Skip to main content
Log in

Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium(IV) selenotungstophosphate for the separation of toxic metal ions

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A conducting polymer-based advanced nanocomposite ion exchanger was synthesized by incorporating polyaniline (PANI) into the inorganic counterpart zirconium(IV) selenotungstophosphate (ZSWP). The nanocomposite exhibited an excellent ion exchange capacity of 1.20 meq g−1 in addition to high thermal stability. The polymeric–inorganic nanocomposite ion exchanger was characterized by Fourier transform infrared (FTIR), XRD, SEM, and TEM studies. The DC conductivity of PANI/ZSWP was also investigated. The nanocomposite ion exchanger was found to be highly selective for Cu2+ ions with a distribution coefficient value of 650 mL/g. The analytical applications of the material were explored by achieving selective separations of Cu2+ and Ca2+ ions from a synthetic mixture of Cu2+, Pb2+, Zn2+, Ni2+, Fe3+, Mg2+, and Al3+ and Ca2+, Pb2+, Zn2+, Ni2+, Al3+, Mg2+, and Ba2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu YC, Hwang BJ (2000) Enhancement of conductivity stability of polypyrrole films modified by valence copper and polyethylene oxide in an oxygen atmosphere. Thin Solid Films 360:1–9

    Article  CAS  Google Scholar 

  2. Sharma G, Pathania D, Naushad M, Kothiyal NC (2014) Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water. Chem Eng J 251:413–421

    Article  CAS  Google Scholar 

  3. Gupta VK, Jain R, Agarwal S, Shrivastava M (2011) Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Mat Sci Eng C 31:1062–1067

    Article  CAS  Google Scholar 

  4. Gupta VK, Pathania D, Asif M, Sharma G (2014) Liquid phase synthesis of pectin–cadmium sulfide nanocomposite and its photocatalytic and antibacterial activity. J Mol Liq 196:107–112

    Article  CAS  Google Scholar 

  5. Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multiwalled carbon nanotubes and titanium dioxide. J Colloids Interface Sci 371:101–106

    Article  CAS  Google Scholar 

  6. Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). J Hazard Mater 183:402–409

    Article  CAS  Google Scholar 

  7. Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mat Sci Eng C 32(1):12–17

    Article  CAS  Google Scholar 

  8. Gupta VK, Mittal A, Mittal J (2010) Decoloration treatment of a hazardous triarylmethane dye, light green SF (yellowish) by waste material adsorbents. J Colloid Interface Sci Z4:2518–2527

    Google Scholar 

  9. Gupta VK, Agarwal S, Saleh TA (2011) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mat 185:17–23

    Article  CAS  Google Scholar 

  10. National Science and Technological Council, Committee on Technology, Subcommittee on Nanoscale Science and Technology, Nanotechnology and the Environment, A report of the National Nanotechnology Initiative Workshop, National Nanotechnology Coordination Office, Arlington, VA, May 2003

  11. Mahmoud ME, Hafez OF, Alrefaay A, Osman MM (2010) Performance evaluation of hybrid inorganic/organic adsorbents in removal and preconcentration of heavy metals from drinking and industrial waste water. Desalination 253:9–15

  12. Emamjomeh MM, Sivakumar M (2009) Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J Environ Manag 90:1663–1679

    Article  CAS  Google Scholar 

  13. Merzouk B, Gourich B, Sekki A, Madani K, Chibane M (2009) Removal turbidity and separation of heavy metals using electrocoagulation–electroflotation technique. A case study. J Hazard Mater 164:215–222

    Article  CAS  Google Scholar 

  14. Chen Q, Luo Z, Hills C, Xue G, Tyrer M (2009) Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide. Water Res 43:2605–2614

    Article  CAS  Google Scholar 

  15. Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for wastewater recycling—a review. RSC Advances 2:6380–6388

    Article  CAS  Google Scholar 

  16. Soldatov VS, Shunkevich AA, Sergeev GI (1988) Synthesis, structure and properties of new fibrous ion exchangers. React Polym 7:159–172

    CAS  Google Scholar 

  17. Zagorodni AA (2006) Ion exchange materials: properties and applications, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  18. Naushad M (2008) A new ion-selective electrode based on aluminium tungstate for Fe(III) determination in rock sample, pharmaceutical sample and water sample. B Mater Sci 31:957–965

    Article  CAS  Google Scholar 

  19. Khan MMA, Rafiuddin I (2014) Synthesis, characterization, thermal behaviour and transport properties of polyvinyl chloride based zirconium phosphate composite membrane. J Environ Chem Eng 2:471–476

    Article  Google Scholar 

  20. Pathania D, Sharma G, Naushad M, Kumar A (2014) Synthesis and characterization of a new nanocomposite cation exchanger polyacrylamide Ce (IV) silicophosphate: photocatalytic and antimicrobial applications. J Ind Eng Chem 20:3596–3603

  21. Pathania D, Sharma G, Kothiyal NC, Kumar A (2014) Fabrication of nanocomposite polyaniline zirconium(IV) silicophosphate for photocatalytic and antimicrobial activity. J Alloys Compd 588:668–675

    Article  CAS  Google Scholar 

  22. ALOthman ZA, Inamuddin, Naushad M (2011) Adsorption thermodynamics of trichloroacetic acid herbicide on polypyrrole Th(IV) phosphate composite cation-exchanger. Chem Eng J 169:38–42

    Article  CAS  Google Scholar 

  23. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photobiol Photobio C 1:1–21

    Article  CAS  Google Scholar 

  24. Butterworth MD, Corradi R, Johal J, Lascelles SF, Maeda S, Armes SP (1995) Zeta potential measurements on conducting polymer-inorganic oxide nanocomposite particles. J Colloid Interf Sci 174:510–516

    Article  CAS  Google Scholar 

  25. Maeda S, Armes SP (1994) Preparation and characterisation of novel polypyrrole–silica colloidal nanocomposites. Mater Chem 4:935–942

    Article  CAS  Google Scholar 

  26. Anand J, Palaniappan S, Sathyanranayana DN (1998) Conducting polyaniline blends and composites. Prog Polym Sci 23:993–1018

    Article  CAS  Google Scholar 

  27. Huang J (2006) Syntheses and applications of conducting polymer polyaniline nanofibers. Pure Appl Chem 78:15–27

    Article  CAS  Google Scholar 

  28. Kumar A, Sharma G, Naushad M, Kalia S, Singh P (2014) Polyacrylamide/Ni0.02Zn0.98O nanocomposite with high solar light photocatalytic activity and efficient adsorption capacity for toxic dyes removal. Ind Eng Chem Res. doi:10.1021/ie5018173

  29. Bejbouj H, Vignau L, Miane JL, Olinga T, Wantz G, Mouhsen A, Oualim EM, Harmouchi M (2010) Influence of the nature of polyaniline-based hole-injecting layer on polymer light emitting diode performances. Mater Sci Eng B 166:185–189

    Article  CAS  Google Scholar 

  30. Lee I, Luo X, Huang J, Cui XT, Yun M (2012) Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. Biosensors 2:205–220

    Article  CAS  Google Scholar 

  31. Wojkiewicz JL, Bliznyuk VN, Carquigny S, Elkamchi N, Redon N, Lasri T, Pud AA, Reynaud S (2011) Nanostructured polyaniline-based composites for ppb range ammonia sensing. Sens Actuators B 160:1394–1403

    Article  CAS  Google Scholar 

  32. Huang YF, Chang CS, Lin CW (2012) An effective layout of polyaniline nanofibers incorporated in membrane-electrode assembly as methanol transport regulator for direct methanol fuel cells. Int J Hydrogen Energy 37:11975–11983

    Article  CAS  Google Scholar 

  33. Ciric-Marjanovic G (2013) Recent advances in polyaniline composites with metals, metalloids and non-metals. Synthet Metals 170:31–56

    Article  CAS  Google Scholar 

  34. Sih BC, Wolf MO (2005) Metal nanoparticle-conjugated polymer nanocomposites. Chem Commun 27:3375–3384

    Article  Google Scholar 

  35. Sekar M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci 279:307–313

    Article  CAS  Google Scholar 

  36. Akar ST, Akar T, Kaynak Z, Anilan B, Cabuk A, Tabak AZ, Demir TA, Gedikbey T (2009) Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy 97:98–104

    Article  CAS  Google Scholar 

  37. Stejskal J, Gilbert RG (2002) Polyaniline preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74:857–867

    Article  CAS  Google Scholar 

  38. Gupta VK, Pathania D, Kothiyal NC, Sharma G (2014) Polyaniline zirconium (IV) silicophosphate nanocomposite for remediation of methylene blue dye from waste water. J Mol Liquid 190:139–145

    Article  CAS  Google Scholar 

  39. Siddiqi ZM, Pathania D (2003) Titanium(IV) tungstosilicate and titanium(IV) tungstophosphate: two new inorganic ion exchangers. J Chromatro A 987:147–158

    Article  CAS  Google Scholar 

  40. Gupta VK, Agarwal S, Pathania D, Kothiyal NC, Sharma G (2013) Use of pectin–thorium (IV) tungstomolybdate nanocomposite for photocatalytic degradation of methylene blue. Carbohyd Polym 96:277–283

    Article  CAS  Google Scholar 

  41. Topp NE, Pepper KW (1949) Properties of ion-exchange resins in relation to their structure. Part I. Titration curves. J Chem Soc 3299–3303

  42. Naushad M (2014) Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium. Chem Eng J 235:100–108

    Article  CAS  Google Scholar 

  43. Khan AA, Paquiza L (2011) Characterization and ion-exchange behavior of thermally stable nano-composite polyaniline zirconium titanium phosphate: its analytical application in separation of toxic metals. Desalination 265:242–254

    Article  CAS  Google Scholar 

  44. Nabi SA, Bushra R, Naushad M, Khan A (2010) Synthesis, characterization and analytical applications of a new composite cation exchange material, poly-o-toluidine stannicmolybdate for the separation of toxic metal ions. Chem Eng J 165:529–536

    Article  CAS  Google Scholar 

  45. AL-Othman ZA, Naushad M, Inamuddin (2011) Organic–inorganic type composite cation exchanger poly-o-toluidine Zr(IV) tungstate: preparation, physicochemical characterization and its analytical application in separation of heavy metals. Chem Eng J 172:369–375

    Article  CAS  Google Scholar 

  46. Nabi SA, Usmani S, Rahman N (1996) Synthesis, characterization and analytical application of ion exchange material: zirconium (IV) iodophosphate. Ann Chim Sci Mat 21:521–530

    CAS  Google Scholar 

  47. Mesalam MMA (2003) Sorption kinetics of copper, zinc, cadmium and nickel ions on synthesized silico-antimonate ion exchanger. Colloid Surf A Phys Eng Aspects 225:85–94

    Article  Google Scholar 

  48. Nachod FC, Wood W (1944) The reaction velocity of ion exchange. J Am Chem Soc 66:1380–1384

    Article  CAS  Google Scholar 

  49. Davies M (1963) Infrared spectroscopy and molecular structure. Elsevier, Amsterdam, p 318

    Google Scholar 

  50. Rao CNR (1963) Chemical applications of infrared spectroscopy. Academic, NY, p 355

    Google Scholar 

  51. Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem 24:1253–1294

    Article  CAS  Google Scholar 

  52. Davis M (1963) Infrared spectroscopy and molecular structure. Elsevier, Amsterdam, p 318

    Google Scholar 

  53. Rao CNR (1963) Chemical applications of infrared spectroscopy. Academic, NY, p 250

    Google Scholar 

  54. Mohammad F, Nalwa HS (2000) Handbook of advanced electronic and photonic materials and devices. Academic, New York, p 321

    Google Scholar 

  55. Ganguli AK, Ahmad T, Vaidya S, Ahmed J (2008) Microemulsion route to the synthesis of nanoparticles. Pure Appl Chem 80:2451–2477

    Article  CAS  Google Scholar 

  56. Sultana S, Rafiuddin KMZ, Umar K (2012) Synthesis and characterization of copper ferrite nanoparticles doped polyaniline. J Alloys Compd 535:44–49

    Article  CAS  Google Scholar 

  57. Shumaila LGBVS, Alam M, Siddiqui AM, Zulfequar M, Husain M (2010) Synthesis and characterization of Se doped polyaniline. Curr Appl Phys 11:217–222

    Article  Google Scholar 

  58. Rathore BS, Sharma G, Pathania D, Gupta VK (2014) Synthesis, characterization and antibacterial activity of cellulose acetate-tin (IV) phosphate nanocomposite. Carbohydr Polym 103:221–227

    Article  CAS  Google Scholar 

  59. Khan AA, Khan A, Inamuddin (2007) Preparation and characterization of a new organic–inorganic nano-composite poly-o-toluidine Th(IV) phosphate: its analytical applications as cation-exchanger and in making ion-selective electrode. Talanta 72:699–710

    Article  CAS  Google Scholar 

  60. Nabi SA, Shahadat M, Bushra R, Shalla AH, Ahmed F (2010) Development of composite ion-exchange adsorbent for pollutants removal from environmental waste. Chem Eng J 165:405–412

    Article  CAS  Google Scholar 

  61. Nabi SA, Shalla AH (2009) Synthesis, characterization and analytical application of hybrid; acrylamide zirconium (IV) arsenate a cation exchanger, effect of dielectric constant on distribution coefficient of metal ions. J Hazard Mater 163:657–664

    Article  CAS  Google Scholar 

  62. Sharma G, Pathania D, Naushad M (2014) Preparation, characterization and antimicrobial activity of biopolymer based nanocomposite ion exchanger pectin zirconium (IV) selenotungstophosphate: application for removal of toxic metals. J Ind Eng Chem 20:4482–4490. doi:10.1016/j.jiec.2014.02.020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Chemistry, Shoolini University, Solan, for providing all necessary research facilities. This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Pathania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G., Pathania, D. & Naushad, M. Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium(IV) selenotungstophosphate for the separation of toxic metal ions. Ionics 21, 1045–1055 (2015). https://doi.org/10.1007/s11581-014-1269-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1269-y

Keywords

Navigation