Skip to main content
Log in

Phytoremediation of polyaromatic hydrocarbons, anilines and phenols

  • Phytoremediation: PAHs, Anilines, Phenols
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottlenecks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health.

Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed.

In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an increasing tendency to oxidant stress. Pollutant tolerance seems to correlate with the ability to deposit large quantities of pollutant metabolites in the ‘bound’ residue fraction of plant cell walls compared to the vacuole. In this regard, particular attention is paid to the activities of peroxidases, laccases, cytochromes P450, glucosyltransferases and ABC transporters. However, despite the seemingly large diversity of these proteins, direct proof of their participation in the metabolism of industrial aromatic pollutants is surprisingly scarce and little is known about their control in the overall metabolic scheme. Little is known about the bioavailability of bound metabolites; however, there may be a need to prevent their movement into wildlife food chains. In this regard, the application to harvested plants of composting techniques based on the degradative capacity of white-rot fungi merits attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aihara J (1992): Pourquoi les composés aromatiques sont-ils si stables? Pour la Science 175, 58–65

    Google Scholar 

  2. Alexander M (1994): Biodegradation and bioremediation. Academic press, San Diego, California

    Google Scholar 

  3. Alexander M (1995): How toxic are toxic chemicals in soil? Environl Sci Technol 29, 2713–2717

    CAS  Google Scholar 

  4. Banci L (1997): Structural properties of peroxidases. J Biotechnol 53, 253–263

    CAS  Google Scholar 

  5. Banks M, Lee E, Schwab A (1999): Evaluation of dissipation mechanisms for benzo-a-pyrene in the rhizosphere of Tall Fescue. J Environ Qual 28, 294–298

    CAS  Google Scholar 

  6. Barfknecht TR, Hites RA, Cavaliers EL, Thilly WG (1982): Human cell mutagenicity of polycyclic aromatic hydrocarbon components of diesel emissions. Dev Toxicol Environ Sci 10, 277–294

    CAS  Google Scholar 

  7. Bartha R (1986): Biotechnology of petroleum pollutant biodegradation. Microbial Ecol 12 155–172

    CAS  Google Scholar 

  8. Benner B, Gordon G (1989): Mobile sources of atmospheric polycyclic aromatic hydrocarbons: A roadway tunnel study. Environ Sci Technol 23 (10) 1269–1278

    CAS  Google Scholar 

  9. Bellin CA, O’Connor GA (1990): Plant uptake of pentachlorophenol from sludge-amended soils. J Environ Qual 19, 603–608

    CAS  Google Scholar 

  10. Bogan BW, Lamar RT (1995): One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons byPhanerochaete chrysosporium. Appl Environ Microbiol 61, 2631–2635

    CAS  Google Scholar 

  11. Bogan BW, Schoenike B, Lamar RT, Cullen D (1996): Expression of LiP genes during growth in soil and oxidation of anthracene byPhanerochaete chrysosporium. Appl Environ Microbiol 62, 3697–3703

    CAS  Google Scholar 

  12. Bokern M, Raid P, Harms H (1998): Toxicity, uptake and metabolism of 4-n-Nonylphenol in root cultures and intact plants under septic and aseptic conditions. Environ Sci Poll Res 5, 21–27

    CAS  Google Scholar 

  13. Bokern M, Harms H (1997): Toxicity and metabolism of 4-n-nonylphenol in cell suspension cultures of different plant species. Environ Sci Technol 31, 1849–1854

    CAS  Google Scholar 

  14. Bokern M, Nimtz M, Harms H,(1996): Metabolites of 4-n-nonylphenol in wheat cell suspension cultures. J Agric Food Chem 44, 1123–1127

    CAS  Google Scholar 

  15. Boonchan S, Britz M, Stanley G (2000): Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66 (3) 1007–1019

    CAS  Google Scholar 

  16. Boyle D, Wiesner C, Richardson A (1998): Factors affecting the degradation of polyaromatic hydrocarbons in soil by whiterot fungi. Soil Biol Biochem 30, 873–882

    CAS  Google Scholar 

  17. Bozac C, O’Keffe DP, Cristoffersen RE (1992): Expression of a ripening-related avocado (Persea americana) cytochrome P450 in yeast. Plant Physiol 100, 1976–1981

    Google Scholar 

  18. Briggs G, Bromilow R, Evans A, Williams M (1983): Relationships between lipophilicity and the distribution of nonionised chemicals in Barley shoots folowing uptake by the roots. Pest Sci 14, 492–500

    CAS  Google Scholar 

  19. Brown MH, Paulsen IT, Skurray RA (1999): The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 31, 393–395

    Google Scholar 

  20. Bukovac MT, Petyracek PD, Fader RG, Morse RD (1990): Sorption of organic compounds by plant cuticles. Weed Sci 38, 289–298

    CAS  Google Scholar 

  21. Bull AT (1992): Degradation of hazardous wastes. In: The treatment and handling of wastes. (Bradshaw AD, Southwood R, Warner F, Eds) Chapman and Hall, London, pp 155–166

    Google Scholar 

  22. Bumpus JA, Tien M, Wright D, Aust AD (1985): Oxidation of persistent environmental pollutants by a white-rot fungus. Science 228, 1434–1436

    CAS  Google Scholar 

  23. Busby WF, Goldman ME, Newberne PM, Wogan GN (1984): Tumorigenicity of fluoranthene in new born mouse lung adenoma bioassay. Carcinogenesis 5, 1311–1316

    CAS  Google Scholar 

  24. Butler CS, Mason JR (1997): Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microbial Physiol 38, 47–84

    CAS  Google Scholar 

  25. Caldeira M, Heald SC, Carvalho ME Vasconcelos I, Bull AT, Castro PML (1999) 4-chlorophenol degradation by a bacterial consortium: development of a granular activated carbon biofilm reactor. Appl Microbiol Biotechnol 52, 722–729

    CAS  Google Scholar 

  26. Candeias LP, Harvey PJ (1995): Lifetime and reactivity of the veratryl alcohol radical cation. J Biol Chem 270, 16745–16748

    CAS  Google Scholar 

  27. Casterline JL, Barnett N M, Ku Y (1985): Uptake, translocation, and transformation of pentachlorophenol in soybean and spinach plants. Environ Res 37, 101–108

    CAS  Google Scholar 

  28. Cerniglia CE (1997): Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19, 324–333

    CAS  Google Scholar 

  29. Chaineau CH, Morel JL, Oudot J (2000): Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize. J Environl Qual 29, 569–578

    CAS  Google Scholar 

  30. Chiapella C, Radovan RD, Moreno JA, Casares L, Barbé J, Llagostera M (2000): Plant activation of aromatic amines mediated by cytochromes P450 and flavin-containing monooxygenases. Mut Res /Gen Toxicol Environ Mutagen 470 (2) 155–160

    CAS  Google Scholar 

  31. Chiapella C, Ysern P, Riera J, Llagostera M (1995): A plant metabolic activation system from Persea americana with cytochrome P450-dependent and peroxidase activities. Mut Res/ Fund Mol Mech Mutagen 329, 11–18

    CAS  Google Scholar 

  32. Collins PJ, Kotterman MJJ, Field JA, Dobson ADW (1996): Oxidation of anthracene and benzo (a) pyrene by laccases fromTrametes versicolor. Appl Environ Microbiol 62: 4563–4567

    CAS  Google Scholar 

  33. Commandeur LCM, Parsons JR (1990): Degradation of halogenated aromatic compounds. Biodegradation 1, 201–220

    Google Scholar 

  34. Cristofi N, Ivshina B, Kuyukina MS, Philp JC (1998): Biological treatment of crude oil contaminated soil in Russia. In: Contaminated Land and Groundwater — Future Directions (Lerner DN, Walton NRG, Eds): Geological Society, London, Engineering Geology Special Publications 14, 45–51

    Google Scholar 

  35. Crosby DG (1981): Environmental chemistry of pentachlorophenol. Pure Appl Chem 53, 1051–1080

    Google Scholar 

  36. Cunningham SD, Ow DW (1996): Promises and prospects of phytoremediation. Plant Physiol 110, 715–719

    CAS  Google Scholar 

  37. Dec J, Bollag J-M (1990): Detoxification of substituted phenols by oxidoreductive enzymes through polymerisation reactions. Arch Environ Contam Toxicol 19, 543–550

    CAS  Google Scholar 

  38. Dec J, Bollag J-M (1994): Use of plant material for the decontamination of water polluted with phenols. Biotechnol Bioeng 44, 1132–1139

    CAS  Google Scholar 

  39. Dias SM (1998): Tratamento de efluentes em zonas húmidas construídas ou leitos de macrófitas. Boletim de Biotecnologia 60, 14–20

    Google Scholar 

  40. Diener AC, Gaxiola RA, Fink GR (2001):Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins. Plant Cell 13, 1625–1638

    CAS  Google Scholar 

  41. Donelly PK, Hedge RS, Fletcher JS (1994): Growth of PCB-degrading bacteria on compounds from phytosynthetic plants. Chemosphere 28, 981–988

    Google Scholar 

  42. Dunford HB (1999): Heme Peroxidase, John Wiley, New York

    Google Scholar 

  43. Dupont S, Khan SU (1992): Bound (non-extractable)14C residues in soybean treated with [14C] metribuzin. J Agric Food Chem 40, 225–241

    Google Scholar 

  44. Edwards NT (1983): Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment — a review. J Environ Qual 12, 427–441

    CAS  Google Scholar 

  45. Ellenhorn MJ, Barceloux DG (1988): Medical toxicology — diagnosis and treatment of human poisoning. New York, NY, Elsevier Science Publishing Co., Inc

    Google Scholar 

  46. Elstner EF, Heupel A (1976): Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.) Planta 130, 175–180

    CAS  Google Scholar 

  47. EPA (1996): Soil screening guidance: Technical background document. Rep No EPA/540/R95/128. EPA, Washington

  48. Erickson LE, Davis LC, Narayanam M (1995): Bioenergetics and bioremediation of contaminated soil. Thermochim Acta 250, 353–358

    CAS  Google Scholar 

  49. Ferris JP, MacDonald LH, Patrie MA, Martin MA (1976): Aryl hydrocarbon hydroxylase activity in the fungusCunninghamella bainieri: Evidence for the presence of cytochrome P-450. Arch Biochem Biophys 175, 443–452

    CAS  Google Scholar 

  50. Fetznar S, Lingens F (1994): Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 58, 641–685

    Google Scholar 

  51. Fewson CA (1981): Biodegradation of aromatics with industrial relevance, p 141–179. In: Leisinger T, Cook AM (Eds): Microbial degradation of xenobiotics and recalcitrant compounds. Academic Press, London

    Google Scholar 

  52. Field JA, Boelsma F, Baten H, Rulkens WH (1995): Oxidation of anthracene in water/solvent mixtures by the white-rot fungus,Bjerkandera sp. Strain BOS55. Appl Microbiol Biotechnol 44, 234–240

    CAS  Google Scholar 

  53. Fry, SC (1986): Cross-linking of matrix polymers in the growing cell walls of angiosperms. Ann Rev Plant Physiol 37, 165–186

    CAS  Google Scholar 

  54. Gadd GM (2001): Fungi in Bioremediation. 500pp Cambridge University Press

    Google Scholar 

  55. Gallandt ER, Balke NE (1995): Xenobiotic glucosyltransferase activity from suspension-culturedGlycine max cell. Pesticide Sci 43, 31–40

    CAS  Google Scholar 

  56. Gaspar Th (1986): Integrated relationships of biochemical and physiological peroxidase activities. In: Molecular and Physiological Aspects of Plant Peroxidases Eds: Greppin H, Penel C, Gapsar Th pp 455–468

  57. Gaspar Th, Penel C, Castillo FJ, Greppin H (1985): A twostep control of basic and acidic peroxidases and its significance for growth and development. Physiol Plantarum 64, 418–423

    CAS  Google Scholar 

  58. Gaspar Th, Penel C, Thorpe T, Greppin H (1982): Peroxidases 1970–1980: a survey of their biochemical and physiological roles in higher plants. Geneve: Universite de Geneve-Centre de Botanique

    Google Scholar 

  59. Giger W, Brunner PH, Schaffner C (1984): 4-Nonylphenol in sewage sludge: Accumulation of toxic metabolites from nonionic surfactants. Science 225, 623–625

    CAS  Google Scholar 

  60. Giger W, Stephanou E, Schaffner C (1981): Persistent organic chemicals in sewage effluents: 1. Identifications of nonylphenols and nonylphenolethoxylates by glass capillary gas chromatography/mass spectrometry. Chemosphere 19, 1253–1263

    Google Scholar 

  61. Gilbert ES, Crowley DE (1997): Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. Strain B1B. Appl Environ Microbiol 63, 1933–1938

    CAS  Google Scholar 

  62. Goodin J, Webber M (1995): Persistence and fate of anthracene and benzo(a)pyrene in municipal sludge treated soil. J Environ Qual 24, 271–278

    CAS  Google Scholar 

  63. Gramss G, VoigtK-D, Firsche B (1999): Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material. Chemosphere 38, 1481–1494

    CAS  Google Scholar 

  64. Gramss G, Ziegenhagen D, Sorge S (1999): Degradation of soil humic extract by wood- and soil-associated fungi, bacteria and commercial enzymes. Microbial Ecol 37, 140–151

    CAS  Google Scholar 

  65. Grimm E; Neumann S; Krug B (1987): Transport of xenobiotics in higher plants iv, amobility of the acidic compounds bromoxynil and pentachlorophenol. Biochem Physiol Pflanzen 182, 1367–1380

    Google Scholar 

  66. Groeger A, Fletcher J (1988): The influence of increasing chlorine content on the accumulation and metabolism of polychlorinated biphenyls (PCBs) by Paul’s Scarlet Rose cells. Plant Cell Rep 7, 329–332

    CAS  Google Scholar 

  67. Gunther T, Dornberger U, Fritsche W (1996): Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33, 203–215

    CAS  Google Scholar 

  68. Haas R, Schreiber I, Koss G (1990): Uptake of PAHs and heavy metals in cereal — mutual influence (in German). UWSF — Z. Umweltchem Ökotox 2, 66–70

    CAS  Google Scholar 

  69. Haemmerli SD, Leisola MSA, Sanglard D, Fiechter A (1986): Oxidation of benzo(a)pyrene by extracellular ligninases ofPhanerochaete chrysosporium. J Biol Chem 261, 6900–6903

    CAS  Google Scholar 

  70. Haggblom MM (1992): Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103, 29–72

    CAS  Google Scholar 

  71. Hammel KE, Kalyanaraman B, Kirk TK (1986): Oxidation of polycyclic aromatic hydrocarbons and dibenzo(p)-dioxins byPhanerochaete chrysosporium ligninase. J Biol Chem 261, 6948–6952

    Google Scholar 

  72. Hansberg W, Aguirre J (1990): Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J Theor Biol 142, 201–221

    CAS  Google Scholar 

  73. Hansikova H, Frei E, Anzenbacher P, Stiborova M (1994): Isolation of plant cytochrome P-450 and NADPH: cytochrome P-450 reductase from tulip bulbs (Tulipa fosteriana L.) oxidizing xenobiotics. Gen Physiol Biophys 13, 149–169

    CAS  Google Scholar 

  74. Hardman, DJ (1991): Biotransformation of halogenated compounds. Critical Rev Biotechnol 11, 1–40

    CAS  Google Scholar 

  75. Harms H, Langebartels C (1986): Standarized plant cell suspension test systems for an ecotoxicologic evaluation of the metabolic fate of xenobiotics. Plant Sci 45, 157–165

    CAS  Google Scholar 

  76. Harms H (1983): Uptake and conversion of three different 5-ring polycyclic aromatic hydro-carbons (PAHs) in cell suspension cultures of various Chenopodiaceae-species. Z Naturforsch 38c, 382–386

    CAS  Google Scholar 

  77. Harms H (1992):In-vitro systems for studying phytotoxicity and metabolic fate of pesticides and xenobiotics in plants. Pesticide Sci 35, 277–281

    CAS  Google Scholar 

  78. Harms H, Dehnen W, Moench W (1977): Benzo(a)pyrene metabolitess formed by plant cells. Z Naturforsch 32c, 321–326

    CAS  Google Scholar 

  79. Harrison MJ (1999): Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Ann Rev Plant Physiol Plant Mol Biol 50, 361–389

    CAS  Google Scholar 

  80. Harvey PJ, Schoemaker HE, Palmer JM (1986): Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation byPhanerochaete chrysosporium. FEBS Lett 195, 242–246

    CAS  Google Scholar 

  81. Harvey PJ, Schoemaker HE, Palmer JM (1987): Lignin degradation by white-rot fungi. Plant Cell Environ 10, 709–714

    CAS  Google Scholar 

  82. Haselwandter K, Bobleter O, Read DJ (1990): Degradation of14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153, 352–354

    CAS  Google Scholar 

  83. Hassler JA, Estabrook R, Murray M, Pikuleva I, Waterman M, Capdevila J, Holla V, Helvig C, Falck JR, Farrell G, Kaminsky L, Spivack SD, Boitier E, Beaune P (1999): Human cytochromes P450. Mol Aspects Med 20, 1–137

    Google Scholar 

  84. Head IM (1998): Bioremediation: towards a credible technology. Microbiol 144, 599–608

    CAS  Google Scholar 

  85. Hedge RS, Fletcher JS (1996): Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere 32, 2471–2479

    Google Scholar 

  86. Heider J, Fuchs G (1997): Microbial anaerobic aromatic metabolism. Anaerobe 3, 1–22

    CAS  Google Scholar 

  87. Henner P, Schiavon M, Druelle V, Lichtfouse E (1999): Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Org Geochem 30, 963–969

    CAS  Google Scholar 

  88. Higashi K, Nakashima K, Karasaki Y, Fukunaga M, Mizuguchi Y (1981): Activation of benzo(a)pyrene by microsomes of higher plant tissues and their mutagenesis. Biochem Int 2, 373–380

    CAS  Google Scholar 

  89. Hirata T, Ashida Y, Mori H, Yoshinaga D, Goad LJ (2000): A 37kDa peroxidase secreted from liverworts in response to chemical stress. Phytochem 55, 197–202

    CAS  Google Scholar 

  90. Hofflich G, Wiehe W, Hecht-Buchholz C (1995): Rhizosphere colonisation of different crops with growth promotingPseudomonas andRhizobium bacteria. Microbiol Res 150, 139–147

    Google Scholar 

  91. Huelster A, Mueller JF, Marschner H (1994): Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) to vegetables of the cucumber family (Cucurbitaceae). Environ Sci Technol 28, 1110–1115

    CAS  Google Scholar 

  92. Jayaweera R, Petersen R, Smejtek P (1982): Induced hydrogen ion transport in liquid membranes as origin of toxic effect of pentachlorophenol in an alga. Pesticide Biochem Physiol 18, 197–204

    CAS  Google Scholar 

  93. Jobling S, Sheahan D, Osborne JA, Matthiessen P, Sumpter JP (1996): Inhibition of testicular growth on rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenol chemicals. Environ Toxicol Chem 15, 194–202

    CAS  Google Scholar 

  94. Jones KC (1989): Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last century. Environ Sci Technol 23(1): 95–101

    CAS  Google Scholar 

  95. Jordahl JL, Foster L, Schnoor JL, Alvarez PJJ (1997): Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem 16, 1318–1321

    CAS  Google Scholar 

  96. Joshi DK, Gold MH (1993): Degradation of 2,4,5-trichlorophenol by the lignin degrading basidiomycetePhanerochaete chrysosporium. Appl Environ Microbiol 59, 1779–1785

    CAS  Google Scholar 

  97. Kaden DA, Hites RA, Thilly WG (1979): Mutagenicity of soot and associated polycyclic aromatic hydrocarbons to Salmonella typhimurium. Cancer Res 39, 4152–4159

    CAS  Google Scholar 

  98. Keith LH, Telliard NA (1979): ES&T special report: Priority pollutants I — A perspective view. Environ Sci Technol 13, 416–423

    Google Scholar 

  99. Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammer B, Kirk TK (1990): Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268, 475–480

    CAS  Google Scholar 

  100. Klein M, Weissenböck G, Dufaud A, Gaillard C, Kreuz K, Martinoia E (1996): Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J Biol Chem 271, 29666–29671

    CAS  Google Scholar 

  101. Kolb M, Harms H (2000): Metabolism of fluoranthene in different plant cell cultures and intact plants. Environ Toxicol Chem 19 (5) 1304–1310

    CAS  Google Scholar 

  102. Korte F, Kvesitadze G, Ugrekhelidze D, Gordeziani M, Khatisashvili G, Buadze O, Zaalishvili G, Coulston F (2000): Review. Organic toxicants and plants. Ecotox Environ Safety 47, 1–26

    CAS  Google Scholar 

  103. Kulakow P, Schwab A, Banks M (2000): Screening plant species for growth on weathered, petroleum hydrocarboncontaminated sediments. Int J Phytorem 2 (4) 297–317

    CAS  Google Scholar 

  104. La Voie EJ, Cai Z-W, Metscher CL, Weyand EH (1994): Tumorigenic activity of fluoranthene, 2-methylfluoranthene and 3-methylfluoranthene in newborn CD-1 mice. Carcinogenesis 15, 2131–2135

    Google Scholar 

  105. La Voie EJ, Hecht SS, Bedenko V, Hoffmann D (1982): Identification of the mutagenic metabolites of fluoranthene, 2-methylfluoranthene and 3-methylfluoranthene. Carcinogenesis 3, 841–846

    Google Scholar 

  106. Lagrimini LM (1996): The role of the tobacco anionic peroxidase in growth and development. In: Plant Peroxidases: Biochemistry and Physiology Eds: Obinger C, Burner U, Ebermann R, Penel C, Greppin H University of Geneva 1996, pp 235–242

  107. Laha S, Luthy RG (1992): Effects of non-ionic surfactants on the solubilisation and mineralisation of phenanthrene in soil-water systems. Biotechnol Bioeng 40, 1367–1380

    CAS  Google Scholar 

  108. Lamar RT, Dietrich DM (1990): In situ depletion of pentachlorophenol from contaminated soil byPhanerochaete spp. Appl Environ Microbiol 56, 3093–3100

    CAS  Google Scholar 

  109. Lamar RT, Glaser JA, Kirk TK (1990): Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot basidiomycetePhanerochaete chrysosporium: mineralisation, volatilisation and depletion of PCP. Soil Biol Biochem 22, 433–440

    CAS  Google Scholar 

  110. Lamar RT, Dietrich DM (1992): Use of lignin-degrading fungi in the disposal of pentachlorophenol-treated wood. J Indust Microbiol 9, 181–191

    CAS  Google Scholar 

  111. Langebartels C, Harms H (1985): Analysis for nonextractable (bound) residues of penta-chlorophenol in plant cells using a cell wall fractionation procedure. Ecotox Environ Safety 10, 268–279

    CAS  Google Scholar 

  112. Langebartels C, Harms H (1984): Metabolism of pentachlorophenol in cell suspension cultures of soybean and wheat: pentachlorophenol glucoside formation. Z f Pflanzenphys 113, 201–211

    CAS  Google Scholar 

  113. Leah JM, Worrall TL, Cobb AH (1992): Isolation and characterization of two glucosyltransferases fromGlycine max associated with bentazone metabolism. Pesticide Sci 34, 81–87

    CAS  Google Scholar 

  114. Lee R, Jones K (1999): Gas-particle partitioning of atmospheric PCDD/Fs: measurements and observations on modeling. Environ Sci Technol 33(20) 3596–3604

    CAS  Google Scholar 

  115. Li Y, Baldauf S, Lim E-K, Bowles DJ (2001): Phylogenetic Analysis of the UDP-glycosyltransferase multigene family ofArabidopsis thaliana. J Biol Chem 276, 4338–4343

    CAS  Google Scholar 

  116. Lim L, Harrison R, Harrad S (1999): The contribution of traffic to atmospheric concentrations of polycyclic armoatic hydrocarbons. Environ Sci Technol 33(20) 3538–3542

    CAS  Google Scholar 

  117. Lin J-E, Wang HY, Hickery RF (1990): Degradation kinetics of pentachlorophenol byPhanerochaete chrysosporiutn. Biotechnol Bioeng 35, 1125–1134

    CAS  Google Scholar 

  118. Lin Q, Mendelssohn IA (1998): The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol Eng 10, 263–274

    Google Scholar 

  119. Liste HH, Alexander M (2000a): Accumulation of phenantrene and pyrene in rhizosphere soil. Chemosphere 40, 11–14

    CAS  Google Scholar 

  120. Liste HH, Alexander M (2000b): Plant promoted pyrene degradation in soil. Chemosphere 40, 7–10

    CAS  Google Scholar 

  121. Liu G, Sanchez-Fernandez R, Li Z-S, Rea PA (2001): Enhanced multispecificity of Arabidopsis vacuolar MRP-type ABC transporter, AtMRP2. J Biol Chem 276, 8648–8656

    CAS  Google Scholar 

  122. Livingstone DR (1998): The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp Biochem Physiol A: Mol Integ Physiol 120, 43–49

    CAS  Google Scholar 

  123. Macek T, Mackova M, Kas J (2000): Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Advances 18, 23–34

    CAS  Google Scholar 

  124. Machate T, Noll H, Behrens H, Kettrup A (1997): Degradation of phenantrene and hydraulic characteristics in a constructed wetland. Water Res 31, 554–560

    CAS  Google Scholar 

  125. Maehlum T (1995): Treatment of landfill leachate in on-site lagoons and Constructed Wetlands. Water Sci Technol 32, 129–135

    CAS  Google Scholar 

  126. Mansuy D (1998): The great diversity of reactions catalysed by cytochromes P450. Comp Biochem Physiol C 121, 5–14

    Google Scholar 

  127. Marabini L, Radiee S, Cipeletti B, Chiesara E (1994): Different amounts of cytochrome P450-dependent monooxygenases in tulip bulbs, pea seedlings and maize endosperm cells. Plant Sci 99, 135–140

    CAS  Google Scholar 

  128. McCully ME (1999): Roots in soil: unearthing the complexities of roots and their rhizospheres. Ann Rev Plant Physiol Plant Mol Biol 50, 695–718

    CAS  Google Scholar 

  129. Meagher R (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Op Plant Biol 3, 153–162

    CAS  Google Scholar 

  130. Meharg AA, Cairney JWG (2000): Ectomycorrhizas — Extending the capabilities of rhizosphere remediation? Soil Biol Biochem 32, 1475–1484

    CAS  Google Scholar 

  131. Mejare M, Bulow L (2001): Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19, 67–73

    CAS  Google Scholar 

  132. Menzie CA, Potocki BB, Santodonato J (1992): Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26(7) 1278–1284

    CAS  Google Scholar 

  133. Messner B, Schröder P, Sandermann H (1996): Cell suspension cultures of spruce and soybean: induction of trichlorophenol glucosyltransferase activity by herbicide safeners and fungal elicitors. Plant Physiol Biochem Special issue: abstract S19-19

  134. Meulenberg R, Rijnaarts HHHM, Doddema HJ, Field JA (1997): Partially oxidised polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152, 45–49

    CAS  Google Scholar 

  135. Morel JL, Chaineau CH, Schiavon M, Lichtfouse E (1999): The role of plants in the remediation of contaminated soils. In: Ph Baveye (Eds): Bioavailability of Organic Xenobiotics in the Environment. Kluwer Acad Publ, London pp 429–449

    Google Scholar 

  136. Myia RK, Firestone MK (2000): Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass. J Environ Qual 29, 584–592

    Google Scholar 

  137. Nakajima D, Kojima E, Iwaya S, Suzuki J, Suzuki S (1996): Presence of 1-hydroxypyrene conjugates in woody plant leaves and seasonal changes in their concentrations. Environ Sci Technol 30, 1675–1679

    CAS  Google Scholar 

  138. Nichols TD, Wolf DC, Rogers HB, Beyrouty CA, Reynolds CM (1997): Rhizosphere microbial populations in contaminated soils. Water, Air Soil Pollut 95, 165–178

    CAS  Google Scholar 

  139. Noordman W, Janssen D (1995): Desorption of adsorbed organic pollutants stimulated by biosurfactants. In: Van Den Brink W, Bosman R, Arendt F (Eds): Contaminated soil ’95. Kluwer Acad Publ, London 1319–1322

    Google Scholar 

  140. Novotny C, Erbanova P, Dsasek V, Kubatova A, Cajthaml T, Lang E, Krahl J, Zadrazil F (1999): Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white-rot fungi. Biodegradation 10, 159–168

    CAS  Google Scholar 

  141. O’Keefe DP, Leto KL (1988): Cytochrome P450 from the mesocarp of avocado (Persea americana). Plant Physiol 89, 1141–1149

    Article  Google Scholar 

  142. Ortega-Calvo J-J, Saiz-Jimenez C (1998): Effect of humic fractions and clay on biodegradation of phenanthrene by aPseudomonas fluorescens strain isolated from soil. Appl Environ Microbiol 64, 3123–3126

    CAS  Google Scholar 

  143. Oueslati MA, Haddad M, Blake G (1998): Élimination du phénol par deux plantes aquatics: Juncus fontanessi (Gay) et lemna minor L. Revue des sci de léau 11, 555–568

    CAS  Google Scholar 

  144. Pflugmacher S, Sandermann H Jr (1998a): Cytochrome P450 monooxxygenases for fatty acids and xenobiotics in marine macroalgae. Plant Physiol 117, 123–128

    CAS  Google Scholar 

  145. Pflugmacher S, Sandermann H Jr (1998b): Taxonomic distribution of plant glucosyltransferases acting on xenobiotics. Phytochem 49, 507–511

    CAS  Google Scholar 

  146. Phillips TM, Liu D, Seech AG, Lee H, Trevors JP (2000): Bioremediation in field box plots of a soil contaminated with wood-preservatives: a comparison of treatment conditions using toxicity testing as a monitoring technique. Water, Air Soil Pollut 121, 173–187

    CAS  Google Scholar 

  147. Pierrel MA, Batard Y, Kazmaier M, Mignotte C, Pompon D, Durst F, Werck-Reichhart D (1994): Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast. Substrate specificity of a cinnamate hydroxylase. Eur J Biochem 224, 835–844

    CAS  Google Scholar 

  148. Purdom CE, Hardiman PA, Bye VJ, Eno NC, Tyler CR, Sumpter JP (1994): Estrogenic effects of effluents from sewage treatment works. Chem Ecol 8, 275–285

    CAS  Google Scholar 

  149. Roy S, Haenninen O (1992): Pentachlorophenol: uptake/ elimination kinetics and metabolism in an aquatic plantEichhornia crassipes. Environ Toxicol Chem 13(5) 763–773

    Google Scholar 

  150. Reddy BR, Sethunathan N (1994): Mineralization ofp- nitrophenol in the rhizosphere of rice. Agric Ecosyst Environ 47, 313–317

    CAS  Google Scholar 

  151. Reddy GVB, Gold MH (1999): A two-component tetrachlorohydroquinone reductive dehalogenase system from the lignindegrading basidiomycetePhanerochaete chrysosporium. Biochem Biophys Res Commun 257, 901–905

    CAS  Google Scholar 

  152. Reilley KA, Banks MK, Schwab AP (1996): Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25, 212–219

    Article  CAS  Google Scholar 

  153. Reineke W, Knackmuss HJ (1988): Microbial degradation of haloaromatics. Ann Rev Microbiol 42, 263–287

    CAS  Google Scholar 

  154. Robineau T, Batard Y, Nedelkina S, Cabello-Hurtado F, LeRet M, Sorokine O, Didierjean L, Werck-Reichhart D (1998): The chemically-inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics. Plant Physiol 118, 1049–1056

    CAS  Google Scholar 

  155. Roy-Arcand L, Archibald FS (1991): Direct dechlorination of chlorophenolic compounds by laccases fromTrametes (Coriolus) versicolor. Enzyme Microb Technol 13, 194–203

    CAS  Google Scholar 

  156. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant MolBiol 49, 643–668

    CAS  Google Scholar 

  157. Sánchez-Fernández R, Davies TGE, Coleman JOD, Rea PA (2001): TheArabidopsis thaliana ABC Protein Superfamily, a Complete Inventory. J Biol Chem 276, 30231–30244

    Google Scholar 

  158. Sandermann H, Musick TJ, Aschbacher PW (1992): Animal bioavailability of a 3,4-dichloroaniline-lignin metabolite fraction from wheat. J Agric Food Chem 40, 2001–2007

    CAS  Google Scholar 

  159. Sandermann H, Arjmand M, Gennity L, Winkler R, Struble CB (1990): Animal bioavailability of defined xenobiotic lignin metabolites. J Agric Food Chem 38, 1877–1880

    CAS  Google Scholar 

  160. Sandermann H (1994): Higher plant metabolism of xenobiotics: the ’green liver’concept. Pharmacogenetics 4, 225–241

    CAS  Google Scholar 

  161. Sandermann H, Schmitt R, Eckey H, Bauknecht T (1991): Plant biochemistry of xenobiotics: isolation and properties of soybean O- and N-glucosyl and O- and N-malonyltransferases for chlorinated phenols and anilines. Arch Biochem Biophys 287, 341–350

    CAS  Google Scholar 

  162. Sato Y, Sugiyama M, Gorecki RJ, Fukuda H, Komamine A (1993): Interrelationship between lignin deposition and the activities of peroxidase isoenzymes in differentiating tracheary elements of Zinnia. Planta 189, 584–589

    CAS  Google Scholar 

  163. Schaefer W, Sandermann H (1988): Metabolism of pentachlorophenol in cell suspension cultures of wheat (Triticum aestivum L.). Tetrachlorocatechol as a primary metabolite. J Agric Food Chem 36, 370–377

    CAS  Google Scholar 

  164. Schalk M, Batard Y, Seyer A, Nedelkina S, Durst F, Werck-Reichhart D (1997a): Design of fluorescent substrates and potent inhibitorsof CYP73As, P450s that catalyze 4-hydroxylation of cinnamic acid in higher plants. Biochem 36, 15252–15261

    Google Scholar 

  165. Schalk M, Cabello-Hurtado F, Pierrel MA, Atanossova R, Saindrenan P, Werck-Reichhart D (1998): Piperonylic acid, a selective mechanism-based inactivator of the trans-cinnamate 4-hydroxylase: a new tool to control the flux of metabolites in the phenypropanoid pathway. Plant Physiol 118, 209–218

    CAS  Google Scholar 

  166. Schalk M, Pierrel MA, Zimmerlin A, Batard Y, Durst F, Werck-Reichhart D (1997b): Xenobiotics: Substrates and inhibitors of the plant P450s. ESPR — Environ Sci & Pollut Res 4, 229–234

    CAS  Google Scholar 

  167. Schinner F, Sonnleitner R (1996): Bodenokologie: Mikrobiologie und Bodenzymatik, Vol 1, Springer, Berlin

    Google Scholar 

  168. Schmitt R, Kaul J, vd Trenck T, Schaller E, Sandermann H (1985): β-D-glucosyl and O-malonyl-β-D-glucosyl conjugates of pentachlorophenol in soybean and wheat: identification and enzymatic synthesis. Pest Biochem Physiol 24, 77–85

    CAS  Google Scholar 

  169. Schoemaker HE, Harvey PJ, Bowen RM, Palmer JM (1985): On the mechanisms of enzymatic lignin breakdown. FEBS Lett 183, 7–12

    CAS  Google Scholar 

  170. Schwab A, Banks M (1994): Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. In: American Chemical Society (Ed) Bioremediation through rhizosphere 563, 132–141

  171. Sharma HA, Barber JT, Ensley HE, Polito MA (1997): A comparison of the toxicity and metabolism of phenol and chlorinated phenols byLemna gibba, with special reference to 2,4,5-trichlorophenol. Environ Toxicol Chem 16 (2) 346–350

    CAS  Google Scholar 

  172. Shuttleworth KL, Cerniglia CE (1995): Environmental aspects of PAH degradation. Appl Biochem Biotechnol 54, 291–302

    CAS  Google Scholar 

  173. Siciliano SD, Germida JJ (1999): Enhanced bioremediation of chlorobenzoates in rhizosphere soil. Soil Biol Biochem31, 299–305

    CAS  Google Scholar 

  174. Smith AT, Veicht N (1998): Substrate binding and catalysis in heme peroxidases. Curr Opinion Chem Biol 2, 269–278

    CAS  Google Scholar 

  175. Smith SE, Read DJ (1997): In: Mycorrhizal Symbiosis (2nd Edition). Academic Press: London, UK p 605

    Google Scholar 

  176. Soto AM, Justicia H, Wray JW, Sonnenschein C (1991):p- Nonylphenol: an estrogenic xenobiotic released from modified polystyrene. Environ Health Perspect 92, 167–173

    CAS  Google Scholar 

  177. Stevenson F (1994): Humus chemistry, 2nd edition. J Wiley and Sons, NY

    Google Scholar 

  178. Stiborova M, Schmeiser HH, Frei E (2000): Oxidation of xenobiotics by plant microsomes, a reconstituted cytochrome P450 system and peroxidase: a comparative study. Phytochem 54, 353–362

    CAS  Google Scholar 

  179. Sutherland JB (1992): Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol 9, 53–62

    CAS  Google Scholar 

  180. Sweetman AJ (1994): Development and application of a multi-residue analytical method for the determination of nalkanes, linear alkylbenzenes, polynuclear aromatic hydrocarbons and 4-nonylphenol in digested sewage sludges. Water Res 28, 343–353

    CAS  Google Scholar 

  181. Tabata M, Umetani Y, Ooya M, Tanaka S (1988): Glucosylation of phenolic compounds by plant cell cultures. Phytochem 27, 809–813

    CAS  Google Scholar 

  182. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plantArabidopsis thaliana. Nature 408, 796–815

    Google Scholar 

  183. Theodoulou FL (2000): Plant ABC transporters. Biochim Biophys Acta 1464, 79–103

    Google Scholar 

  184. Tommasini R, Vogt E, Schmid J, Fromentau M, Amrhein N, Martinoia E (1997): Differential expression of genes coding for ABC transporters after treatment ofArabidopsis thaliana with xenobiotics. FEBS Lett 411, 206–210

    CAS  Google Scholar 

  185. Topp E, Scheunert I, Attar A, Korte F (1986): Factors affecting the uptake of14C-labelled organic chemicals from soil. Ecotox Environ Safety 11, 219–228

    CAS  Google Scholar 

  186. Trapp S, Matthies M, Scheunert I, Topp EM (1990): Modelling the bioconcentration of organic chemicals in plants. Environ Sci Technol 24(8) 1246–1252

    CAS  Google Scholar 

  187. Trapp S, Matthies M (1997): Modelling volatilization of PCDD/F from soil and uptake into vegetation. Environ Sci Technol 31(1) 71–74

    CAS  Google Scholar 

  188. Trautmann N, Martin JH, Porter KS, Hawk KC (1989): Use of artificial wetlands treatment of municipal solid waste landfill leachate in constructed wetlands for wastewater treatment: Municipal, Industrial and Agricultural. (ed DA Hammer). Lewis Publishers, Chelsea, Michigan, USA

    Google Scholar 

  189. Trenck Tvd, Sandermann H (1980): Oxygenation of Benzo[α]pyrene by plant microsomal fraction. FEBS Lett 119, 227–231

    Google Scholar 

  190. Vaidya AA, Datyre KV (1982): Environmental Pollution during chemical processing of synthetic fibres. Colourate 14, 3–10

    Google Scholar 

  191. Valli K, Gold MH (1991): Degradation of 2,4-dichlorophenol by the lignin degrading fungusPhanerochaete chrysosporium. J Bacteriol 173, 345–352

    CAS  Google Scholar 

  192. Van Duuren BL, Goldschmidt BM (1976) Carcinogenic and tumor-promoting agents in tobacco carcinogenesis. J Nat Cancer Instit 56, 1237–1242

    Google Scholar 

  193. Vogt T, Jones P (2000): Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5, 380–386

    CAS  Google Scholar 

  194. Waidyanatha S, Lin P, Rappaport SM (1996): Characterization of Chlorinated Adducts of Hemoglobin and Albumin Following Administration of Pentachlorophenol to Rats. Chem Res Toxicol 9: 647–653

    CAS  Google Scholar 

  195. Wania F, Mackay D (1996): Tracking the distribution of persistent organic pollutants. Environ Sci Technol 30(9) 390a-396a

    CAS  Google Scholar 

  196. Wei Y, Wu C (1997): PAH emissions from the fluidized-bed incineration of an industrial sludge. J Air Waste Manag Assoc 47 (9) 953–960

    CAS  Google Scholar 

  197. Weiss UM, Moza P, Scheunert I, Haque A, Korte F (1982): Fate of pentachloro-phenol-14C in rice plants under controlled conditions. J Agric Food Chem 30, 1186–1190

    CAS  Google Scholar 

  198. Werck-Reichhart D, Feyereisen R (2000): Cytochrome P450 — A success story. Genome Biol 1 (6) reviews: 3003.1–3003.0

    Google Scholar 

  199. Werck-Reichhart D, Hehn A, Didierjean L (2000): Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5(3) 116–123

    CAS  Google Scholar 

  200. White R, Jobling S, Hoare SA, Sumpter JP, Parker MG (1994): Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinol 135, 175–182

    CAS  Google Scholar 

  201. Wild SR, Jones KC (1995): Polynuclear aromatic hydrocarbons in the United Kingdom environment — A preliminary source inventory and budget. Environ Pollut 88, 91–108

    CAS  Google Scholar 

  202. Wilson, S, Jones K (1993): Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs) — A review. Environ Pollut 81, 229–249

    CAS  Google Scholar 

  203. Winkler R, Sandermann H (1989): Plant metabolism of chlorinated anilines: isolation and identification ofN- glucosyl and N-malonyl conjugates. Pest Biochem Physiol 33, 239–248

    CAS  Google Scholar 

  204. Xu F (1996): Oxidation of phenols, anilines, and benzenethiols by fungal laccases: Correlation between activity and redox potentials as well as halide inhibition. Biochem 35, 7608–7614

    CAS  Google Scholar 

  205. Yasuda K, Takahashi M (1998): The emission of polycyclic aromatic hydrocarbons from municipal solid waste incinerators during the combustion cycle. J Air Waste Manag Assoc 48 (5) 441–447

    CAS  Google Scholar 

  206. Zacchi L, Morris I, Harvey PJ (2000): Disordered ultrastructure in lignin-peroxidase-secreting hyphae of the white-rot fungusPhanerochaete chrysosporium. Microbiol 146, 759–765

    CAS  Google Scholar 

  207. Zheng Z, Shetty K (2000): Azo dye-mediated regulation of total phenolics and peroxidase activity in thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) clonal lines. J Agric Food Chem 48, 932–937

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia J. Harvey.

Additional information

formerly Institute of Plant Nutrition and Soil Science, Federal Agricultural Research Centre (FAL), Braunschweig, Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, P.J., Campanella, B.F., Castro, P.M.L. et al. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ. Sci. & Pollut. Res 9, 29–47 (2002). https://doi.org/10.1007/BF02987315

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987315

Keywords

Navigation