Skip to main content
Log in

Phytoremediation Technology: Hyper-accumulation Metals in Plants

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This paper reviews key aspects of phytoremediation technology and the biological mechanisms underlying phytoremediation. Current knowledge regarding the application of phytoremediation in alleviating heavy metal toxicity is summarized highlighting the relative merits of different options. The results reveal a cutting edge application of emerging strategies and technologies to problems of heavy metals in soil. Progress in phytoremediation is hindered by a lack of understanding of complex interactions in the rhizosphere and plant based interactions which allow metal translocation and accumulation in plants. The evolution of physiological and molecular mechanisms of phytoremediation, together with recently-developed biological and engineering strategies, has helped to improve the performance of both heavy metal phytoextraction and phytostabilization. The results reveal that phytoremediation includes a variety of remediation techniques which include many treatment strategies leading to contaminant degradation, removal (through accumulation or dissipation), or immobilization. For each of these processes, we review what is known for metal pollutants, gaps in knowledge, and the practical implications for phytoremediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abia, A. A., Horsfall, M., & Didi, O. (2003). The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution. Bioresource Technology, 90, 345–348.

    Article  CAS  Google Scholar 

  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142.

    Article  CAS  Google Scholar 

  • Albasel, N., & Cottenie, A. (1985). Heavy metal contamination near major highways, industrial and urban areas in Belgium grassland. Water, Air and Soil Pollution, 24, 103–109.

    Article  CAS  Google Scholar 

  • Al-Chalabi, A. S., & Hawker, D. (2000). Distribution of vehicular lead in roadside soils of major roads of Brisbane, Australia. Water, Air and Soil Pollution, 118, 299–310.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1995). Soil processes and the behavior of metals. In: Alloway B. J. (Ed), Heavy metals in soils (pp. 38–57). London: Blackie.

    Google Scholar 

  • Alkorta, I., Herna´ndez-Allica, J., Becerril, J. M., Amezaga, I., Albizu, I., & Garbisu, C. (2004). Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Reviews in Environmental Science and Bio/Technology, 3, 71–90.

    Article  CAS  Google Scholar 

  • Atkinson, R., Aschmann, S. M., Hasegawa, D., Eagle-Thompson, E. T., & Frankenberger, J. R. (1990). Kinetics of the atmospherically important reactions of dimethylselenide. Environmental Science and Technology, 24, 1326–1332.

    Article  CAS  Google Scholar 

  • Azaizeh, H. A., Gowthaman, S., & Terry, N. (1997). Microbial selenium volatilization in rhizosphere and bulk soils from a constructed wetland. Journal of Environmental Quality, 26(3), 666–672.

    CAS  Google Scholar 

  • Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyper accumulate metallic elements – Review of their distribution, ecology, and phytochemistry. Biorecovery, 1, 81–126.

    CAS  Google Scholar 

  • Baker, A. J. M., Reeves, R. D., & McGrath, S. P. (1991). In situ decontamination of heavy metal polluted soils using crops of metal accumulating plants – A feasibility study. In R. E. Hinchee & R. F. Olfenbuttel (Eds.), In-situ bioremediation (pp. 539–544). Stoneham, M. A: Butterworth-Heinemann.

    Google Scholar 

  • Baker, A. J. M., & Walker, P. L. (1989). Ecophysiology of metal uptake by tolerant plants. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: Evolutionary aspects (pp. 155–177). Boca Raton, FL: CRC.

    Google Scholar 

  • Banuelos, G. S., Cardon, G., Mackey, B., Ben-Asher, J., Wu, L. P., Beuselinck, P., et al. (1993). Boron and selenium removal in B-laden soils by four sprinkler irrigated plant species. Journal of Environmental Quality, 22(4), 786–797.

    CAS  Google Scholar 

  • Basic, N., Keller, C., Fontanillas, P., Vittoz, P., Besnard, G., & Galland, N. (2006a). Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations. Plant Biology, 8, 64–72.

    Article  CAS  Google Scholar 

  • Basic, N., Salamin, N., Keller, C., Galland, N., & Besnard, G. (2006b). Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. Biochemical Systematics and Ecology, 34(9), 667–677.

    Article  CAS  Google Scholar 

  • Baudouin, C., Charveron, M., Tarrouse, R., & Gall, Y. (2002). Environmental pollutants and skin cancer. Cell Biology and Toxicology, 18, 341–348.

    Article  CAS  Google Scholar 

  • Beath, O. A., Eppsom, H. F., & Gilbert, G. S. (1937). Selenium distribution in and seasonal variation of vegetation type occurring on seleniferous soils. Journal of the American Pharmaceutical Association, 26, 394–405.

    CAS  Google Scholar 

  • Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza G., Bullitta, S., et al. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology & Biochemistry, 37, 241–250.

    Article  CAS  Google Scholar 

  • Berti, W. R., & Cunningham, S. D. (2000). Phytostabilization of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment (pp. 71–88). New York: Wiley.

    Google Scholar 

  • Bidwell S. D., Woodrow, I. E., Batianoff, G. N., & Sommer-Knudsen, J. (2002). Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Functional Plant Biology, 29, 899–905.

    Article  CAS  Google Scholar 

  • Birch, G. E., & Scollen, A. (2003). Heavy metals in road dust, gully pots and parkland soils in a highly urbanised sub-catchment of Port Jackson, Australia. Australian Journal of Soil Research, 41, 1329–1342.

    Article  CAS  Google Scholar 

  • Blaylock, M. J., & Huang, J. W. (2000). Phytoextraction of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment (pp. 53–70). New York: Wiley.

    Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31(3), 860–865.

    Article  Google Scholar 

  • Bolan, N. S., Adriano, D. C., & Naidu, R. (2003). Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Reviews of Environmental Contamination and Toxicology, 177, 1–44.

    Article  CAS  Google Scholar 

  • Boonyapookana, B., Parkplan, P., Techapinyawat, S., DeLaune, R. D., & Jugsujinda, A. (2005). Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). Journal of Environmental Science and Health A, 40, 117–137.

    Article  CAS  Google Scholar 

  • Boularbah, A., Schwartz, C., Bitton, G., Aboudrar, W., Ouhammou, A., & Morel, J. L. (2006). Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63(5), 811–817.

    Article  CAS  Google Scholar 

  • Broadhurst, C. L., Chaney, R. L., Angle, J. S., Maugel, T. K., Erbe, E. F., & Murphy, C. A. (2004). Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environmental Science & Technology, 38, 5797–5802.

    Article  CAS  Google Scholar 

  • Brooks, R. R. (ed) (1998). Plants that hyperaccumulate heavy metals (p. 384). Wallingford: CAB International.

  • Caille, N., Swanwick, S., Zhao, F. J., & McGrath, S. P. (2004). Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Environmental Pollution, 132, 113–120.

    Article  CAS  Google Scholar 

  • Chandra Sekhar, K., Kamala, C. T., Chary, N. S., Balaram, V., & Garcia, G. (2005). Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere, 58, 507–514.

    Article  CAS  Google Scholar 

  • Chaney, R. L. (1983). Plant uptake of inorganic waste constitutes. In J. F. Parr, P. B. Marsh, & J. M. Kla (Eds.), Land treatment of hazardous wastes (pp. 50–76). Park Ridge, NJ: Noyes Data Corp.

    Google Scholar 

  • Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., et al. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8, 279–283.

    Article  CAS  Google Scholar 

  • Chaudhry, T. M., Hayes, W. J., Khan, A. G., & Khoo, C. S. (1998). Phytoremediation – Focusing on accumulator plants that remediate metal-contaminated soils. Australasian Journal of Ecotoxicology, 4, 37–51.

    CAS  Google Scholar 

  • Chen, Y. X., Wang, Y. P., Wu, W. X. Lin, Q., & Xue, S. G. (2006). Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Science of the Total Environment, 356(1–3), 247–255.

    Article  CAS  Google Scholar 

  • Clemente, R., Almela, C., & Bernal, P. M. (2006). A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environmental Pollution, 143(3), 397–406.

    Article  CAS  Google Scholar 

  • Clemente, R., Walker, J. D., Roig, A., & Bernal, P. M. (2003). Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalc´ollar (Spain). Biodegradation, 14, 199–205.

    Article  CAS  Google Scholar 

  • Comis, D. (1996). Green remediation: Using plants to clean the soil. Journal of Soil and Water Conservation, 51(3), 184–187.

    Google Scholar 

  • Conesa, M. H., Faz, A., & Arnaldos, R. (2006). Initial studies for the phytostabilization of a mine tailing from the Cartagena–La Union Mining District (SE Spain). Chemosphere, 66(1), 38–44.

    Article  CAS  Google Scholar 

  • Cooper, E. M., Sims, J. T., Cunningham, S. D., Huang, J. W., & Berti, W. R. (1999). Chelate-assisted phytoextraction of lead from contaminated soil. Journal of Environmental Quality, 28, 1709–1719.

    CAS  Google Scholar 

  • Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110(3), 715–719.

    CAS  Google Scholar 

  • Cunningham, S. D., Shann, J. R., Crowley, D. E., & Anderson, T. A. (1997). Phytoremediation of contaminated water and soil. In E. L. Kruger, T. A. Anderson, & J. R. Coats (Eds.), Phytoremediation of soil and water contaminants. ACS Symposium series 664 (pp. 2–19). Washington, DC: American Chemical Society.

    Google Scholar 

  • Davis, T. A., Volesky, B., & Vieira, R. H. S. F. (2000). Sargassum seaweed as biosorbent for heavy metals. Water Research, 34, 4270–4278.

    Article  CAS  Google Scholar 

  • Desouza, M. P., Pilon-Smits, E. A. H., & Terry, N. (2000). The physiology and biochemistry of selenium volatilization by plants. In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment (pp. 171–190). New York: Wiley.

    Google Scholar 

  • Dierberg, F. E., Débuts, T. A., & Goulet, J. R. N. A. (1987). Removal of copper and lead using a thin-film technique. In K. R. Reddy & W. H. Smith (Eds.), Aquatic plants for water treatment and resource recovery (pp. 497–504). Magnolia.

  • Dushenkov, S., & Kapulnik, Y. (2000). Phytofilitration of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals – Using plants to clean-up the environment (pp. 89–106). New York: Wiley.

    Google Scholar 

  • Dushenkov, V., Kumar, P. B. A. N., Motto, H., & Raskin, I. (1995). Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environmental Science and Technology, 29, 1239–1245.

    Article  CAS  Google Scholar 

  • Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., et al. (1997a). Removal of uranium from water using terrestrial plants. Environmental Science and Technology, 31(12), 3468–3474.

    Article  CAS  Google Scholar 

  • Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., et al. (1997b). Phytoremediation: A novel approach to an old problem. In D. L. Wise (Ed.), Global environmental biotechnology (pp. 563–572). Amsterdam: Elsevier.

    Google Scholar 

  • Eapen, S., & D’Souza, S. F. (2005). Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances, 23, 97–114.

    Article  CAS  Google Scholar 

  • Ebbs, S. D., Lasat, M. M., Brandy, D. J., Cornish, J., Gordon, R., & Kochian, L. V. (1997). Heavy metals in the environment: Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, 26, 1424–1430.

    CAS  Google Scholar 

  • Elless, P. M., Poynton, Y. C., Williams, A. C., Doyle, P. M., Lopez, C. A., Sokkary, A. D., et al. (2005). Pilot-scale demonstration of phytofiltration for drinking arsenic in New Mexico drinking water. Water Research, 39(16), 3863–3872.

    Article  CAS  Google Scholar 

  • Ensley, B. D. (2000). Rationale for use of phytoremediation. In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean- up the environment (pp. 3–12). New York: Wiley.

    Google Scholar 

  • Entry, J. A., Watrud, L. S., & Reeves, M. (1999). Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environmental Pollution, 104, 449–457.

    Article  CAS  Google Scholar 

  • Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2006). Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere, 63(6), 996–1004.

    Article  CAS  Google Scholar 

  • Evans, C. S., Asher, C., & Johnson, C. M. (1968). Isolation of dimethyl diselenide and other volatile selenium compounds from Astragalus racemosus (Pursh.) Aust. Journal of Biological Sciences, 21, 13–20.

    CAS  Google Scholar 

  • Fakayode, S. O., & Olu-Owolabi, B. I. (2003). Heavy metal contamination of roadside topsoil in Osogbo, Nigeria: Its relationship to traffic density and proximity to highways. Environmental Geology, 44(2), 150–157.

    CAS  Google Scholar 

  • Fatoki, O. S. (1996). Trace zinc and copper concentration in roadside surface soils and vegetation: A measurement of local atmospheric pollution in Alice, South Africa. Environmental Interpretation, 22, 759–762.

    CAS  Google Scholar 

  • Flathman, P. E., & Lanza, G. R. (1998). Phytoremediation: Current views on an emerging green technology. Journal of Soil Contamination, 7(4), 415–432.

    Article  Google Scholar 

  • Frérot, H., Lefèbvre, C., Gruber, W., Collin, C., Dos Santos, A., & Escarre, J. (2006). Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant and Soil, 282, 53–65.

    Article  CAS  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236.

    Article  CAS  Google Scholar 

  • García, R., & Millán, E. (1998). Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain). Chemosphere, 37, 1615–1625.

    Article  Google Scholar 

  • Gardea-Torresdey, J. L., de la Rosa, G., & Peralta-Videa, J. R. (2004). Use of phytofiltration technologies in the removal of heavy metals: A review. Pure and Applied Chemistry, 76(4), 801–813.

    CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3(1), 1–18.

    Google Scholar 

  • Glass, D. J. (1999). U.S. and international markets for phytoremediation, 1999–2000 (p. 266). Needham, MA: D. Glass Associates.

    Google Scholar 

  • Gorjanovic, S., Suznjevic, D., Beljanski, M., & Hranisavljevic, J. (2006). Barley lipid-transfer protein as heavy metal scavenger. Environmental Chemistry Letters, 2(3), 113–116.

    Article  CAS  Google Scholar 

  • Gulson, B. L., Tiller, K. G., Mizon, K. J., & Merry, R. H. (1981). Use of lead isotopes in soils to identify the source of lead contamination near Adelaide, South Australia. American Chemical Society, 15(6), 691–696.

    CAS  Google Scholar 

  • Hammer, D., Keller, C., McLaughlin, M. J., & Hamon, R. E. (2006). Fixation of metals in soil constituents and potential remobilization by hyperaccumulating and non-hyperaccumulating plants: Results from an isotopic dilution study. Environmental Pollution, 143(3), 407–415.

    Article  CAS  Google Scholar 

  • Han, F. X., Banin, A., Kingery, W. L., Triplrtt, G. B., Zhou, L. X., Zheng, S. J., et al. (2003). New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research, 8, 113–120.

    Article  CAS  Google Scholar 

  • Heaton, A. C. P., Rugh, C. L., Wang, N., & Meagher, R. B. (1998). Phytoremediation of mercury- and methyl mercury-polluted soils using genetically engineered plants. Journal of Soil Contamination, 74, 497–510.

    Article  Google Scholar 

  • Hernandez-Allica, J., Becerril, J. M., Zarate, O., & Garbisu, C. (2006). Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant and Soil, 281(1–2), 147–158.

    Article  CAS  Google Scholar 

  • Ho, Y. B., & Tai, K. M. (1988). Elevated levels of lead and other metals in roadside soil and grass and their use to monitor aerial metal depositions in Hong Kong. Environmental Pollution, 49(1), 37–51.

    Article  CAS  Google Scholar 

  • Horsfall, M., & Abia, A. A. (2003). Sorption of cadmium (II) and zinc (II) ions from aqueous solutions by cassava waste biomass (Manihot sculenta Cranz). Water Research, 37, 4913–4923.

    Article  CAS  Google Scholar 

  • Huang, J. W., Chen, J., Berti, W. R., & Cunningham, S. D. (1997). Phytoremediation of lead contaminated soil: Role of synthetic chelates in lead phytoextraction. Environmental Science and Technology, 31(3), 800–805.

    Article  CAS  Google Scholar 

  • Hughes, J. B., Shanks, J., Vanderford, M., Lauritzen, J., & Bhadra, R. (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science & Technology, 31, 266–271.

    Article  CAS  Google Scholar 

  • Jaffre, T., Brooks, R. R., Lee, J., & Reeves, R. D. (1976). Sebertia acumip. A nickel-accumulating plant from New Caledonia. Science, 193, 579–580.

    Article  CAS  Google Scholar 

  • Jain, S. K., Vasudevan, P., Jha, N. K. (1989). Removal of some heavy metals from polluted water by aquatic plants: Studies on duckweed and water velvet. Biological Wastes, 28(2), 115–126.

    Article  CAS  Google Scholar 

  • Kay, S. H., Haller, W. T., & Garrard, L. A. (1984). Effect of heavy metals on water hyacinths [Eichhornia crassipes (Mart.) Solms]. Aquatic Toxicology, 5, 117–128.

    Article  CAS  Google Scholar 

  • Keller, C., Diallo, S., Cosio, C., Basic, N., & Galland, N. (2006). Cadmium tolerance and hyperaccumulation by Thlaspi caerulescens populations grown in hydroponics are related to plant uptake characteristics in the field. Functional Plant Biology, 33(7), 673–684.

    Article  CAS  Google Scholar 

  • Knasmuller, S., Gottmann, E., Steinkellner, H., Fomin, A., Pickl, C., Paschke, A., et al. (1998). Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutation Research, 420, 37–48.

    CAS  Google Scholar 

  • Kobayashi, F., Asada, C., & Nakamura, Y. (2005). Phytoremediation of soil contaminated with heavy metals and recovery of valuable metals. Kagaku Kogaku Ronbunshu, 31(6), 476–480.

    Article  CAS  Google Scholar 

  • Kubota, H., & Takenaka, C. (2003). Arabis gemmifera is a hyperaccumulator of Cd and Zn. International Journal of Phytoremediation, 5, 197–120.

    Article  Google Scholar 

  • Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science and Technology, 29(5), 1232–1238.

    Article  CAS  Google Scholar 

  • Kuo, S., Jellum, E. J., & Baker, A. S. (1985). Effects of soil type, liming, and sludge application on zinc and cadmium availability to Swiss chard. Soil Science, 139, 122–130.

    Article  CAS  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals – A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    CAS  Google Scholar 

  • Lasat, M. M., Fuhrmann, M., Ebbs, S. D., Cornish, J. E., & Kochian, L. V. (1998). Phytoremediation of a radio cesium contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. Journal of Environmental Quality, 27(1), 165–168.

    CAS  Google Scholar 

  • Leblanc, M., Petit, D., Deram, A., Robinson, B., & Brooks, R. R. (1999). The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Economic Geology, 94(1), 109–113.

    CAS  Google Scholar 

  • LeDuc, D. L., Samie, M. A., Bayon, M. M., Wu, C. P., Reisinger, S. J., & Terry, N. (2006). Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environmental Pollution, 144(1), 70–76.

    Article  CAS  Google Scholar 

  • Lewis, B. G., Johnson, C. M., & Delwiche, C. C. (1966). Release of volatile selenium compounds by plants: Collection procedures and preliminary observations. Journal of Agricultural and Food Chemistry, 14, 638–640.

    Article  CAS  Google Scholar 

  • Li, Y. M., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (2000). Phytoremediation of heavy metal contaminated soils. In D. L. Wise et al. (Eds.), Bioremediation of contaminated soils. New York: Marcel Dekker.

    Google Scholar 

  • Li, X. D., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    Article  CAS  Google Scholar 

  • Liu, Y. G., Zhang, H. Z., Zeng, G. M., Huang, B. R., & Li, X. (2006). Heavy metal accumulation in plants on Mn mine tailings. Pedosphere, 16(1), 131–136.

    Article  CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., Dunham, S. J., & MacGrath, S. P. (2001a). Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 30, 1919–1926.

    CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., Dunham. S. J., & McGrath, S. P. (2001b). Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi geosingense. New Phytologist, 145, 11–20.

    Article  Google Scholar 

  • Luo, C. L., Shen, Z. G., Li, X. D., & Baker, A. J. M. (2006). Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere, 63(10), 1773–1784.

    Article  CAS  Google Scholar 

  • Mains, D., Craw, D., Rufaut, C. G., & Smith, C. M. S. (2006a). Phytostabilization of gold mine tailings, New Zealand. Part 1: Plant establishment in alkaline saline substrate. International Journal of Phytoremediation, 8(2), 131–147.

    Article  CAS  Google Scholar 

  • Mains, D., Craw, D., Rufaut, C. G., & Smith, C. M. S. (2006b). Phytostabilization of gold mine tailings from New Zealand. Part 2: Experimental evaluation of arsenic mobilization during revegetation. International Journal of Phytoremediation, 8(2), 163–183.

    Article  CAS  Google Scholar 

  • McEldowney, S., Hardman, D. J., & Waite, S. (1993). Treatment technologies. In S. McEldowney, D. J. Hardman, & S. Waite (Eds.), Pollution, ecology and biotreatment (pp. 48–58). Singapore: Longman Singapore Publishers Pvt. Ltd.

    Google Scholar 

  • McGrath, S. P. (1998). Phytoextraction for soil remediation. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining (pp. 261–288). New York: CAB International.

    Google Scholar 

  • McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids. Current Opinion in Biotechnology, 14, 277–282.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Zhao, F. J., & Lombi, E. (2002). Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, 75, 1–56.

    Article  CAS  Google Scholar 

  • McIntyre, T. (2003). Phytoremediation of heavy metals from soils. Advances in Biochemical Engineering, Biotechnology, 78, 97–123.

    CAS  Google Scholar 

  • Meagher, R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology, 3, 153–162.

    Article  CAS  Google Scholar 

  • Mkandawire, M., & Dudel, E. G. (2005). Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Science of the Total Environment, 336, 81–89.

    Article  CAS  Google Scholar 

  • Mo, S. C., Choi, D. S., & Robinson, J. W. (1989). Uptake of mercury from aqueous solution by duckweed: The effect of pH, copper, and humic acid. Journal of Environmental Health, 24, 135–146.

    Google Scholar 

  • Navari-Izzo, F., & Quartacci, M. F. (2001). Phytoremediation of metals – Tolerance mechanisms against oxidative stress. Minerva Biotecnologica, 13, 73–83.

    Google Scholar 

  • Nouairi, I., Ben Ammar, W., Ben Youssef, N., Daoud, D. B., Ghorbal, M. H., & Zarrouk, M. (2006). Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Science, 170(3), 511–519.

    Article  CAS  Google Scholar 

  • O’Connor, C. S., Leppi, N. W., Edwards, R., & Sunderland, G. (2003). The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: A laboratory-scale feasibility study. Environmental Monitoring and Assessment, 84, 141–158.

    Article  CAS  Google Scholar 

  • Odjegba, V. J., & Fasidi, I. O. (2004). Accumulation of trace elements by Pistia stratiotes: Implications for phytoremediation. Ecotoxicology, 13, 637–646.

    Article  CAS  Google Scholar 

  • Parker, D. R., Feist, L. J., Varvel, T. W., Thomason, D. N., & Zhang, Y. Q. (2003). Selenium phytoremediation potential of Stanleya pinnata. Plant Soil, 249, 157–165.

    Article  CAS  Google Scholar 

  • Pendergrass, A., & Butcher, D. J. (2006). Uptake of lead and arsenic in food plants grown in contaminated soil from Barber Orchard, NC. Microchemical Journal, 83(1), 14–16.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E. A. H. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E. A. H., Desouza, M. P., Hong, G., Amini, A., Bravo, R. C., Payabyab, S. T., et al. (1999). Selenium volatilization and accumulation by twenty aquatic plant species. Journal of Environmental Quality, 28(3), 1011–1017.

    CAS  Google Scholar 

  • Pitchel, J., Kuroiwa, K., & Sawyer, H. T. (1999). Distribution of Pb, Cd and Ba in soils and plants of two contaminated soils. Environmental Pollution, 110, 171–178.

    Google Scholar 

  • Prasad, M. N. V, & Freitas, H. (2003). Metal hyperaccumulation in plants – Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 275–321.

    Google Scholar 

  • Pugh, R. E., Dick, D. G., & Fredeen, A. L. (2002). Heavy metal (Pb, Zn, Cd, Fe and Cu) contents of plant foliage near the Anvil range lead/zinc mine, Faro, Yukon Territory. Ecotoxicology and Environmental Safety, 52, 273–279.

    Article  CAS  Google Scholar 

  • Quartacci, M. F., Argilla, A., Baker, A. J. M., & Navari-Izzo, F. (2006). Phytoextraction of metals from a multiple contaminated soil by Indian mustard. Chemosphere, 63(6), 918–925.

    Article  CAS  Google Scholar 

  • Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8, 221–226.

    Article  CAS  Google Scholar 

  • Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from a mining area of Central Europe. Environmental Pollution Series A, 31, 277–287.

    Article  CAS  Google Scholar 

  • Rizzi, L., Petruzzelli, G., Poggio, G., & Vigna, G. (2004). Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere, 57(9), 1039–1046.

    Article  CAS  Google Scholar 

  • Robinson, B. H., Brooks, R. R., Howes, A. W., Kirkman, J. H., & Gregg, P. E. H. (1997). The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. Journal of Geochemical Exploration, 60, 115–126.

    Article  CAS  Google Scholar 

  • Sagiroglu, A., Sasmaz, A, & Sen, O. (2006). Hyperaccumulator plants of the Keban mining district and their possible impact on the environment. Polish Journal of Environmental Studies, 15(2), 317–325.

    CAS  Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, P. B. A. N., Dushenkov, V., Ensley, B. D., Chet, L., et al. (1995). Phyto-remediation: a novel strategy for the removal of toxic metals from the environment using plants. Biogeochemistry, 13, 468–474.

    CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    Article  CAS  Google Scholar 

  • Sánchez Martín, M. J., Sánchez Camazano, M., & Lorenzo, L. F. (2000). Cadmium and lead contents in suburban and urban soils from two medium-sized cities of Spain: Influence of traffic intensity. Bulletin of Environmental Contamination and Toxicology, 64, 250–257.

    Article  Google Scholar 

  • Santos, F. S., Hernández-Allica, J., Becerril, J. M., Amaral-Sobrinho, N., Mazur, N., & Garbisu, C. (2006). Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere, 65(1), 43–50.

    Article  CAS  Google Scholar 

  • Schnoor, J. L. (2000). Phytostabilization of metals using hybrid poplar trees. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment (pp. 133–150). New York: Wiley.

    Google Scholar 

  • Schwartz, C., Echevarria, G., & Morel, J. L. (2003). Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil, 24, 27–35.

    Article  Google Scholar 

  • Sekhar, K. C., Kamala, C. T., Chary, N. S., Sastry, A. R. K., Rao, T. N., & Vairamani, M. (2004). Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass. Journal of Hazardous Materials, 108, 111–117.

    Article  CAS  Google Scholar 

  • Sharma, N. C., Gardea-Torresdey, J. L., Parsons, J., & Sahi, S. V. (2004). Chemical speciation and cellular deposition of lead in Sesbania drummondii. Environmental Toxicology and Chemistry, 23, 2068–2073.

    Article  CAS  Google Scholar 

  • Sheng, X. F., & Xia, J. J. (2006). Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere, 64(6), 1036–1042.

    Article  CAS  Google Scholar 

  • Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., & Jain, R. K. (2003). Phytoremediation: an overview of metallicion decontamination from soil. Applied Microbiology and Biotechnology, 61, 405–412.

    CAS  Google Scholar 

  • Smith, R. A. H., & Bradshaw, A. D. (1992). Stabilization of toxic mine wastes by the use of tolerant plant populations. Transactions of the Institution of Mining and Metallurgy, 81, A230–A237.

    Google Scholar 

  • Smolders, E., & Degryse, F. (2002). Fate and effect of zinc from tire debris in soil. Environmental Science and Technology, 36, 3706–3710.

    Article  CAS  Google Scholar 

  • Stoltz, E. (2004). Phytostabilisation:use of wet plants to treat mine tailings. Doctoral thesis, Department of Botany, Stockholm University.

  • Stoltz, E., & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47(3), 271–280.

    Article  CAS  Google Scholar 

  • Suresh, B., & Ravishankar, G. A. (2004). Phytoremediation – A novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology, 24, 97–124.

    Article  CAS  Google Scholar 

  • Suszcynsky, E. M., & Shann, J. R. (1995). Phytotoxicity and accumulation of mercury subjected to different exposure routes. Environmental Toxicology and Chemistry, 14, 61–67.

    Article  CAS  Google Scholar 

  • Sutherland, R. A., Day, J. P., & Bussen, J. O. (2003). Lead concentrations, isotope ratios and source apportionment in road deposited sediments, Honolulu, Oahu, Hawaii. Water, Air and Soil Pollution, 142, 165–186.

    Article  CAS  Google Scholar 

  • Swaileh, K. M., Hussen, R. H., & Abu-Elhaj, S. (2004). Assessment of heavy metal contamination in road side surface soil and vegetation from the West Bank. Archives of Environmental Contamination and Toxicology, 47, 23–30.

    Article  CAS  Google Scholar 

  • Tandy, S., Schulin, R., & Nowack, B. (2006). The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 62(9), 1454–1463.

    Article  CAS  Google Scholar 

  • Terry, N., Carlson, C., Raab, T. K., & Zayed, A. (1992). Rates of selenium volatilization among crop species. Journal of Environmental Quality, 21, 341–344.

    CAS  Google Scholar 

  • Thangavel, P., & Subhuram, C. V. (2004). Phytoextraction – Role of hyper accumulators in metal contaminated soils. Proceedings of the Indian National Science Academy. Part B, 70(1), 109–130.

    CAS  Google Scholar 

  • Tian, J. L., Zhu, H. T., Yang, Y. A., & He, Y. K. (2004). Organic mercury tolerance, absorption and transformation in Spartina plants. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao (Journal of Plant Physiology and Molecular Biology), 30, 577–582.

    CAS  Google Scholar 

  • Tordoff, G. M., Baker, A. J. M., & Willis, A. J. (2000). Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41(1–2), 219–228.

    Article  CAS  Google Scholar 

  • Turer, D., Maynard, J. B., & Sansalone, J. J. (2001). Heavy metal contamination in soils of urban highways: Comparison between runoff and soil concentrations at Cincinnati, Ohio. Water, Air, and Soil Pollution, 132, 293–314.

    Article  CAS  Google Scholar 

  • Utsunamyia, T. (1980). Japanese patent application no. 55-72959.

  • Viard, B., Pihan, F., Promeyrat, S., & Pihan, J. C. (2004). Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere, 55(10), 1349–1359

    Article  CAS  Google Scholar 

  • Viklander, M. (1998). Particle size distribution and metal content in street sediments. Journal of Environmental Engineering, 124, 761–766.

    Article  CAS  Google Scholar 

  • Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A., & Reeves, R. D. (2006). Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil, 281(1–2), 325–337.

    Article  CAS  Google Scholar 

  • Wang, J., Zhao, F., Meharg, A. A., Raab, A., Feldmann, J., & McGrath, P. S. (2002). Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 130, 1552–1561.

    Article  CAS  Google Scholar 

  • Watanabe, M. E. (1997). Phyto-remediation on the brink of commercialization. Environmental Science & Technology, 31, 182–186.

    Article  Google Scholar 

  • Wei, S. H., Zhou, Q. X., Wang, X., Cao, W., Ren, L. P., & Song, Y. F. (2004). Potential of weed species applied to remediation of soils contaminated with heavy metals. Journal of Environmental Science- China, 16, 868–873.

    Google Scholar 

  • Wenzel, W. W., Adriano, D. C., Salt, D., & Smith, R. (1999). Phytoremediation: A plant–microbe-based remediation system. In SSSA (Ed.), Bioremediation of Contaminated Soils (pp. 457–508). Madison, WI, USA: Agronomy Monograph no. 37, SSSA.

  • WHO (1997). Health and environment in sustainable development. Geneva: WHO

    Google Scholar 

  • Williamson, A., & Johnson, M. S. (1981). Reclamation of metalliferous mine wastes. In N. W. Lepp (Ed.), Effect of heavy metal pollution on plants, vol. 2 (pp. 185–212). Barking, Essex, UK: Applied Science Publishers.

    Google Scholar 

  • Williams, A. C., Nascimento, W., Amarasiriwardena, D., & Xing, B. (2006). Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution, 140(1), 114–123.

    Article  CAS  Google Scholar 

  • Wu, J., Hsu, F. C., & Cuningham, S. D. (1999). Chelate assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environmental Science & Technology, 33(11), 1898–1904.

    Article  CAS  Google Scholar 

  • Xiong, Y. H., Yang, X. E., Ye, Z. Q., & He, Z. L. (2004). Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 39, 2925–2940.

    Article  CAS  Google Scholar 

  • Xue, S. G., Chen, Y. X., Reeves, R. D., Baker, A. J., Lin, Q., & Fernando, D. R. (2004). Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environmental Pollution, 131, 393–399.

    Article  CAS  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of The Total Environment, 368(2–3), 456–464.

    Article  CAS  Google Scholar 

  • Zaccheo, P., Crippa, L., & Pasta, V. D. (2006). Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower. Plant And Soil, 283(1–2), 43–56.

    Article  CAS  Google Scholar 

  • Zhu, Y. L., Zayed, A. M., Quian, J. H., De Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. Journal of Environmental Quality, 28, 339–344.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loretta Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmavathiamma, P.K., Li, L.Y. Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water Air Soil Pollut 184, 105–126 (2007). https://doi.org/10.1007/s11270-007-9401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9401-5

Keywords

Navigation