks JV, Thompson PL (2000) Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, Washington, D.C., pp 239–248

    Google Scholar 

  • Bushra R, Naushad M, Sharma G et al (2017) Synthesis of polyaniline based composite material and its analytical applications for the removal of highly toxic Hg2+ metal ion: antibacterial activity against E. coli. Korean J Chem Eng 34:1970–1979

    Article  CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM et al (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284. https://doi.org/10.1016/S0958-1669(97)80004-3

    Article  CAS  Google Scholar 

  • Chehregani A, Malayeri BE (2007) Removal of heavy metals by native accumulator plants. Int J Agric Biol 9:462–465

    CAS  Google Scholar 

  • Chen Q, Wong JWC (2006) Growth of Agropyron elongatum in a simulated nickel contaminated soil with lime stabilization. Sci Total Environ 366:448–455. https://doi.org/10.1016/j.scitotenv.2005.01.022

    Article  CAS  Google Scholar 

  • Chen L, Han Y, Jiang H, Korpelainen H, Li C (2011) Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. J Exp Bot 62(14):5037–5050

    Article  CAS  Google Scholar 

  • Chen GC, Liu Z, Zhang J, Owens G (2012) Phytoaccumulation of copper in willow seedlings under different hydrological regimes. Ecol Eng 44:285–289. https://doi.org/10.1016/j.ecoleng.2012.04.018

    Article  Google Scholar 

  • Chen G, Liu X, Brookes PC, Xu J (2015) Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (lour.) Hara. Int J Phytoremediat 17:249–255. https://doi.org/10.1080/15226514.2014.883496

    Article  CAS  Google Scholar 

  • Chinmayee MD, Mahesh B, Pradesh S et al (2012) The assessment of phytoremediation potential of invasive weed Amaranthus spinosus L. Appl Biochem Biotechnol 167:1550–1559. https://doi.org/10.1007/s12010-012-9657-0

    Article  CAS  Google Scholar 

  • Cofield N, Banks MK, Schwab AP (2007) Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation. Environ Pollut 145:60–67. https://doi.org/10.1016/j.envpol.2006.03.040

    Article  CAS  Google Scholar 

  • Conesa HM, Faz Á, Arnaldos R (2007) Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Chemosphere 66:38–44. https://doi.org/10.1016/j.chemosphere.2006.05.041

    Article  CAS  Google Scholar 

  • Conner AJ, Glare TR, Nap J-P (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J 33:19–46. https://doi.org/10.1046/j.0960-7412.2002.001607.x

    Article  Google Scholar 

  • Cornish JE, Goldberg WC, Levine RS, Benemann JR (1995) Phytoremediation of soils contaminated with toxic elements and radionuclides. Battelle Press, Columbus

    Google Scholar 

  • Cui B, Zhang X, Han G, Li K (2016) Antioxidant Defense response and growth reaction of Amorpha fruticosa seedlings in petroleum-contaminated soil. Water Air Soil Pollut 227:121. https://doi.org/10.1007/s11270-016-2821-3

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719. https://doi.org/10.1104/pp.110.3.715

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated water and soil. ACS Publications, Washington, pp 2–17

    Book  Google Scholar 

  • Curley A, Sedlak VA, Girling ED et al (1971) Organic mercury identified as the cause of poisoning in humans and hogs. Science 172:65–67

    Article  CAS  Google Scholar 

  • Daneshvar E, Vazirzadeh A, Niazi A et al (2017) Desorption of methylene blue dye from brown macroalga: effects of operating parameters, isotherm study and kinetic modeling. J Clean Prod 152:443–453

    Article  CAS  Google Scholar 

  • Das S, Goswami S, Das Talukdar A (2013) Copper hyperaccumulating plants from Barak Valley, South Assam, India for phytoremediation. Int J Toxicol Pharmacol Res 5:30–32

    Google Scholar 

  • Dec J, Bollag J-M (1994) Use of plant material for the decontamination of water polluted with phenols. Biotechnol Bioeng 44:1132–1139. https://doi.org/10.1002/bit.260440915

    Article  CAS  Google Scholar 

  • Dekock PC (1956) Heavy metal toxicity and iron chlorosis. Ann Bot 20:133–141

    Article  CAS  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40. https://doi.org/10.1016/j.envpol.2004.03.030

    Article  CAS  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163

    CAS  Google Scholar 

  • Dietz K-J, Baier M, Kramer V (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Heavy metal stress in plants. Springer, pp 73–97

  • Dinesh M, Kumar MV, Neeraj P, Shiv B (2014) Phytoaccumulation of heavy metals in contaminated soil using Makoy (Solenum nigrum L.) and Spinach (Spinacia oleracea L.) plant. Sciences (New York) 2:350–354

    Google Scholar 

  • Domínguez MT, Madrid F, Marañón T, Murillo JM (2009) Cadmium availability in soil and retention in oak roots: potential for phytostabilization. Chemosphere 76:480–486. https://doi.org/10.1016/j.chemosphere.2009.03.026

    Article  CAS  Google Scholar 

  • Dongmei L, Changqun D, (2008) Restoration potential of pioneer plants growing on lead-zinc mine tailings in Lanping, southwest China. J Environ Sci 20(10):1202–1209

    Article  Google Scholar 

  • Dupont RR (1993) Fundamentals of bioventing applied to fuel contaminated sites. Environ Prog 12:45–53. https://doi.org/10.1002/ep.670120109

    Article  CAS  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114. https://doi.org/10.1016/j.biotechadv.2004.10.001

    Article  CAS  Google Scholar 

  • Ehsan M, Santamaría-Delgado K, Vásquez-Alarcón A et al (2009) Phytostabilization of cadmium contaminated soils by Lupinus uncinatus Schldl. Span J Agric Res 7:390–397

    Article  Google Scholar 

  • Escalante-Espinosa E, Gallegos-Martínez ME, Favela-Torres E, Gutiérrez-Rojas M (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59:405–413. https://doi.org/10.1016/j.chemosphere.2004.10.034

    Article  CAS  Google Scholar 

  • Etim EE (2012) Phytoremediation and its mechanisms: a review. Int J Environ Bioenergy 2:120–136

    Google Scholar 

  • Ferro A, Gefell M, Kjelgren R, et al (2003) Maintaining hydraulic control using deep rooted tree systems. In: Advances in biochemical engineering/biotechnology. Springer, pp 125–156

  • Flora SJS, Behari JR, Ashquin M, Tandon SK (1982) Time-dependent protective effect of selenium against cadmium-induced nephrotoxicity and hepatotoxicity. Chem Biol Interact 42:345–351

    Article  CAS  Google Scholar 

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J Med Res 128:501–523

    CAS  Google Scholar 

  • Flora SJS, Pachauri V, Saxena G, Academic Press (2011) Arsenic, cadmium lead. Reprod Dev Toxicol pp 415–438

  • Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58

    Article  CAS  Google Scholar 

  • Frank U, Barkley N (1995) Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction. J Hazard Mater 40:191–201. https://doi.org/10.1016/0304-3894(94)00069-S

    Article  CAS  Google Scholar 

  • Garbisu C, Hernández-Allica J, Barrutia O et al (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:173–188. https://doi.org/10.1515/REVEH.2002.17.3.173

    Article  CAS  Google Scholar 

  • García-Salgado S, García-Casillas D, Quijano-Nieto MA, Bonilla-Simón MM (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut 223:559–572. https://doi.org/10.1007/s11270-011-0882-x

    Article  CAS  Google Scholar 

  • Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. CRC Crit Rev Plant Sci 20:309–371. https://doi.org/10.1080/20013591099254

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Env 6:18

    Google Scholar 

  • Gisbert C, Ros R, De Haro A et al (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445. https://doi.org/10.1016/S0006-291X(03)00349-8

    Article  CAS  Google Scholar 

  • Gordon M, Burken J, Newman L (2003) Letter: clarifying phytoremediation data. Environ Sci Technol 37:310A–310A

    Article  CAS  Google Scholar 

  • Gorinova N, Nedkovska M, Todorovska E et al (2007) Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity. Environ Pollut 145:161–170. https://doi.org/10.1016/j.envpol.2006.03.025

    Article  CAS  Google Scholar 

  • Greipsson S (2011) Phytoremediation. Nat Educ Knowl 3:7

    Google Scholar 

  • Guangde L, Zhongwen Z, Pei J, Nannan Z, Li L, Yufei Y, Miao Y (2009) Leaching remediation of heavy metal contaminated fluvio-aquatic soil with tea-saponin. Trans Chinese Soc Agri Eng 10:1–2

    Google Scholar 

  • Hajabbasi MA, Soleimani M (2009) Bioaccumulation of nickel and lead by bermuda grass (Cynodon dactylon) and tall fescue (Festuca arundinacea) from two contaminated soils. Casp J Environ Sci 7:59–70

    Google Scholar 

  • Harguinteguy CA, Schreiber R, Pignata ML (2013) Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecol Indic 27:8–16. https://doi.org/10.1016/j.ecolind.2012.11.018

    Article  CAS  Google Scholar 

  • Harvey PJ, Campanella BF, Castro PM, Harms H, Lichtfouse E, Schäffner AR, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res 9:29–47. https://doi.org/10.1007/BF02987315

    Article  CAS  Google Scholar 

  • Heaton ACP, Rugh CL, Wang N, Meagher RB (1998) Phytoremediation of mercury- and methylmercury-polluted soils using genetically engineered plants. J Soil Contam 7:497–509. https://doi.org/10.1080/10588339891334384

    Article  CAS  Google Scholar 

  • Heinaru E, Merimaa M, Viggor S, Lehiste M, Leito I, Truu J, Heinaru A (2005) Biodegradation eciency of functionally important populations selected for bioaugmentation in phenol-and oil-polluted area. FEMS Microbiol Ecol 51:363–373

    Article  CAS  Google Scholar 

  • Hetland MD, Gallagher JR, Daly DJ, et al (2001) Processing of plants used to phytoremediate lead-contaminated sites. In: Sixth international in situ and on site bioremediation symposium. pp 129–136

  • Hirsh SR, Compton HR, Matey DH, et al (2003) Five-year pilot study: Aberdeen proving ground, Maryland. Phytoremediat Transform Control Contam 2003:635–659

    Google Scholar 

  • Ho YN, Hsieh JL, Huang CC (2013) Construction of a plant-microbe phytoremediation system: combination of vetiver grass with a functional endophytic bacterium, achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresour Technol 145:43–47. https://doi.org/10.1016/j.biortech.2013.02.051

    Article  CAS  Google Scholar 

  • Hossner LR, Loeppert RH, Newton RJ, Szaniszlo PJ (1998) Literature review: phytoaccumulation of chromium, uranium, and plutonium in plant systems. Amarillo National Resource Center for Plutonium, Amarillo

    Book  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84. https://doi.org/10.1111/j.1469-8137.1996.tb01147.x

    Article  CAS  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364. https://doi.org/10.1007/s12229-009-9036-x

    Article  Google Scholar 

  • Jafari N, Ahmady-Asbchin S (2011) ecotoxicological effect of nickel on phytoaccumulation by Spirogyra irregularis Nageli (Chlorophyta). Int J Algae 13:392–404. https://doi.org/10.1615/InterJAlgae.v13.i4.70

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. https://doi.org/10.2478/intox

    Article  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • Jin X-F, Liu D, Islam E et al (2009) Effects of zinc on root morphology and antioxidant adaptations of cadmium-treated Sedum alfredii H. J Plant Nutr 32:1642–1656

    Article  CAS  Google Scholar 

  • Jomjun N, Siripen T, Maliwan S et al (2010) Phytoremediation of arsenic in submerged soil by wetland plants. Int J Phytoremediat 13:35–46

    Article  CAS  Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valkoc M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    CAS  Google Scholar 

  • Journois D, Pouard P, Greeley WJ et al (1994) Hemofiltration during cardiopulmonary bypass in pediatric cardiac surgery. Anesthesiology 81:1181–1189

    Article  CAS  Google Scholar 

  • Kaimi E, Mukaidani T, Tamaki M (2007) Screening of twelve plant species for phytoremediation of petroleum hydrocarbon-contaminated soil. Plant Prod Sci 10:211–218. https://doi.org/10.1626/pps.10.211

    Article  CAS  Google Scholar 

  • Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata—prospective for phytoextraction from contaminated water and soil. Curr Sci 100:888–894

    CAS  Google Scholar 

  • Kamal M, Ghaly AE, Mahmoud N, CoteCôté R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039. https://doi.org/10.1016/S0160-4120(03)00091-6

    Article  CAS  Google Scholar 

  • Kamnev AA, van der Lelie D (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20:239–258

    Article  CAS  Google Scholar 

  • Kärenlampi S, Schat H, Vangronsveld J et al (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231. https://doi.org/10.1016/S0269-7491(99)00141-4

    Article  Google Scholar 

  • Karthik V, Saravanan K, Sivarajasekar N, Suriyanarayanan N (2016a) Utilization of biomass from Trichoderma harzianum for the adsorption of reactive red dye. Ecol Environ Conserv 22:S435–S440

    Google Scholar 

  • Karthik V, Saravanan K, Sivarajasekar N, Suriyanarayanan N (2016b) Bioremediation of dye bearing effluents using microbial biomass. Ecol Environ Conserv 22:S423–S434

    Google Scholar 

  • Kasiuliene A, Paulauskas V (2013) In-situ phytoremediation: a review of natural and chemically assisted phytoextraction. In: Research for rural development. Latvia University of Agriculture, pp 107–113

  • Kennen K, Kirkwood N (2015) Phyto: principles and resources for site remediation and landscape design. Routledge, London

    Book  Google Scholar 

  • Khandare RV, Govindwar SP (2015) Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnol Adv 33:1697–1714. https://doi.org/10.1016/j.biotechadv.2015.09.003

    Article  CAS  Google Scholar 

  • Khellaf N, Zerdaoui M (2009) Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresour. Technol. 100: 6137–6140

    Article  CAS  Google Scholar 

  • King DJ, Doronila AI, Feenstra C et al (2008) Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: growth, arsenic uptake and availability after five years. Sci Total Environ 406:35–42. https://doi.org/10.1016/j.scitotenv.2008.07.054

    Article  CAS  Google Scholar 

  • Krämer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672. https://doi.org/10.1007/s002530100631

    Article  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation : a beneficial plant-microbe interaction bioremediation: a natural method. Mol Plant Microb Interact 17:6–15

    Article  CAS  Google Scholar 

  • Kumar A, Sharma G, Naushad M et al (2017) Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A Chem 337:118–131

    Article  CAS  Google Scholar 

  • Lampert PW, Schochet SS Jr (1968) Demyelination and remyelination in lead neuropathy: electron microscopic studies. J Neuropathol Exp Neurol 27:527–545

    CAS  Google Scholar 

  • Landmeyer JE (2011) Introduction to phytoremediation of contaminated groundwater: historical foundation, hydrologic control, and contaminant remediation. Springer, Berlin

    Google Scholar 

  • LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520. https://doi.org/10.1007/s10295-005-0227-0

    Article  CAS  Google Scholar 

  • Lesnefsky EJ (1994) Tissue iron overload and mechanisms of iron-catalyzed oxidative injury. In: Free radicals in diagnostic medicine. Springer, pp 129–146

  • Lichtfouse E, Eglinton T (1995) 13C and 14C evidence of pollution of a soil by fossil fuel and reconstruction of the composition of the pollutant. Org Geochem 23:969–973. https://doi.org/10.1016/0146-6380(95)00082-8

    Article  CAS  Google Scholar 

  • Lili L, Hui S (2007) Advance of research on phytoremediation of petroleum-polluted soil. Environ Prot Chem Ind 3:11

    Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper1. Soil Sci Soc Am J 42:421. https://doi.org/10.2136/sssaj1978.03615995004200030009x

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils. J Environ Qual 30:1919. https://doi.org/10.2134/jeq2001.1919

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258. https://doi.org/10.1016/j.biotechadv.2010.12.001

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228. https://doi.org/10.1016/j.chemosphere.2007.04.017

    Article  CAS  Google Scholar 

  • Mains D, Craw D, Rufaut C, Smith C (2006a) Phytostabilization of gold mine tailings, New Zealand. Part 1: plant establishment in alkaline saline substrate. Int J Phytoremediat 8:131–147. https://doi.org/10.1080/15226510600678472

    Article  CAS  Google Scholar 

  • Mains D, Craw D, Rufaut C, Smith C (2006b) Phytostabilization of gold mine tailings from New Zealand. Part 2: experimental evaluation of arsenic mobilization during revegetation. Int J Phytoremediat 8:163–183. https://doi.org/10.1080/15226510600742559

    Article  CAS  Google Scholar 

  • Mancuso TF (1997) Chromium as an industrial carcinogen: part II. Chromium in human tissues. Am J Ind Med 31:140–147. https://doi.org/10.1002/(SICI)1097-0274(19970204)31:2<140:AID-AJIM2>3.0.CO;2-3

    Article  CAS  Google Scholar 

  • Marbaniang D, Chaturvedi SS (1994) Phytoaccumulation of zinc by Scirpus mucronatus (L.) Palla ex Kerner. Keanean J Sci 1:69–75

    Google Scholar 

  • Marmiroli N, McCutcheon SC (2004) Making phytoremediation a successful technology. Phytoremediation 1:85–119. https://doi.org/10.1002/047127304X.ch3

    Article  Google Scholar 

  • Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73. https://doi.org/10.1016/S0167-7799(00)01534-1

    Article  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283. https://doi.org/10.1289/ehp.10608

    Article  CAS  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut 165:195–209. https://doi.org/10.1007/s11270-005-4979-y

    Article  CAS  Google Scholar 

  • Mirza N, Pervez A, Mahmood Q et al (2011) Ecological restoration of arsenic contaminated soil by Arundo donax L. Ecol Eng 37:1949–1956. https://doi.org/10.1016/j.ecoleng.2011.07.006

    Article  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168

    Article  CAS  Google Scholar 

  • Mittal A, Naushad M, Sharma G et al (2016) Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium. Desalin Water Treat 57:21863–21869

    Article  CAS  Google Scholar 

  • Mizukoshi K, Nagaba M, Ohno Y et al (1975) Neurotological studies upon intoxication by organic mercury compounds. Orl 37:74–87. https://doi.org/10.1159/000275209

    Article  CAS  Google Scholar 

  • Mokhtar H, Morad N, Fizri FFA (2011) Phytoaccumulation of copper from aqueous solutions using Eichhornia crassipes and Centella asiatica. Int J Environ Sci Dev 2:205–210. https://doi.org/10.7763/IJESD.2011.V2.125

    Article  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, et al (2004a) mercury phytoextraction and phytovolatilisation from hg-contaminated artisanal mine sites. Phytoremediat Mercur Mine Wastes 147–159

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2004b) Phytoremediation of mercury-contaminated mine tailings by induced plant-mercury accumulation. Environ Pract 6:165–175. https://doi.org/10.1017/S1466046604000274

    Article  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A et al (2010) Effect of toxic metals on human health ~ !2009-12-12 ~ !2010-02-09 ~ !2010-04-06 ~ ! Open Nutraceuticals J 3:94–99. https://doi.org/10.2174/1876396001003010094

    Article  CAS  Google Scholar 

  • Mukherjee A, Bandyopadhyay A, Dutta S, Basu S (2013) Phytoaccumulation of iron by callus tissue of Clerodendrum indicum (L). Chem Ecol 29:564–571. https://doi.org/10.1080/02757540.2013.779681

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207. https://doi.org/10.1016/S0013-7952(00)00101-0

    Article  Google Scholar 

  • Munshower FF, Neuman DR, Jennings SR (2003) phytostabilization permanence within Montana’ S Clark Fork River Basin superfund sites 1. Society 817–847. https://doi.org/10.21000/jasmr03010817

  • Nabi SA, Naushad M, Bushra R (2000) Synthesis and characterization of a new organic-inorganic Pb2+ selective nano-composite cation exchanger acrylonitrile stannic(IV) tungstate and its analytical applications. Chem Eng J 152:80–87

    Article  CAS  Google Scholar 

  • Nabi SA, Bushra R, Naushad M, Khan AM (2010) Synthesis, characterization and ion exchange behavior of composite material, poly-o-toluidine stannic molybdate and its use in the separation of toxic metal ions. Chem Eng J 165:529–536

    Article  CAS  Google Scholar 

  • Nabila K, Mostefa Z (2009) Phytoaccumulation of zinc by the duckweed Lemna gibba. Bioresour Technol 100:23000

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Naushad M, ALOthman ZA (2015) Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation. Desalin Water Treat 53:2158–2166

    Article  CAS  Google Scholar 

  • Naushad M, Al-Othman ZA, Islam M (2013) Adsorption of cadmium ion using a new composite cation-exchanger polyaniline Sn (IV) silicate: kinetics, thermodynamic and isotherm studies. Int J Environ Sci Technol 10:567–578

    Article  CAS  Google Scholar 

  • Naushad M, ALOthman ZA, Awual MR et al (2015a) Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger. Ionics (Kiel) 21:2237–2245

    Article  CAS  Google Scholar 

  • Naushad M, ALOthman ZA, Javadian H (2015b) Removal of Pb(II) from aqueous solution using ethylene diamine tetra acetic acid-Zr (IV) iodate composite cation exchanger: kinetics, isotherms and thermodynamic studies. J Ind Eng Chem 25:35–41

    Article  CAS  Google Scholar 

  • Naushad M, Mittal A, Rathore M, Gupta V (2015c) Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger. Des Water Treat. 54:2883–2890

    Article  CAS  Google Scholar 

  • Naushad M, ALOthman ZA, Awual MR et al (2016a) Adsorption of rose Bengal dye from aqueous solution by amberlite Ira-938 resin: kinetics, isotherms, and thermodynamic studies. Desalin Water Treat 57:13527–13533

    Article  CAS  Google Scholar 

  • Naushad M, Vasudevan S, Sharma G et al (2016b) Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalin Water Treat 57:18551–18559

    Article  CAS  Google Scholar 

  • Naushad M, Ahamad T, Al-Maswari BM et al (2017) Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem Eng J 330:1351–1360

    Article  CAS  Google Scholar 

  • Naushad M, Sharma G, Kumar A et al (2018) Efficient removal of toxic phosphate anions from aqueous environment using pectin based quaternary amino anion exchanger. Int J Biol Macromol 106:1–10

    Article  CAS  Google Scholar 

  • Negri MC, Gatliff EG, Quinn JJ, Hinchman RR (2004) Root development and rooting at depths. Phytoremediation 1:233–262. https://doi.org/10.1002/047127304X.ch7

    Article  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230. https://doi.org/10.1016/j.copbio.2004.04.006

    Article  CAS  Google Scholar 

  • Newman LA, Strand SE, Choe N et al (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067. https://doi.org/10.1021/es960564w

    Article  CAS  Google Scholar 

  • Nwoko CO (2010) Trends in phytoremediation of toxic elemental and organic pollutants. Afr J Biotechnol 9:6010–6016. https://doi.org/10.5897/AJB09.061

    Article  CAS  Google Scholar 

  • Nyer EK, Gatliff EG (1996) Phytoremediation. Groundw Monit Remediat 16:58–62

    Article  CAS  Google Scholar 

  • Oh K, Cao T, Li T, Cheng H (2014) Study on application of phytoremediation technology in management and remediation of contaminated soils. J Clean Energy Technol 2:216–220. https://doi.org/10.7763/JOCET.2014.V2.126

    Article  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126. https://doi.org/10.1007/s11270-007-9401-5

    Article  CAS  Google Scholar 

  • Pan A, Yang M, Tie F et al (1994) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351

    Article  CAS  Google Scholar 

  • Parmar S, Singh V (2015) Phytoremediation approaches for heavy metal pollution: a review. J Plant Sci Res 2:1–8

    Google Scholar 

  • Pastor J, GutiÉrrez-ginÉs MJ, HernÁndez AJ (2015) Heavy-metal phytostabilizing potential of Agrostis castellana Boiss. and reuter. Int J Phytoremediat 17:988–998. https://doi.org/10.1080/15226514.2014.1003786

    Article  CAS  Google Scholar 

  • Pathania D, Sharma G, Naushad M, Kumar A (2014) Synthesis and characterization of a new nanocomposite cation exchanger polyacrylamide Ce(IV) silicophosphate: photocatalytic and antimicrobial applications. J Ind Eng Chem 20:3596–3603

    Article  CAS  Google Scholar 

  • Paz-Alberto AM, Sigua GC (2013) Phytoremediation: a green technology to remove environmental pollutants. Am J Clim Change 2:71–86. https://doi.org/10.4236/ajcc.2013.21008

    Article  Google Scholar 

  • Petrick JS, Ayala-Fierro F, Cullen WR et al (2000) Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207. https://doi.org/10.1006/taap.1999.8872

    Article  CAS  Google Scholar 

  • Petrilli FL, De Flora S (1978) Metabolic deactivation of hexavalent chromium mutagenicity. Mutat Res Mutagen Relat Subj 54:139–147. https://doi.org/10.1016/0165-1161(78)90034-1

    Article  CAS  Google Scholar 

  • Pillon-Smith EA, Pilon M (2000) Breeding mercury breathing plants for environmental clean-up. Trends Plants Sci 5:235–236

    Article  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, de Souza MP, Hong G et al (1999) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual Madison 28:1011. https://doi.org/10.2134/jeq1999.00472425002800030035x

    Article  CAS  Google Scholar 

  • Prasad MNV, De Oliveira Freitas HM (2003) Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:110–146. https://doi.org/10.2225/vol6-issue3-fulltext-6

    Article  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540. https://doi.org/10.1016/S0160-4120(02)00152-6

    Article  CAS  Google Scholar 

  • Pulsawat W, Leksawasdi N, Rogers PL, Foster LJR (2003) Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnol Lett 25:1267–1270. https://doi.org/10.1023/A:1025083116343

    Article  CAS  Google Scholar 

  • Purvis W (2000) Plant power against pollution. Nature 407:298–299. https://doi.org/10.1038/35030247

    Article  CAS  Google Scholar 

  • Qian J-H, Zayed A, Zhu Y-L et al (1999) Phytoaccumulation of trace elements by wetlands plants: uptake and accumulation of ten trace elements by twelve plant species. J Environ Qual 5:1448–1455

    Article  Google Scholar 

  • Radziemska M, Vaverková MD, Baryła A (2017) Phytostabilization-management strategy for stabilizing trace elements in contaminated soils. Int J Environ Res Public Health 14:958. https://doi.org/10.3390/ijerph14090958

    Article  CAS  Google Scholar 

  • Rai PK (2008a) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediation 10:133–160. https://doi.org/10.1080/15226510801913918

    Article  CAS  Google Scholar 

  • Rai PK (2008b) Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremediat 10:430–439. https://doi.org/10.1080/15226510802100606

    Article  CAS  Google Scholar 

  • Raistrick A, Jennings B (1965) A history of lead mining in the Pennines. Longmans, pp 347–358

  • Rajakaruna N, Tompkins KM, Pavicevic PG (2006) Phytoremediation: an affordable green technology for the clean-up of metal-contaminated sites in Sri Lanka. Cey J Sci (Bio Sci) 35:25–39

    Google Scholar 

  • Ramachandran P, Sundharam R, Palaniyappan J, Munusamy AP (2013) Potential process implicated in bioremediation of textile effluents: a review. Pelagia Res Libr Adv Appl Sci Res 4:131–145

    CAS  Google Scholar 

  • Rashed MN (2003) Fruit stones as adsorbents for the removal of lead ion from polluted water. Chem Dep Fac Sci 81528:72

    Google Scholar 

  • Rashid A, Ayub N, Ahmad T et al (2009) Phytoaccumulation prospects of cadmium and zinc by mycorrhizal plant species growing in industrially polluted soils. Environ Geochem Health 31:91–98. https://doi.org/10.1007/s10653-008-9159-8

    Article  CAS  Google Scholar 

  • Rashid A, Mahmood T, Mehmood F et al (2014) Phytoaccumulation, competitive adsorption and evaluation of chelators-metal interaction in lettuce plant. Environ Eng Manag J 13:2583–2592

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226. https://doi.org/10.1016/S0958-1669(97)80106-1

    Article  CAS  Google Scholar 

  • Recio-Vazquez L, Garcia-Guinea J, Carral P et al (2011) Arsenic mining waste in the catchment area of the Madrid detrital aquifer (Spain). Water Air Soil Pollut 214:307–320. https://doi.org/10.1007/s11270-010-0425-x

    Article  CAS  Google Scholar 

  • Redjala T, Zelko I, Sterckeman T et al (2011) Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot 71:241–248. https://doi.org/10.1016/j.envexpbot.2010.12.010

    Article  CAS  Google Scholar 

  • Regvar M, Vogel-Mikuš K, Kugonič N et al (2006) Vegetational and mycorrhizal successions at a metal polluted site: Indications for the direction of phytostabilisation? Environ Pollut 144:976–984. https://doi.org/10.1016/j.envpol.2006.01.036

    Article  CAS  Google Scholar 

  • Rizzi L, Petruzzelli G, Poggio G, Guidi GV (2004) Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere 57:1039–1046

    Article  CAS  Google Scholar 

  • Rockwood DL, Naidu C V., Carter DR, et al (2004) Short-rotation woody crops and phytoremediation: Opportunities for agroforestry? In: Agroforestry systems. Springer, pp 51–63

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A. Appl Microbiol Biotechnol 63:239–248

    Article  CAS  Google Scholar 

  • Roper JC, Dec J, Bollag JM (1996) Using minced horseradish roots for the treatment of polluted waters. J Environ Qual 25:1242–1247

    Article  CAS  Google Scholar 

  • Rotkittikhun P, Chaiyarat R, Kruatrachue M et al (2007) Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Chemosphere 66:45–53. https://doi.org/10.1016/j.chemosphere.2006.05.038

    Article  CAS  Google Scholar 

  • Rouch DA, Lee BTO, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. J Ind Microbiol 14:132–141. https://doi.org/10.1007/BF01569895

    Article  CAS  Google Scholar 

  • Sakakibara M, Watanabe A, Inoue M, et al (2010) Phytoextraction and phytovolatilization of arsenic from As-contaminated soils by Pteris vittata. In: Proceedings of the annual international conference on soils, sediments, water and energy. p 26

  • Sakakibara M, Ohmori Y, Ha NTH et al (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean Soil, Air, Water 39:735–741. https://doi.org/10.1002/clen.201000488

    Article  CAS  Google Scholar 

  • Salem S, Berends DHJG, Heijnen JJ, Van Loosdrecht MCM (2003) Bio-augmentation by nitrification with return sludge. Water Res 37:1794–1804. https://doi.org/10.1016/S0043-1354(02)00550-X

    Article  CAS  Google Scholar 

  • Salt DE, Baker AJM (2008) Phytoremediation of Metals. Biotechnol Second Complet Revis Ed 11–12:385–397. https://doi.org/10.1002/9783527620999.ch17m

    Article  Google Scholar 

  • Saraswat S, Rai JPN (2009) Chemistry and ecology phytoextraction potential of six plant species grown in multimetal contaminated soil Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chem Ecol 25:1–11. https://doi.org/10.1080/02757540802657185

    Article  CAS  Google Scholar 

  • Sas-Nowosielska A, Kucharski R, Małkowski E et al (2004) Phytoextraction crop disposal—an unsolved problem. Environ Pollut 128:373–379. https://doi.org/10.1016/j.envpol.2003.09.012

    Article  CAS  Google Scholar 

  • Schnabel WE, White DM (2001) The effect of mycorrhizal fungi on the fate of aldrin: phytoremediation potential. Int J Phytoremediation 3:221–241. https://doi.org/10.1080/15226510108500058

    Article  CAS  Google Scholar 

  • Schnoor JL (2000) Phytostabilization of metals using hybrid poplar trees. In: Phytoremediation toxic met—using plants to clean up environ. pp 133–150

  • Shackira AM, Puthur JT (2017) Enhanced phytostabilization of cadmium by a halophyte—Acanthus ilicifolius L. Int J Phytoremediat 19:319–326. https://doi.org/10.1080/15226514.2016.1225284

    Article  CAS  Google Scholar 

  • Shahandeh H, Hossner LR (2000) Plant screening for chromium phytoremediation. Int J Phytoremediation 2:31–51. https://doi.org/10.1080/15226510008500029

    Article  CAS  Google Scholar 

  • Shahandeh H, Hossner LR (2002) Role of soil properties in phytoaccumulation of uranium. Water Air Soil Pollut 141:165–180. https://doi.org/10.1023/A:1021346828490

    Article  CAS  Google Scholar 

  • Shahid M, Austruy A, Echevarria G et al (2014) EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam 23:389–416. https://doi.org/10.1080/15320383.2014.831029

    Article  CAS  Google Scholar 

  • Sharma G, Pathania D, Naushad M (2014) Preparation, characterization and antimicrobial activity of biopolymer based nanocomposite ion exchanger pectin zirconium(IV) selenotungstophosphate: application for removal of toxic metals, G. Sharma, D. pathania, Mu. Naushad. J Ind Eng Chem 20:4482–4490

    Article  CAS  Google Scholar 

  • Sharma G, Pathania D, Naushad M (2015) Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium(IV) selenotungstophosphate for the separation of toxic metal ions. Ionics 21:1045–1055

    Article  CAS  Google Scholar 

  • Singh Ajay WP (2004) No title: applied bioremediation and phytoremediation. Springer, Berlin

    Book  Google Scholar 

  • Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf 62:118–127. https://doi.org/10.1016/j.ecoenv.2004.12.026

    Article  CAS  Google Scholar 

  • Sinha S, Gupta M, Chandra P (1996) Bioaccumulation and biochemical effects of mercury in the plant Bacopa monnieri (L). Environ Toxicol Water Qual 11:105–112. https://doi.org/10.1002/(SICI)1098-2256(1996)11:2<105:AID-TOX5>3.0.CO;2-D

    Article  CAS  Google Scholar 

  • Sivarajasekar N (2007) Hevea brasiliensis—a biosorbent for the adsorption of Cu (II) from aqueous solutions. Carbon Lett 8:199–206

    Article  Google Scholar 

  • Sivarajasekar N (2014) Biosorption of cationic dyes using waste cotton seeds. Doctoral dissertation, Ph. D Thesis. Anna University Chennai

  • Sivarajasekar N, Baskar R (2014a) Adsorption of basic red 9 on activated waste Gossypium hirsutum seeds: process modeling, analysis and optimization using statistical design. J Ind Eng Chem 20:2699–2709

    Article  CAS  Google Scholar 

  • Sivarajasekar N, Baskar R (2014b) Adsorption of basic magenta II onto H2SO4 activated immature Gossypium hirsutum seeds: kinetics, isotherms, mass transfer, thermodynamics and process design. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.10.040

    Article  Google Scholar 

  • Sivarajasekar N, Baskar R (2014c) Adsorption of basic red 9 onto activated carbon derived from immature cotton seeds: isotherm studies and error analysis, desalination and water treatment, accepted manuscript. Desalin Water Treat. 52:7743–7765

    Article  CAS  Google Scholar 

  • Sivarajasekar N, Baskar R (2015a) Biosorption of basic violet 10 onto activated Gossypium hirsutum seeds: batch and fixed-bed column studies. Chin J Chem Eng 23:1610–1619

    Article  CAS  Google Scholar 

  • Sivarajasekar N, Baskar R (2015b) Agriculture waste biomass valorisation for cationic dyes sequestration: a concise review. J Chem Pharm Res 7:737–748

    CAS  Google Scholar 

  • Sivarajasekar N, Srileka S, Samson AP, Rabinson S (2008) Kinetic modeling for biosorption of methylene blue onto H3PO4 activated Acacia arabica. Carbon Lett 9:181–187

    Article  Google Scholar 

  • Sivarajasekar N, Baskar R, Ragu T, Sarika K, Preethi N, Radhika T (2017a) Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics. Appl Water Sci 7:1987–1995

    Article  CAS  Google Scholar 

  • Sivarajasekar N, Balasubramani K, Mohanraj N, Maran JP, Sivamani S (2017b) Fixed-bed adsorption of atrazine onto microwave irradiated Aegle marmelos Correa fruit shell: statistical optimization, process design and breakthrough modeling. J Mol Liq 241:823–830

    Article  CAS  Google Scholar 

  • Sivarajasekar N, Mohanraj N, Sivamani S, Moorthy GI (2017c) Response surface methodology approach for optimization of lead (II) adsorptive removal by Spirogyra sp. biomass. J Environ Biotechnol Res 6:88–95

    Google Scholar 

  • Sivarajasekar N, Mohanraj N, Baskar R, Sivamani S (2017d) Fixed-bed adsorption of ranitidine hydrochloride onto microwave assisted—activated Aegle marmelos correa fruit shell: statistical optimization and breakthrough modelling. Arab J Sci Eng. https://doi.org/10.1007/s13369-017-2565-4

    Article  Google Scholar 

  • Sivarajasekar N, Paramasivan T, Subashini R, Kandasamy S, Prakashmaran J (2017e) Central composite design optimization of fluoride removal by spirogyra biomass. Asian J Microbiol Biotechnol Environ Sci 19:S130–S137

    Google Scholar 

  • Sivarajasekar N, Mohanraj N, Balasubramani K, Prakash Maran J, Ganesh Moorthy I (2017f) Optimization, equilibrium and kinetic studies on ibuprofen removal onto microwave assisted—activated Aegle marmelos correa fruit shell. Desalin Water Treat 84:48–58

    Article  CAS  Google Scholar 

  • Sivarajasekar N, Paramasivan T, Muthusaravanan S et al (2017g) Defluoridation of water using adsorbents-a concise review. J Environ Biotechnol Res 6:186–198

    Google Scholar 

  • Sivarajasekar N, Mohanraj N, Sivamani S, Prakash Maran J (2018a) Statistical optimization studies on adsorption of ibuprofen onto Albizialebbeck seed pods activated carbon prepared using microwave irradiation. Mater Today Proc 5:7264–7274

    Article  CAS  Google Scholar 

  • Sivarajasekar N, Nainamalai Mohanraj, Sivamani S, Ganesh Moorthy I, Ram Kothandan, Muthusaravanan S (2018b) Comparative modeling of fluoride biosorption onto waste Gossypium hirsutum seed microwave-bichar using response surface methodology and artificial neural networks, IEEE Xplore. 1631–1635

  • Snyder RD (1971) Congenital mercury poisoning. N Engl J Med 284:1014–1016

    Article  CAS  Google Scholar 

  • Song LS, Wang SQ, Xiao RP, Spurgeon H, Lakatta EG, Cheng H (2001) β-Adrenergic stimulation synchronizes intracellular Ca2+ release during excitation-contraction coupling in cardiac myocytes. Circulat Res 88:794–801

    Article  CAS  Google Scholar 

  • Soudek P, Petrová Š, Vaněk T (2012) Phytostabilization or accumulation of heavy metals by using of energy crop Sorghum sp. In: 3rd international conference on biology, environment and chemistry IPCBEE. IACSIT Press, Singapore

  • Stomp A-M, Han K-H, Wilbert S et al (1994) Genetic Strategies for enhancing phytoremediation. Ann N Y Acad Sci 721:481–491. https://doi.org/10.1111/j.1749-6632.1994.tb47418.x

    Article  CAS  Google Scholar 

  • Strand SE, Newman L, Ruszaj M (1995) Removal of trichloroethylene from aquifers using trees. Am Soc Civ Eng, New York

    Google Scholar 

  • Su Y, Han FX, Sridhar BBM, Monts DL (2005) Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Environ Toxicol Chem 24:2019–2026. https://doi.org/10.1897/04-329R.1

    Article  CAS  Google Scholar 

  • Subhasini V, Swamy AVVS (2014) Phytoremediation of cadmium and chromium contaminated soils by Cyperus Rotundus L. Am Int J Res Sci Technol Eng Math 6:97–101

    Google Scholar 

  • Susarla S, Bacchus ST, Harvey G, McCutcheon SC (2000) Phytotransformations of perchlorate contaminated waters. Environ Technol 21:1055–1065

    Article  CAS  Google Scholar 

  • Tamburini E, Sergi S, Serreli L et al (2017) Bioaugmentation-assisted phytostabilisation of abandoned mine sites in south west Sardinia. Bull Environ Contam Toxicol 98:310–316. https://doi.org/10.1007/s00128-016-1866-8

    Article  CAS  Google Scholar 

  • Tanaka T, Yamada K, Tonosaki T et al (2000) Enzymatic degradation of alkylphenols, bisphenol A, synthetic estrogen and phthalic ester. Water Sci Technol 42:89–95

    Article  CAS  Google Scholar 

  • Tang YT, Qiu RL, Zeng XW et al (2009) Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ Exp Bot 66:126–134. https://doi.org/10.1016/j.envexpbot.2008.12.016

    Article  CAS  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H et al (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432. https://doi.org/10.1146/annurev.arplant.51.1.401

    Article  CAS  Google Scholar 

  • Traina G, Morselli L, Adorno GP (2007) Electrokinetic remediation of bottom ash from municipal solid waste incinerator. Electrochim Acta 52:3380–3385

    Article  CAS  Google Scholar 

  • Tripathi M, Munot HP, Shouche Y et al (2005) Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    Article  CAS  Google Scholar 

  • Turgut C, Katie Pepe M, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131:147–154. https://doi.org/10.1016/j.envpol.2004.01.017

    Article  CAS  Google Scholar 

  • Tzvetkova C, Bozhkov O (2009) Study of rhenium phytoaccumulation in White Clover (Trifolium repens) and Water Fern (Salvinia natans L.). In: 7th WSEAS International Conference on Environment, Ecosystems and Development. pp 123–126

  • Udoka OC, Ekanem EO, Harami MA, Tafawa A (2014) Phytoaccumulation potentials of Tamarindus indica

  • Un Nisa W, Rashid A (2015) Potential of vetiver (Vetiveria Zizanioides L.) grass in removing selected pahs from diesel contaminated soil. Pak J Bot 47:291–296

    Google Scholar 

  • van der Heijden MGA (2003) Mycorrhizal ecology. Springer, Berlin, pp 243–265

    Book  Google Scholar 

  • Varun M, Souza RD, Pratas J et al (2011) Evaluation of phytostabilization, a green technology to remove heavy metals from industrial sludge using Typha latifolia L. Experimental design. Biotechnol Bioinf Bioeng 1:137–145

    Google Scholar 

  • Vázquez S, Agha R, Granado A et al (2006) Use of white lupin plant for phytostabilization of Cd and as polluted acid soil. Water Air Soil Pollut 177:349–365. https://doi.org/10.1007/s11270-006-9178-y

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. an overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vijayalakshmi V, Senthilkumar VP, Mophin-Kani K, Sivamani S, Sivarajasekar N, Vasantharaj S (2018) Bio-degradation of Bisphenol A by Pseudomonas aeruginosa PAb1 isolated from effluent of thermal paper industry: kinetic modeling and process optimization. J Radiat Res Appl Sci 11:56–65

    Article  CAS  Google Scholar 

  • Vinegar HJ, Stegemeier GL (2000) Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system

  • Wang Q, Kim D, Dionysiou DD et al (2004) Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ Pollut (Amsterdam, Netherlands) 131:323–336

    Google Scholar 

  • Watt NR (2007) Testing Amendments for increasing soil availability of radionuclides. Phytoremediat Methods Rev 23:131–137

    Article  CAS  Google Scholar 

  • Weatherley AH (1963) Thermal stress and interrenal tissue in the perch Perca fluviatilis (Linnaeus). J Zool 141:527–555

    Google Scholar 

  • Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107. https://doi.org/10.1016/j.microc.2009.09.014

    Article  CAS  Google Scholar 

  • Wenger K, Kayser A, Gupta SK, Furrer G, Schulin R (2002) Comparison of NTA and elemental sulfur as potential soil amendments in phytoremediation. Soil Sedim Contam 11:655–672

    Article  CAS  Google Scholar 

  • Westphal LM, Isebrands JG (2001) Phytoremediation of Chicago’s brownfields: considerations of ecological approaches and social issues. In: Brownfields 2001 Proceedings, Chicago IL http://www.nrs.fs.fed.us/pubs/jrnl/2001/nc_2001_Westphal_00pdf. 29 Apr 2008

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780. https://doi.org/10.1016/S0045-6535(02)00232-1

    Article  CAS  Google Scholar 

  • Xiaoyong HLSGQ (2006) A study on root expansibility of seven constructed wetland plants. Shanghai Environ Sci 4:11

    Google Scholar 

  • Yang SX, Deng H, Li MS (2008) Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Env 54:441–446

    Article  CAS  Google Scholar 

  • Yang S, Liang S, Yi L et al (2014) Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Front Environ Sci Eng 8:394–404. https://doi.org/10.1007/s11783-013-0602-4

    Article  CAS  Google Scholar 

  • Yanqun Z, Yuan L, Jianjun C et al (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762. https://doi.org/10.1016/j.envint.2005.02.004

    Article  CAS  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156. https://doi.org/10.1023/A:1022504826342

    Article  CAS  Google Scholar 

  • Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721

    Article  CAS  Google Scholar 

  • Zayed AM, Pilon-Smits, deSouza EM, Lin Z-Q , Terry N (2000) Remediation of selenium-polluted soils and waters by phytovolatilization. Phytoremediation of Contaminated Soil and Water, 61–83.

  • Zhang H, Dang Z, Zheng LC, Yi XY (2009) Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int J Environ Sci Technol 6:249–258. https://doi.org/10.1007/BF03327629

    Article  Google Scholar 

  • Zhang X, Xia H, Li Z et al (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101:2063–2066. https://doi.org/10.1016/j.biortech.2009.11.065

    Article  CAS  Google Scholar 

  • Zhang Y, He L, Chen Z et al (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  CAS  Google Scholar 

  • Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31. https://doi.org/10.1046/j.1469-8137.2002.00493.x

    Article  CAS  Google Scholar 

  • Zhao L, Li T, Zhang X et al (2016) Pb uptake and phytostabilization potential of the mining ecotype of Athyrium wardii (Hook.) grown in Pb-contaminated soil. Clean Soil Air Water 44:1184–1190. https://doi.org/10.1002/clen.201400870

    Article  CAS  Google Scholar 

  • Zurayk R, Sukkariyah B, Baalbaki R, Ghanem DA (2002) Ni phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut 139:355–364. https://doi.org/10.1023/A:1015840601761

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Sivarajasekar or Mu. Naushad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthusaravanan, S., Sivarajasekar, N., Vivek, J.S. et al. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16, 1339–1359 (2018). https://doi.org/10.1007/s10311-018-0762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-018-0762-3

Keywords

Navigation