Skip to main content

Advertisement

Log in

Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: a Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The rapid development of industrial sector has increased the heavy metal pollution issue recently, as the need of various metals is increasing for manufacturing purpose. These metals are the natural components that can be found in soil, but contamination happens when the concentration of these metals are high in soil due to anthropogenic activities. Several remediation techniques such as physical method, thermal desorption, chemical, and electrokinetic remediation are used to remediate the soil contaminated by heavy metals recently. As these remediation technologies have limitation on cost, effectiveness, and environmental friendly remediation issue, phytoremediation is then attracting the attention from various researchers due to its advantages of efficient, cost-effective, and eco-friendly remediation method. The mechanisms of phytoremediation are phytoextraction, phytostabilization, phytovolatilization, phytodegradation, phytodesalination, rhizofiltration, rhizodegradation, and phytoevaporation. However, these mechanisms were affected by several factors such as the plant species, properties of medium, bioavailability of metal, and the addition of chelating agent. The type of plant utilized for phytoremediation (metallophytes) is categorized as metal indicators, metal excluders, and metal hyperaccumulators. This review article comprehensively discusses the source and effect of heavy metal on human health as well as phytoremediation techniques and mechanism during the heavy metal removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acar, Y. B., & Alshawabkeh, A. N. (1993). Principles of electrokinetic remediation. Environmental Science & Technology, 27, 2638–2647.

    CAS  Google Scholar 

  • Agnello, A. C., Bagard, M., van Hullebusch, E. D., Esposito, G., & Huguenot, D. (2016). Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Science of the Total Environment, 563-564, 693–703.

    CAS  Google Scholar 

  • Ali, N., & Hadi, F. (2015). Phytoremediation of cadmium improved with the high production of endogenous phenolics and free proline contents in Parthenium hysterophorus plant treated exogenously with plant growth regulator and chelating agent. Environmental Science and Pollution Research, 22, 13305–13318.

    CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91, 869–881.

    CAS  Google Scholar 

  • Alkorta, I., Becerril, J. M., & Garbisu, C. (2010). Phytostabilization of metal contaminated soils. Review in Environmental Health, 25, 135–146.

    CAS  Google Scholar 

  • Almeida, J. C., Cardoso, C. E. D., Tavares, D. S., Freitas, R., Trindade, T., Vale, C., & Pereira, E. (2019). Chromium removal from contaminated waters using nanomaterials–A review. TrAC Trends in Analytical Chemistry, 118, 277–291.

    CAS  Google Scholar 

  • Atanes, E., Cuesta-García, B., Nieto-Márquez, A., & Fernández-Martínez, F. (2019). A mixed separation-immobilization method for soluble salts removal and stabilization of heavy metals in municipal solid waste incineration fly ash. Journal of Environmental Management, 240, 359–367.

    CAS  Google Scholar 

  • Back, S.-K., Lee, E.-S., Seo, Y.-C., & Jang, H.-N. (2020). The effect of NaOH for the recovery of elemental mercury from simulated mixture wastes and waste sludge from an industrial process using a thermal desorption process. Journal of Hazardous Materials, 384, 121291.

    Google Scholar 

  • Bala, R., & Thukral, A. K. (2011). Phytoremediation of Cr(VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents. International Journal of Phytoremediation, 13, 465–491.

    CAS  Google Scholar 

  • Bali, R., Siegele, R., & Harris, A. T. (2010). Phytoextraction of Au: Uptake, accumulation and cellular distribution in Medicago sativa and Brassica juncea. Chemical Engineering Journal, 156, 286–297.

    CAS  Google Scholar 

  • Bani, A., Echevarria, G., Mullaj, A., Reeves, R., Morel, J. L., & Sulçe, S. (2009). Nickel Hyperaccumulation by Brassicaceae in serpentine soils of Albania and Northwestern Greece. Northeastern Naturalist, 16, 385–404.

    Google Scholar 

  • Barman, S. C., Sahu, R. K., Bhargava, S. K., & Chaterjee, C. (2000). Distribution of heavy metals in wheat, mustard, and weed grown in field irrigated with industrial effluents. Bulletin of Environmental Contamination and Toxicology, 64, 489–496.

    CAS  Google Scholar 

  • Basharat, Z., Novo, L. A. B. & Yasmin, A. (2018). Genome editing weds CRISPR: What is in it for phytoremediation? Plants (Basel), 7.

  • Bondarenko, O., Rolova, T., Kahru, A., & Ivask, A. (2008). Bioavailability of Cd, Zn and Hg in soil to nine recombinant luminescent metal sensor bacteria. Sensors (Basel), 8, 6899–6923.

    CAS  Google Scholar 

  • Borgmann, U., & Norwood, W. P. (2002). Metal bioavailability and toxicity through a sediment core. Environmental Pollution, 116, 159–168.

    CAS  Google Scholar 

  • Bourgeault, A., Gourlay-France, C., Priadi, C., Ayrault, S., & Tusseau-Vuillemin, M. H. (2011). Bioavailability of particulate metal to zebra mussels: Biodynamic modelling shows that assimilation efficiencies are site-specific. Environmental Pollution, 159, 3381–3389.

    CAS  Google Scholar 

  • Briskine, R. V., Paape, T., Shimizu-Inatsugi, R., Nishiyama, T., Akama, S., Sese, J., & Shimizu, K. K. (2017). Genome assembly and annotation of Arabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology. Molecular Ecology Resource, 17, 1025–1036.

    CAS  Google Scholar 

  • Brunner, I., Luster, J., Günthardt-Goerg, M. S., & Frey, B. (2008). Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environmental Pollution, 152, 559–568.

    CAS  Google Scholar 

  • Cao, A., Cappai, G., Carucci, A., & Lai, T. (2008). Heavy metal bioavailability and chelate mobilization efficiency in an assisted phytoextraction process. Environmental Geochemistry and Health, 30, 115–119.

    CAS  Google Scholar 

  • Çelik, Ö., & Akdaş, E. Y. (2019). Tissue-specific transcriptional regulation of seven heavy metal stress-responsive miRNAs and their putative targets in nickel indicator castor bean (R. communis L.) plants. Ecotoxicology and Environmental Safety, 170, 682–690.

    Google Scholar 

  • Chamba, I., Rosado, D., Kalinhoff, C., Thangaswamy, S., Sánchez-Rodríguez, A., & Gazquez, M. J. (2017). Erato polymnioides–A novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation. Chemosphere, 188, 633–641.

    CAS  Google Scholar 

  • Chaney, R. L., Broadhurst, C. L., & Centofanti, T. (2010). Phytoremediation of soil trace elements. In P. S. Hooda (Ed.), Trace elements in soils (pp. 311–352). Chichester: John Wiley & Sons.

    Google Scholar 

  • Chen, X., & Achal, V. (2019). Biostimulation of carbonate precipitation process in soil for copper immobilization. Journal of Hazardous Materials, 368, 705–713.

    CAS  Google Scholar 

  • Chen, A. Y.-Y., & Olsen, T. (2016). Chromated copper arsenate-treated wood: A potential source of arsenic exposure and toxicity in dermatology. International journal of women’s dermatology, 2, 28–30.

    Google Scholar 

  • Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36, 609–662.

    CAS  Google Scholar 

  • Conesa, H. M., Schulin, R., & Nowack, B. (2007). A laboratory study on revegetation and metal uptake in native plant species from neutral mine tailings. Water, Air, and Soil Pollution, 183, 201–212.

    CAS  Google Scholar 

  • Cristaldi, A., Conti, G. O., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation, 8, 309–326.

    Google Scholar 

  • Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110, 715–719.

    CAS  Google Scholar 

  • Dean, J. R. (2010). Heavy metal bioavailability and bioaccessibility in soil. Methods in Molecular Biology, 599, 15–36.

    CAS  Google Scholar 

  • Dellisanti, F., Rossi, P. L., & Valdrè, G. (2009). In-field remediation of tons of heavy metal-rich waste by Joule heating vitrification. International Journal of Mineral Processing, 93, 239–245.

    CAS  Google Scholar 

  • Derakhshan Nejad, Z., Jung, M. C., & Kim, K. H. (2018). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environmental Geochemistry and Health, 40, 927–953.

    CAS  Google Scholar 

  • Desai, M., Haigh, M., & Walkington, H. (2019). Phytoremediation: Metal decontamination of soils after the sequential forestation of former opencast coal land. Sci Total Environ, 656, 670–680.

    CAS  Google Scholar 

  • Dipu, S., Kumar, A. A., & Thanga, S. G. (2012). Effect of chelating agents in phytoremediation of heavy metals. Remediation Journal, 22, 133–146.

    Google Scholar 

  • Doni, S., Macci, C., Peruzzi, E., Iannelli, R., & Masciandaro, G. (2015). Heavy metal distribution in a sediment phytoremediation system at pilot scale. Ecological Engineering, 81, 146–157.

    Google Scholar 

  • Duval, J. F. (2013). Dynamics of metal uptake by charged biointerphases: Bioavailability and bulk depletion. Physical Chemistry Chemical Physics, 15, 7873–7888.

    CAS  Google Scholar 

  • Ely, C. S., & Smets, B. F. (2017). Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizodegradation. International Journal of Phytoremediation, 19, 877–883.

    CAS  Google Scholar 

  • Etteieb, S., Magdouli, S., Zolfaghari, M., & Brar, S. (2020). Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review. Science of the Total Environment, 698, 134339.

    CAS  Google Scholar 

  • Fatnassi, I. C., Chiboub, M., Saadani, O., Jebara, M., & Jebara, S. H. (2015). Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria. Journal of Basic Microbiology, 55, 303–311.

    CAS  Google Scholar 

  • Garcia-Sanchez, M., Kosnar, Z., Mercl, F., Aranda, E., & Tlustos, P. (2018). A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicology and Environmental Safety, 147, 165–174.

    CAS  Google Scholar 

  • Ghosh, S. (2010). Wetland macrophytes as toxic metal accumulators. International Journal of Environmental Sciences, 1, 523–528.

    Google Scholar 

  • Gil-Loaiza, J., White, S. A., Root, R. A., Solis-Dominguez, F. A., Hammond, C. M., Chorover, J., & Maier, R. M. (2016). Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field. Science of the Total Environment, 565, 451–461.

    CAS  Google Scholar 

  • Gomes, M. A. D. C., Hauser-Davis, R. A., de Souza, A. N., & Vitória, A. P. (2016). Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicology and Environmental Safety, 134, 133–147.

    CAS  Google Scholar 

  • Gomez-Garrido, M., Mora Navarro, J., Murcia Navarro, F. J., & Faz Cano, A. (2018). The chelating effect of citric acid, oxalic acid, amino acids and Pseudomonas fluorescens bacteria on phytoremediation of Cu, Zn, and Cr from soil using Suaeda vera. International Journal of Phytoremediation, 20, 1033–1042.

    CAS  Google Scholar 

  • Guo, J., & Zhou, Y. (2020). Transformation of heavy metals and dewaterability of waste activated sludge during the conditioning by Fe2+-activated peroxymonosulfate oxidation combined with rice straw biochar as skeleton builder. Chemosphere, 238, 124628.

    CAS  Google Scholar 

  • Guo, P., Wang, T., Liu, Y., Xia, Y., Wang, G., Shen, Z., & Chen, Y. (2014). Phytostabilization potential of evening primrose (Oenothera glazioviana) for copper-contaminated sites. Environmental Science and Pollution Research, 21, 631–640.

    CAS  Google Scholar 

  • Hall, J. L. (2002) Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53 (366), 1–11.

  • He, H., Dong, Z., Pang, J., Wu, G. L., Zheng, J., & Zhang, X. (2018). Phytoextraction of rhenium by lucerne (Medicago sativa) and erect milkvetch (Astragalus adsurgens) from alkaline soils amended with coal fly ash. Science of the Total Environment, 630, 570–577.

    CAS  Google Scholar 

  • Jonnalagadda, S. B., & Rao, P. V. (1993). Toxicity, bioavailability and metal speciation. Comparative Biochemistry and Physiology - Part C, 106, 585–595.

    CAS  Google Scholar 

  • Kang, W., Bao, J., Zheng, J., Xu, F., & Wang, L. (2018). Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. International Journal of Phytoremediation, 20, 1–7.

    Google Scholar 

  • Kozminska, A., Wiszniewska, A., Hanus-Fajerska, E., & Muszynska, E. (2018). Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnology Report, 12, 1–14.

    Google Scholar 

  • Kucharski, R., Sas-Nowosielska, A., Małkowski, E., Japenga, J., Kuperberg, J. M., Pogrzeba, M., & Krzyżak, J. (2005). The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant and Soil, 273, 291–305.

    CAS  Google Scholar 

  • Lee, M., & Yang, M. (2010). Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. Journal of Hazardous Materials, 173, 589–596.

    CAS  Google Scholar 

  • Lee, Y.-C., Kim, E. J., Ko, D. A., & Yang, J.-W. (2011). Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil. Journal of Hazardous Materials, 196, 101–108.

    CAS  Google Scholar 

  • Lei, M., Wan, X., Guo, G., Yang, J., & Chen, T. (2018). Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: Comprehensive evaluation of remediation efficiency correcting for atmospheric depositions. Environmental Science and Pollution Research, 25, 124–131.

    CAS  Google Scholar 

  • Leung, H.-M., Wang, Z.-W., Ye, Z.-H., Yung, K.-L., Peng, X.-L., & Cheung, K.-C. (2013). Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: A review. Pedosphere, 23, 549–563.

    CAS  Google Scholar 

  • Leyssens, L., Vinck, B., Van Der Straeten, C., Wuyts, F., & Maes, L. (2017). Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology, 387, 43–56.

    CAS  Google Scholar 

  • Li, L. Z., Tu, C., Wu, L. H., Peijnenburg, W. J., Ebbs, S., & Luo, Y. M. (2017). Pathways of root uptake and membrane transport of Cd(2+) in the zinc/cadmium hyperaccumulating plant Sedum plumbizincicola. Environmental Toxicology and Chemistry, 36, 1038–1046.

    CAS  Google Scholar 

  • Li, J. T., Gurajala, H. K., Wu, L. H., van der Ent, A., Qiu, R. L., Baker, A. J. M., Tang, Y. T., Yang, X. E., & Shu, W. S. (2018). Hyperaccumulator plants from China: A synthesis of the current state of knowledge. Environmental Science and Technology, 52, 11980–11994.

    CAS  Google Scholar 

  • Li, X., Wang, X., Chen, Y., Yang, X., & Cui, Z. (2019). Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment. Ecotoxicology and Environmental Safety, 168, 1–8.

    CAS  Google Scholar 

  • Liphadzi, M. S., Kirkham, M. B., & Musil, C. F. (2005). Phytoremediation of soil contaminated with heavy metals: A technology for rehabilitation of the environment. South African Journal of Botany, 71, 24–37.

    CAS  Google Scholar 

  • Lu, Q., Xu, X., Liang, L., Xu, Z., Shang, L., Guo, J., Xiao, D., & Qiu, G. (2019). Barium concentration, phytoavailability, and risk assessment in soil-rice systems from an active barium mining region. Applied Geochemistry, 106, 142–148.

    CAS  Google Scholar 

  • Midhat, L., Ouazzani, N., Esshaimi, M., Ouhammou, A., & Mandi, L. (2017). Assessment of heavy metals accumulation by spontaneous vegetation: Screening for new accumulator plant species grown in Kettara mine-Marrakech, Southern Morocco. International Journal of Phytoremediation, 19, 191–198.

    CAS  Google Scholar 

  • Miramand, P., & Bentley, D. (1992). Heavy metal concentrations in two biological indicators (Patella vulgata and Fucus serratus) collected near the French nuclear fuel reprocessing plant of La Hague. Science of the Total Environment, 111, 135–149.

    CAS  Google Scholar 

  • Mironyuk, I., Tatarchuk, T., Vasylyeva, H., Naushad, M., & Mykytyn, I. (2019). Adsorption of Sr(II) cations onto phosphated mesoporous titanium dioxide: Mechanism, isotherm and kinetics studies. Journal of Environmental Chemical Engineering, 7, 103430.

    CAS  Google Scholar 

  • Mu’azu, N. D., Haladu, S. A., Jarrah, N., Zubair, M., Essa, M. H., & Ali, S. A. (2018). Polyaspartate extraction of cadmium ions from contaminated soil: Evaluation and optimization using central composite design. Journal of Hazardous Materials, 342, 58–68.

    Google Scholar 

  • Nakajima, H., Fujimoto, N., Yamamoto, Y., Amemiya, T., & Itoh, K. (2019). Response of secondary metabolites to Cu in the Cu-hyperaccumulator lichen Stereocaulon japonicum. Environmental Science and Pollution Research, 26, 905–912.

    CAS  Google Scholar 

  • Nelson, M., Adams, T., Ojo, C., Carroll, M. A., & Catapane, E. J. (2018). Manganese toxicity is targeting an early step in the dopamine signal transduction pathway that controls lateral cilia activity in the bivalve mollusc Crassostrea virginica. Comparative Biochemistry and Physiology - Part C, 213, 1–6.

    CAS  Google Scholar 

  • Ontañon, O. M., González, P. S., Ambrosio, L. F., Paisio, C. E., & Agostini, E. (2014). Rhizoremediation of phenol and chromium by the synergistic combination of a native bacterial strain and Brassica napus hairy roots. International Biodeterioration & Biodegradation, 88, 192–198.

    Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184, 105–126.

    CAS  Google Scholar 

  • Parker, D. R., Page, A. L., & Thomason, D. N. (1991). Salinity and boron tolerances of candidate plants for the removal of selenium from soils. Journal of Environmental Quality, 20, 157–164.

    CAS  Google Scholar 

  • Paz-Ferreiro, J., Gascó, G., Méndez, A., & Reichman, S. M. (2018). Soil pollution and remediation. International Journal of Environmental Research and Public Health, 15, 1657.

    Google Scholar 

  • Peng, J. S., Wang, Y. J., Ding, G., Ma, H. L., Zhang, Y. J., & Gong, J. M. (2017). A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola. Molecular Plant, 10, 771–774.

    CAS  Google Scholar 

  • Perez-Palacios, P., Agostini, E., Ibanez, S. G., Talano, M. A., Rodriguez-Llorente, I. D., Caviedes, M. A., & Pajuelo, E. (2017). Removal of copper from aqueous solutions by rhizofiltration using genetically modified hairy roots expressing a bacterial Cu-binding protein. Environmental Technology, 38, 2877–2888.

    CAS  Google Scholar 

  • Phillips, D. P., Human, L. R. D., & Adams, J. B. (2015). Wetland plants as indicators of heavy metal contamination. Marine Pollution Bulletin, 92, 227–232.

    CAS  Google Scholar 

  • Pignattelli, S., Colzi, I., Buccianti, A., Cecchi, L., Arnetoli, M., Monnanni, R., Gabbrielli, R., & Gonnelli, C. (2012). Exploring element accumulation patterns of a metal excluder plant naturally colonizing a highly contaminated soil. Journal of Hazardous Material, 227-228, 362–369.

    CAS  Google Scholar 

  • Prasad, M. N. V. & Freitas, H. M. D. O. (2003). Metal hyperaccumulation in plants-Biodiversity prospecting for phytoremediation technology.

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees--a review. Environment International, 29, 529–540.

    CAS  Google Scholar 

  • Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M. H., Koyro, H.-W., Ranieri, A., Abdelly, C., & Smaoui, A. (2010). Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technology, 101, 6822–6828.

    CAS  Google Scholar 

  • Rafati, M., Khorasani, N., Moattar, F., Shirvany, A., Moraghebi, F., & Hosseinzadeh, S. (2011). Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. International Journal of Environmental Research, 5, 961–970.

    CAS  Google Scholar 

  • Rakhshaee, R., Giahi, M., & Pourahmad, A. (2009). Studying effect of cell wall’s carboxyl–carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution. Journal of Hazardous Materials, 163, 165–173.

    CAS  Google Scholar 

  • Rodrigues, S. M., Henriques, B., Reis, A. T., Duarte, A. C., Pereira, E., & Römkens, P. F. A. M. (2012). Hg transfer from contaminated soils to plants and animals. Environmental Chemistry Letters, 10, 61–67.

    CAS  Google Scholar 

  • Rubio, C., Paz, S., Tius, E., Hardisson, A., Gutierrez, A. J., Gonzalez-Weller, D., Caballero, J. M., & Revert, C. (2018). Metal contents in the most widely consumed commercial preparations of four different medicinal plants (aloe, senna, ginseng, and ginkgo) from Europe. Biological Trace Element Research, 186, 562–567.

    CAS  Google Scholar 

  • Rugh, C. L., Wilde, H. D., Stack, N. M., Thompson, D. M., Summers, A. O., & Meagher, R. B. (1996). Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proceedings of the National Academy of Sciences of the United States of America, 93, 3182–3187.

    CAS  Google Scholar 

  • Sakakibara, M., Ohmori, Y., Ha, N. T. H., Sano, S., & Sera, K. (2011). Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. CLEAN – Soil, Air, Water, 39, 735–741.

    CAS  Google Scholar 

  • Schaumlöffel, D. (2012). Nickel species: Analysis and toxic effects. Journal of Trace Elements in Medicine and Biology, 26, 1–6.

    Google Scholar 

  • Sharma, P., Pandey, S. (2014) Status of Phytoremediation in World Scenario. International Journal of Environmental Bioremediation & Biodegradation, 2.4 (2014), 178–191

  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2009). Phytomining: A review. Minerals Engineering, 22, 1007–1019.

    CAS  Google Scholar 

  • Sidhu, G. P. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2017). Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicology and Environmental Safety, 135, 209–215.

    CAS  Google Scholar 

  • Sprocati, A. R., Alisi, C., Tasso, F., Marconi, P., Sciullo, A., Pinto, V., Chiavarini, S., Ubaldi, C., & Cremisini, C. (2012). Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal co-contaminated soil. Process Biochemistry, 47, 1649–1655.

    CAS  Google Scholar 

  • Sterckeman, T., Gossiaux, L., Guimont, S., & Sirguey, C. (2019). How could phytoextraction reduce Cd content in soils under annual crops? Simulations in the French context. Science of the Total Environment, 654, 751–762.

    CAS  Google Scholar 

  • Suman, J., Uhlik, O., Viktorova, J., & Macek, T. (2018). Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Frontiers in Plant Science, 9, 1476.

    Google Scholar 

  • Sun, Y.-B., Zhou, Q.-X., Liu, W.-T., An, J., Xu, Z.-Q., & Wang, L. (2009). Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: A potential Cd-hyperaccumulator and As-excluder Bidens pilosa L. Journal of Hazardous Materials, 165, 1023–1028.

    CAS  Google Scholar 

  • Szczygłowska, M., Piekarska, A., Konieczka, P., & Namieśnik, J. (2011). Use of brassica plants in the phytoremediation and biofumigation processes. International Journal of Molecular Sciences, 12, 7760–7771.

    Google Scholar 

  • Tahmasbian, I., & Safari Sinegani, A. A. (2016). Improving the efficiency of phytoremediation using electrically charged plant and chelating agents. Environmental Science and Pollution Research, 23, 2479–2486.

    CAS  Google Scholar 

  • Tampouris, S., Papassiopi, N., & Paspaliaris, I. (2001). Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. Journal of Hazardous Materials, 84, 297–319.

    CAS  Google Scholar 

  • Tang, J., He, J., Liu, T., Xin, X., & Hu, H. (2017). Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment. Chemosphere, 189, 599–608.

    CAS  Google Scholar 

  • Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 31.

    Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia supplementum, 101, 133–164.

    Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D., & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16, 765–794.

    CAS  Google Scholar 

  • Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197.

    CAS  Google Scholar 

  • Virkutyte, J., Sillanpää, M., & Latostenmaa, P. (2002). Electrokinetic soil remediation—Critical overview. Science of the Total Environment, 289, 97–121.

    CAS  Google Scholar 

  • Wang, J., Feng, X., Anderson, C. W. N., Xing, Y., & Shang, L. (2012). Remediation of mercury contaminated sites–A review. Journal of Hazardous Materials, 221-222, 1–18.

    CAS  Google Scholar 

  • Wang, J., Song, X., Wang, Y., Bai, J., Li, M., Dong, G., Lin, F., Lv, Y., & Yan, D. (2017). Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes. Science of the Total Environment, 607-608, 53–62.

    CAS  Google Scholar 

  • Wu, C., Jiang, M., Hsieh, L., Cai, Y., Shen, Y., Wang, H., Lin, Q., Shen, C., Hu, B., & Lou, L. (2020). Feasibility of bioleaching of heavy metals from sediment with indigenous bacteria using agricultural sulfur soil conditioners. Science of the Total Environment, 703, 134812.

    CAS  Google Scholar 

  • Xia, W.-Y., Du, Y.-J., Li, F.-S., Li, C.-P., Yan, X.-L., Arulrajah, A., Wang, F., & Song, D.-J. (2019). In-situ solidification/stabilization of heavy metals contaminated site soil using a dry jet mixing method and new hydroxyapatite based binder. Journal of Hazardous Materials, 369, 353–361.

    CAS  Google Scholar 

  • Yadav, R., Arora, P., Kumar, S., & Chaudhury, A. (2010). Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology, 19, 1574–1588.

    CAS  Google Scholar 

  • Yao, Z., Li, J., Xie, H., & Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences, 16, 722–729.

    CAS  Google Scholar 

  • Zalewska, T., & Danowska, B. (2017). Marine environment status assessment based on macrophytobenthic plants as bio-indicators of heavy metals pollution. Marine Pollution Bulletin, 118, 281–288.

    CAS  Google Scholar 

  • Zhang, H., Dang, Z., Zheng, L. C., & Yi, X. Y. (2009). Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). International Journal of Environmental Science & Technology, 6, 249–258.

    Google Scholar 

  • Zorrig, W., Rabhi, M., Ferchichi, S., Smaoui, A., & Abdelly, C. (2012). Phytodesalination : A solution for salt-affected soils in arid and semi-arid regions. Journal of Arid Land Studies, 22, 299–302.

    Google Scholar 

  • Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., & Anjum, M. Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250, 109557.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Hadibarata.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awa, S.H., Hadibarata, T. Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: a Review. Water Air Soil Pollut 231, 47 (2020). https://doi.org/10.1007/s11270-020-4426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-4426-0

Keywords

Navigation