Skip to main content
Log in

Development, Characterization and Ion Exchange Thermodynamics for a New Crystalline Composite Cation Exchange Material: Application for the Removal of Pb2+ Ion from a Standard Sample (Rompin Hematite)

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A new crystalline organic–inorganic composite cation exchanger polyaniline Sn(IV) molybdate was developed by mixing polyaniline into the inorganic precipitate of Sn(IV) molybdate. This material was characterized using Fourier transform infrared spectroscopy (FTIR), simultaneous thermogravimetry–differential thermogravimetry (TGA–DTA), X-ray, scanning electron microscopy (SEM) and elemental analysis studies. Ion-exchange capacity, effect of calcinations (100–500 °C) on ion exchange capacity, pH-titrations, chemical stability, elution and distribution behavior were also carried on this material. On the basis of distribution studies, the material was found to be highly selective for Pb2+ ion and its selectivity was tested by achieving some important binary and ternary separations. In order to demonstrate the practical utility of the material, quantitative separations of Pb2+ from a standard reference material (Rompin Hematite) of lead have been achieved. Thermodynamic parameters viz- entropy change (ΔS), enthalpy change (ΔH) and Gibb’s free energy change (ΔG) were also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Volesky, Biosorption of Heavy Metals (CRC Press, Boca Raton, 1992), pp. 7–44

    Google Scholar 

  2. R.K. Gupta, R.A. Singh, S.S. Dubey, Sep. Purif. Technol. 225, 38 (2004)

    Google Scholar 

  3. S.A. Nabi, A.H. Shalla, J. Hazard. Mater. 657, 163 (2009)

    Google Scholar 

  4. A.A. Khan, Inamuddin, M.M. Alam, React. Funct. Polym. 119, 63 (2005)

    Google Scholar 

  5. S.A. Nabi, A.M. Khan, React. Funct. Polym. 495, 66 (2006)

    Google Scholar 

  6. S.A. Nabi, S. Usmani, N. Rahman, Ann. Chim. Sci. Mater. 521, 21 (1996)

    Google Scholar 

  7. M. Islam, R. Patel, J. Hazard. Mater. 509, 156 (2008)

    Google Scholar 

  8. Z. Alam, Inamuddin, S.A. Nabi, Desalination 515, 250 (2010)

    Google Scholar 

  9. A.A. Khan, M.M. Alam, React. Funct. Polym. 277, 55 (2003)

    Google Scholar 

  10. M. Sahin, H. Gorcay, E. Kır, Y. Sahin, React. Funct. Polym. 673, 69 (2009)

    Google Scholar 

  11. S. Sengupta, A.K.S. Gupta, React. Funct. Polym. 111, 35 (1997)

    Google Scholar 

  12. C. Contescu, C. Sivaraj, J.A. Schwarz, Appl. Catal. 95, 74 (1991)

    Google Scholar 

  13. P. Yin, Q. Xu, R. Qu, G. Zhao, Y. Sun, J. Hazard. Mater. 710, 173 (2010)

    Google Scholar 

  14. N.E. Topp, K.W. Pepper, J. Chem. Soc., 3299 (1949)

  15. F.D. Snell, C.T. Snell, Colorimetric Methods of Chemical Analysis Including Photometric Methods, vol. 11 (D. Van Nostrand, Princeton, 1959), p. 135

    Google Scholar 

  16. F.D. Snell, C.T. Snell, Colorimetric Methods of Chemical Analysis Including Photometric Methods, vol. 11 (D. Van Nostrand, Princeton, 1959), p. 586

    Google Scholar 

  17. S.A. Nabi, Alimuddin, A. Islam, J. Hazard. Mater. 202, 172 (2009)

    Google Scholar 

  18. M. Qureshi, J.P. Rawat, J. Inorg. Nucl. Chem. 305, 30 (1968)

    Google Scholar 

  19. A.A. Khan, Inamuddin, React. Funct. Polym. 1649, 66 (2006)

    Google Scholar 

  20. F.C. Nachod, W. Wood, J. Am. Chem. Soc. 1380, 66 (1944)

    Google Scholar 

  21. A.A. Khan, M.M. Alam, React. Funct. Polym. 277, 55 (2003)

    Google Scholar 

  22. R. Niwas, A.A. Khan, K.G. Varshney, Colloids Surf. A 7, 150 (1999)

    Google Scholar 

  23. S. Ikram, Ph.D. thesis, D.C.E., Delhi, 2000

  24. A.M. Khan, S.A. Ganai, S.A. Nabi, Colloids Surf. A 141, 337 (2009)

    Google Scholar 

  25. C. Duval, Inorganic Thermogravimetric Analysis (Elsevier, Amsterdam, 1963)

    Google Scholar 

  26. A. Nilchi, B. Maalek, A. Kanchi, M.G. Maragheh, A. Bagheri, Radiat. Phys. Chem. 301, 75 (2006)

    Google Scholar 

  27. C.N.R. Rao, Chemical Applications of Infrared Spectroscopy (Academic Press, New York, 1963), p. 250

    Google Scholar 

  28. J. Tang, X. Jing, B. Wang, F. Wang, Synth. Met. 24, 231 (1988)

    Article  CAS  Google Scholar 

  29. G. Alberti, E. Toracca, E. Conte, J. Inorg. Nucl. Chem. 607, 28 (1966)

    Google Scholar 

  30. H. Tahir, EJEAF Chem. 1021, 4 (2005)

    Google Scholar 

  31. S.A. Nabi, Mu. Naushad, Colloids Surf. A 175, 293 (2007)

    Google Scholar 

  32. P.V. Messina, P.C. Schulz, J. Colloid Interface Sci. 305, 299 (2006)

    Google Scholar 

  33. A. Mittal, J. Hazard. Mater. 196, 133 (2006)

    Google Scholar 

  34. C. Namasivayam, D. Sangeetha, J. Biores. Technol. 1194, 97 (2006)

    Google Scholar 

Download references

Acknowledgments

The Authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP-VPP-043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu. Naushad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AL-Othman, Z.A., Naushad, M. & Nilchi, A. Development, Characterization and Ion Exchange Thermodynamics for a New Crystalline Composite Cation Exchange Material: Application for the Removal of Pb2+ Ion from a Standard Sample (Rompin Hematite). J Inorg Organomet Polym 21, 547–559 (2011). https://doi.org/10.1007/s10904-011-9491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-011-9491-9

Keywords

Navigation