Skip to main content

Advertisement

Log in

Pathogenesis-related genes and proteins in forest tree species

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Trees occupy more than 30% of the land biosphere. They are important from both ecological and environmental standpoints and provide some of the most valuable commodities in the world economy. The perennial nature and size of trees are the critical determinants of their survival in response to biotic and abiotic stresses. The identification of the defense pathways at biochemical and genetic levels in tree pathosystems are beginning to be addressed. The basic physiological and biochemical mechanisms in woody perennials in response to pathogen is homologous to the model annual crop like Arabidopsis, but their secondary metabolic processes and ecological survival strategies are likely to be divergent from their annual counterparts. The limited domestication in tree species makes its molecular mechanisms less comparable to the highly pedigreed crop species. Recent reports have highlighted that the possible difference in genetic programs responding to invasive pathogens between annuals and perennials could be the spatial and temporal pattern of gene regulation. Several reviews on pathogen defense with reference to crop species are available, while similar reports from the tree species are limited to few commercially important species like Populus, Pinus, Picea, Eucalyptus, Castanea, and Pseudotsuga. This paper reviews the present status of pathogenesis-related genes and proteins from tree species with emphasis on the resistant genes and the proteins induced during systemic acquired resistance and highlights the ecological and evolutionary significance of defense-related genes from tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adomas A (2007) Transcript profiling of the Heterobasidion-conifer pathosystem: host and pathogen responses to biotic stress. Dissertation, Swedish University of Agricultural Sciences, Uppsala

  • Allona I, Collada C, Casado R, Paz-Ares J, Aragoncillo C (1996) Bacterial expression of an active class Ib chitinase from Castanea sativa cotyledons. Plant Mol Biol 32(6):1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Alfageme F, Martinez M, Pascual-Ruiz S, Castañera P, Diaz I, Ortego F (2007) Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Transgenic Res 16:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ameline-Torregrosa C, Wang B, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2007) Identification and characterization of NBS-LRR genes in the model plant Medicago truncatula. Plant Physiol. doi:10.1104/pp.107.104588

  • Asiegbu FO, Daniel G, Johansson M (1994) Defense-related reactions of seedling roots of Norway spruce to infection by Heterobasidion annosum (Fr.) Bref. Physiol Mol Plant Path 45:1–19

    Article  Google Scholar 

  • Azaiez A, Boyle B, Levée V, Séguin A (2009) Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi. Mol Plant Microbe Interact 22(2):190–200

    Article  CAS  PubMed  Google Scholar 

  • Bae EK, Lee H, Lee JS, Noh EW, Jo J (2006) Molecular cloning of a peroxidase gene from poplar and its expression in response to stress. Tree Physiol 26(11):1405–1412

    CAS  PubMed  Google Scholar 

  • Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884

    Article  CAS  PubMed  Google Scholar 

  • Barbosa da Silva A, Wanderley-Nogueira AC, Silva RRM, Berlarmino LC, Soares-Cavalcanti NM, Benko-Iseppon AM (2005) In silico survey of resistance (R) genes in Eucalyptus transcriptome. Genet Mol Biol 28(3):562–574

    Article  CAS  Google Scholar 

  • Barry KM, Davies NW, Mohammed CL (2001) Identification of hydrolysable tannins in the reaction zone of Eucalyptus nitens wood by high performance liquid chromatography-electrospray ionisation mass spectrometry. Phytochem Anal 12:120–127

    Article  CAS  PubMed  Google Scholar 

  • Batalia MA, Monzingo AF, Ernst S, Roberts W, Robertus JD (1996) The crystal structure of the antifungal protein zeamatin, a member of the thaumatin-like, PR-5 protein family. Nat Struct Biol 3:19–23

    Article  CAS  PubMed  Google Scholar 

  • Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7:391–399

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N, Joosten MHAJ, de Wit PJGM (1990) Subcellular localization of chitinase and of its potential substrate in tomato root tissues infected by Fusarium oxysporum f. sp. radicis-lycopersici. Plant Physiol 92:1108–1120

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya A, Lakshmi SG (1999) Isolation and characterization of PR1 homolog from the genomic DNA of sandalwood (Santalum album L.). Curr Sci 77(7):959–963

    Google Scholar 

  • Boava LP, Kuhn OJ, Pascholati SF, Di Piero RM, Furtado EL (2009) Effect of acibenzolar-S-methyl and Saccharomyces cerevisiae on the activation of Eucalyptus defences against rust. Aust Plant Path 38(6):594–602

    Article  CAS  Google Scholar 

  • Brandazza A, Angeli S, Tegoni M, Cambillau C, Pelosi P (2004) Plant stress proteins of the thaumatin-like family discovered in animals. FEBS Lett 572:3–7

    Article  CAS  PubMed  Google Scholar 

  • Breiteneder H, Pettenburger K, Bito A, Valenta R, Kraft D, Rumpold H, Scheiner O, Breitenbach M (1989) The gene coding for the major birch pollen allergen Bet v 1 is highly homologous to a pea disease resistance response gene. EMBO J 8:1935–1938

    CAS  PubMed  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA (2000) Induced and preformed antimicrobial proteins. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrecht, pp 371–477

    Google Scholar 

  • Chen Y, Chen T, Shen S, Zheng M, Guo Y, Lin J, Balusˇka F, Sˇ amaj J (2006) Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. Plant J 47:174–195

    Article  CAS  PubMed  Google Scholar 

  • Chimwamurombe PM, Botha AM, Wingfield MJ, Wingfield BD (2001) Molecular relatedness of the polygalacturonase-inhibiting protein genes in Eucalyptus species. Theor Appl Genet 102(4):645–650

    Article  CAS  Google Scholar 

  • Clark NL, Aagaard JE, Swanson WJ (2006) Evolution of reproductive proteins from animals and plants. Reproduction 131:11–22

    Article  CAS  PubMed  Google Scholar 

  • Clarke HRG, Lawrence SD, Flaskerud J, Korhnak TE, Gordon MP, Davis JM (1998) Chitinase accumulates systemically in wounded poplar trees. Physiol Plant 103:154–161

    Article  CAS  Google Scholar 

  • Constabel CP, Yip L, Patton JJ, Christopher ME (2000) Polyphenol Oxidase from Hybrid Poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol 124:285–295

    Article  CAS  PubMed  Google Scholar 

  • Dafoe NJ, Zamani A, Ekramoddoullah AKM, Lippert D, Bohlmann J, Constabel CP (2009) Analysis of the Poplar phloem proteome and its response to leaf wounding. Proteome Res 8(5):2341–2350

    Article  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Datta SK, Muthukrishnan S (1999) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, USA

    Book  Google Scholar 

  • Davis JM, Clarke HRG, Bradshaw HD Jr, Gordon MP (1991) Populus chitinase genes: structure, organization, and similarity of translated sequences to herbaceous plant chitinases. Plant Mol Biol 17:631–639

    Article  CAS  PubMed  Google Scholar 

  • Davis JM, Wu H, Cooke JEK, Reed JM, Luce KS, Michler CH (2002) Pathogen challenge, salicylic acid, and jasmonic acid regulate expression of chitinase gene homologs in pine. Mol Plant Microbe Interact 15:380–387

    Article  CAS  PubMed  Google Scholar 

  • Devey ME, Delfino-Mix A, Kinloch BB, Neale DB (1995) Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine. Proc Natl Acad Sci USA 92:2066–2070

    Article  CAS  PubMed  Google Scholar 

  • Dong JZ, Dunstan DI (1997) Endochitinase and β-1, 3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta 201:189–194

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Plomion C (2001) Drought differentially affects expression of a PR-10 protein in needles of the maritime pine (Pinus pinaster Ait.) seedling. J Exp Bot 52:1143–1144

    Article  CAS  PubMed  Google Scholar 

  • Duplessis S, Ian M, Francis M, Armand S (2009) Poplar and Pathogen Interactions: insights from Populus genome-wide analyses of resistance and defense gene families and gene expression profiling. Crit Rev Plant Sci 28:309–334

    Article  CAS  Google Scholar 

  • Eden L, Hesling L, Klock R, Ledeboer AM, Meat J, Toonen MY, Visser C, Verrips CY (1982) Cloning of cDNA encoding the sweet tasting plant protein thaumatin and its expression in Escherichia coli. Gene 18:1–12

    Article  Google Scholar 

  • Edreva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiology 31(1–2):105–124

    CAS  Google Scholar 

  • Ee KY, Zhao J, Rehman A, Agboola S (2008) Characterisation of trypsin and α-chymotrypsin inhibitors in Australian wattle seed (Acacia victoriae Bentham). Food Chem 107(1):337–343

    Article  CAS  Google Scholar 

  • Ee KY, Zhao J, Rehman A, Agboola SO (2009) Purification and characterization of a Kunitz-Type Trypsin Inhibitor from Acacia victoriae bentham seeds. J AgricFood Chem 57(15):7022–7029

    Article  CAS  Google Scholar 

  • Ekramoddoullah AKM (2004) Physiology and molecular biology of a family of pathogenesis-related PR-10 proteins in conifers. J Crop Improv 10:261–280

    Article  CAS  Google Scholar 

  • Ekramoddoullah AKM, Taylor D, Hawkins BJ (1995) Characterization of a fall protein of sugar pine and detection of its homologue associated with frost hardiness of western white pine needles. Can J For Res 25:1137–1147

    CAS  Google Scholar 

  • Ekramoddoullah AKM, Yu X, Sturrock RN, Zamani A, Taylor D (2000) Detection and seasonal expression pattern of a pathogenesis-related protein (PR-10) in Douglas-fir (Pseudostuga menziesii) tissues. Physiol Plant 110:240–247

    Article  CAS  Google Scholar 

  • Elfstrand M, Fossdal CG, Swedjemark G, Clapham D, Olsson O, Sitbon F, Sharma P, Lonneborg A, von Arnold S (2001) Identification of candidate genes for use in molecular breeding—a case study with the Norway spruce defensin-like gene, Spi 1. Silvae Genet 50:75–81

    Google Scholar 

  • Epple P, Apel K, Bohlmann H (1997) ESTs reveal a multigene family for plant defensins in Arabidopsis thaliana. FEBS Lett 400:168–172

    Article  CAS  PubMed  Google Scholar 

  • Fossdal CG, Sharma P, Lönneborg A (2001) Isolation of the first putative peroxidase cDNA from a conifer and the local and systemic accumulation of related proteins upon pathogen infection. Plant Mol Biol 47:423–435

    Article  CAS  PubMed  Google Scholar 

  • Fossdal CG, Nagy NE, Sharma P, Lönneborg A (2003) The putative gymnosperm plant defensin polypeptide (SPI1) accumulates after seed germination, is not readily released, and the SPI1 levels are reduced in Pythium dimorphum-infected spruce roots. Plant Mol Biol 52(2):291–302

    Article  CAS  PubMed  Google Scholar 

  • Fossdal CG, Yaqoob N, Solheim H (2009) The reaction zone formation: a unique plant defense found in trees. In: IUFRO tree biotechnology conference whistler, BC, Canada, p 21

  • Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defences of conifer bark beetles and other pests. New Phytol 167:353–376

    Article  CAS  PubMed  Google Scholar 

  • Friedmann M, Ralph SG, Aeschliman D, Zhuang J, Ritland K, Ellis BE (2007) Microarray gene expression profiling of developmental transitions in Sitka spruce (Picea sitchensis) apical shoots. J Exp Bot 58(3):593–614

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–647

    Article  CAS  PubMed  Google Scholar 

  • Furtado EL, Rosa DD, Zamprogno KC, Marino CL, Wilcken CF, Velini ED, Mori ES, Guerrini IA (2007) 14-3-3: defense and regulatory proteins coding by Eucalyptus genome. Sci For 73:9–18

    Google Scholar 

  • Futamura N, Mukai Y, Sakaguchi M, Yasueda H, Inouye S, Midoro-Horiuti T, Goldblum RM, Shinohara K (2002) Isolation and characterization of cDNAs that encode homologs of a pathogenesis related protein allergen from Cryptomeria japonica. Biosci Biotechnol Biochem 66:2495–2500

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Shain L (1995) Purification and characterization of an endopolygalacturonase from Cryphonectra parasitica. Phytopathol 85(10):1352–1353

    Google Scholar 

  • Garcia-Casado G, Collada C, Allona I, Soto A, Casado R, Rodriguez-Cerezo E, Gomez L, Aragoncillo C (2000) Characterization of an apoplastic basic thaumatin-like protein from recalcitrant chestnut seeds. Physiol Plant 110(2):172–180

    Article  CAS  Google Scholar 

  • García-Lorenzo M, Sjödin A, Jansson S, Funk C (2006) Proteinase gene families in populus and Arabidopsis. BMC Plant Biol 6:30

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Alvarez RM, Heil M (2009) Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens. Plant Physiol. doi:10.1104/pp.109.148478

  • Grison R, Grezes-Besset B, Schneider M, Lucante N, Olsen L, Leguay J, Toppan A (1996) Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat Biotechnol 14:643–646

    Article  CAS  PubMed  Google Scholar 

  • Hernández I, Portieles R, Chacón O, Borrás-Hidalgo O (2005) Proteins and peptides for the control of phytopathogenic fungi. Biotecnol Aplicada 22:256–260

    Google Scholar 

  • Hietala AM, Kvaalen H, Schmidt A, Jøhnk N, Solheim H, Fossdal CG (2004) Temporal and spatial profiles of chitinase expression by Norway spruce in response to bark colonization by Heterobasidion annosum. Appl Environ Microbiol 70:3948–3953

    Article  CAS  PubMed  Google Scholar 

  • Hong KH, Hwang JE, Lim CJ, Yang KA, Jin ZL, Kim CY, Koo JC, Cheng WS, Lee KO, Lee SY, Cho MJ, Lim CO (2007) Over-expression of Chinese cabbage phytocystatins 1 retards seed germination in Arabidopsis. Plant Sci 172:556–563

    Article  CAS  Google Scholar 

  • Huang M, Hou P, Wei Q, Xu Y, Chen F (2008) A ribosome-inactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. Plant Growth Regul 54(2):115–123

    Article  CAS  Google Scholar 

  • Ivashov AV, Simchuk AP, Medvedkov DA (2001) Possible role of inhibitors of trypsin-like proteases in the resistance of oaks to damage by oak leafroller Tortrix viridana L. and gypsy moth Lymantria dispar L. Ecol Entomol 26:664–668

    Article  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    Article  CAS  PubMed  Google Scholar 

  • Jermstad D, Sheppard LA, Kinloch BB, Delfino-Mix A, Ersoz ES, Krutovsky KV, Neale DB (2006) Isolation of a full-length CC-NBS-LRR resistance gene analog candidate from sugar pine showing low nucleotide diversity. Tree Genetics Genomes 2(2):76–85

    Article  Google Scholar 

  • Johnk N, Hietala AM, Fossdal CG, Collinge DB, Newman MA (2005) Defense-related genes expressed in Norway spruce roots after infection with the root rot pathogen Ceratobasidium bicorne (anamorph: Rhizoctonia sp.). Tree Physiol 25:1533–1543

    PubMed  Google Scholar 

  • Junghans T, Alfenas AC, Brommonschenkel SH, Oda S, Mello EJ, Grattapaglia D (2003) Resistance to rust (Puccinia psidii Winter) in Eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers. Theor Appl Genet 108(1):175–180

    Article  CAS  PubMed  Google Scholar 

  • Kinlaw CS, Suzanne M, Gerttula CarterMC (1994) Lipid transfer protein genes of loblolly pine are members of a complex gene family. Plant Mol Biol 26(4):1213–1216

    Article  CAS  PubMed  Google Scholar 

  • Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M, Kloareg B, Fritig B (2000) Linear β-1, 3-glucans are elicitors of defense responses in tobacco. Plant Physiol 124:1027–1037

    Article  CAS  PubMed  Google Scholar 

  • Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66(6):619–636

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Terada K, Hayashi E, Kuramoto N, Okamura M, Kawasaki H (2000) RAPD markers linked to a gene for resistance to pine needle gall midge in Japanese black pine (Pinus thunbergii). Theor Appl Genet 100:391–395

    Article  CAS  Google Scholar 

  • Kovalyova VA, Gout RT (2008) Molecular cloning and characterization of scotch pine defensin. Cytol Genetics 42(6):408–412

    Article  Google Scholar 

  • Kozlowski G, Métraux JP (1998) Infection of Norway spruce (Picea abies (L.) Karst.) seedlings with Pythium irregulare Buism. and Pythium ultimum Trow: histological and biochemical responses. Eur J Plant Path 104:225–234

    Article  CAS  Google Scholar 

  • Lapointe G, Luckevich MD, Cloutier M, Seguin A (2001) 14-3-3 gene family in hybrid poplar and its involvement in tree defence against pathogens. J Exp Bot 52:1331–1338

    Article  CAS  PubMed  Google Scholar 

  • Lay FT, Anderson MA (2005) Defensins-components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Shin H, Bae E, Lee J, Noh E (2008) Osmotic stress-inducible expression of a lipid transfer protein gene in poplar. Korean J Plant Resour 21(3):204–209

    Google Scholar 

  • Lin J, Chu S, Wu H, Hsieh Y (1991) Trypsin Inhibitor from the seeds of Acacia confuse. J Biochem 110(6):879–883

    CAS  PubMed  Google Scholar 

  • Lin J, Yan F, Tang L, Chen F (2003) Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol Sin 24:241–246

    CAS  PubMed  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM (2003) Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. ex. D. Don.). Mol Genet Genomics 270(5):432–441

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM (2004) Characterization, expression and evolution of two novel subfamilies of Pinus monticola (Dougl. ex D. Don) cDNAs encoding pathogenesis-related (PR)-10 proteins. Tree Physiol 24:1377–1385

    CAS  PubMed  Google Scholar 

  • Liu J, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3–13

    Article  CAS  Google Scholar 

  • Liu J, Ekramoddoullah AKM, Zamani A (2005) A class IV chitinase is up-regulated by fungal infection and abiotic stresses and associated with slow-canker-growth resistance to Cronartium ribicola in Western White Pine (Pinus monticola). Pytopathol 95(3):284–291

    Article  CAS  Google Scholar 

  • Liu J, Zamani A, Ekramoddoullah AKM (2010) Expression profiling of a complex thaumatin-like protein family in western white pine. Planta 231:637–651

    Article  CAS  PubMed  Google Scholar 

  • Lopes JLS, Valadares NF, Moraes DI, Rosa JC, Araújo HSS, Beltramini LM (2009) Physico-chemical and antifungal properties of protease inhibitors from Acacia plumose. Phytochemistry 70(7):871–879

    Article  CAS  PubMed  Google Scholar 

  • Lorenz WW, Sun F, Liang C, Kolychev D, Wang H, Zhao X, Cordonnier-pratt M, Pratt LH, Dean JFD (2005) Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Physiol 26:1–16

    Article  Google Scholar 

  • Major IT, Constabel CP (2008) Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores. Plant Physiol 146:888–903

    Article  CAS  PubMed  Google Scholar 

  • Margis R, Reis EM, Villeret V (1998) Structural and phylogenetic relationships among plant and animal cystatins. Arch Biochem Biophys 359:24–30

    Article  CAS  PubMed  Google Scholar 

  • Martinez M, Diaz I (2008) The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship. BMC Evol Biol 8:198

    Article  PubMed  CAS  Google Scholar 

  • Martinez M, Rubio-Somoza I, Carbonero P, Diaz I (2003) A cathepsin B like cysteine proteinase gene from Hordeum vulgare (gene CatB) induced by GA in aleurone cells is under circadian control in leaves. J Exp Bot 54:951–959

    Article  CAS  PubMed  Google Scholar 

  • Mattheus N, Ekramoddoullah AKM, Lee SP (2003) Isolation of high-quality RNA from white spruce tissue using a three-stage purification method and subsequent cloning of a transcript from the PR-10 gene family. Phytochem Anal 14:209–215

    Article  CAS  PubMed  Google Scholar 

  • Maurico R, Stahl EA, Korves T, Tian D, Kreitman M, Bergelson J (2003) Natural selection for polymorphism in the disease resistance gene Rps2 of Arabidopsis thaliana. Genetics 163:735–746

    Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM (2004) Convergent evolution of disease resistance genes. Trends Plant Sci 9(7):315–317

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol 21(4):178–183

    Article  CAS  PubMed  Google Scholar 

  • Mensen R, Hager A, Salzer P (1998) Elicitor-induced changes of wall-bound and secreted peroxidase activities in suspension-cultured spruce (Picea abies) cells are attenuated by auxins. Physiol Plant 102:539–546

    Article  CAS  Google Scholar 

  • Meyers BC, Morgante M, Michelmore RW (2002) TIR-X and TIR-NBS proteins: Two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 32:77–92

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plant evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    CAS  PubMed  Google Scholar 

  • Midoro-Horiuti T, Goldblum RM, Kurosky A, Wood TG, Brooks EG (2000) Variable expression of pathogenesis-related protein allergen in mountain cedar (Juniperus ashei) pollen. J Immunol 164:2188–2192

    CAS  PubMed  Google Scholar 

  • Miranda M, Ralph SG, Mellway R, White R, Heath MC, Bohlmann J, Constabel CP (2007) The Transcriptional response of hybrid poplar (Populus trichocarpa x P. deltoids) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Mol Plant Microbe Interact 20(7):816–831

    Article  CAS  PubMed  Google Scholar 

  • Mohan R, Bajar AM, Kolattukudy PE (1993) Induction of a tomato anionic peroxidase gene (TAP1) by wounding in transgenic tobacco and activation of TAP1/GUS and TAP2/GUS chimeric gene fusions in transgenic tobacco by wounding and pathogen attack. Plant Mol Biol 21:341–354

    Article  CAS  PubMed  Google Scholar 

  • Nagy NE, Fossdal CG, Krokene P, Krekling T, Lönneborg A, Solheim H (2004) Induced responses to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells, chalcone synthase transcript levels and peroxidase activity. Tree Physiol 24:505–515

    CAS  PubMed  Google Scholar 

  • Nahálkováa J, Asiegbu FO, Danielb G, Hribc J, Vookovác B, Pribulovád B, Gemeiner P (2001) Isolation and immunolocalization of a Pinus nigra lectin (PNL) during interaction with the necrotrophs—Heterobasidion annosum and Fusarium avenaceum. Physiol Mol Plant Pathol 59(3):153–163

    Article  CAS  Google Scholar 

  • Nakamura S, Mori H, Sakai F, Hayashi T (1995) Cloning and sequencing of a cDNA for poplar endo-1, 4-β-glucanase. Plant Cell Physiol 36:1229–1235

    CAS  PubMed  Google Scholar 

  • Nasmith C, Jeng R, Hubbes M (2008) A comparison of in vivo targeted gene expression during fungal colonization of DED-susceptible Ulmus americana. For Pathol 38(2):104–112

    Google Scholar 

  • Neiman M, Olson MS, Tiffin P (2009) Selective histories of poplar protease inhibitors: elevated polymorphism, purifying selection, and positive selection driving divergence of recent duplicates. New Phytol 183:740–750

    Article  CAS  PubMed  Google Scholar 

  • Newcombe G (1998) Association of Mmd1, a major gene for resistance to Melampsora medusae f. sp. deltoidae, with quantitative traits in poplar rust. Phytopathol 88:114–121

    Article  CAS  Google Scholar 

  • Newcombe G, Bradshaw HD Jr, Chastagner GA, Stettler RF (1996) A major gene for resistance to Melampsora medusae f. sp. deltoidae in a hybrid poplar pedigree. Phytopatholy 86:87–94

    Article  CAS  Google Scholar 

  • Newcombe G, Stirling B, Bradshaw HD (2001) Abundant pathogenic variation in the new hybrid rust Melampsora × columbiana on hybrid poplar. Phytopathol 1:981–985

    Article  Google Scholar 

  • Nielsen K, Boston RS (2001) Ribosome-inactivating proteins: a plant perspective. Annu Rev Plant Physiol Plant Mol Biol 52:785–816

    Article  CAS  PubMed  Google Scholar 

  • Nomura K, Ikegami A, Nakamura Y (2008) Screening of genes encoding isoforms of lectin in Japanese chestnut (Castanea crenata) trees. Acta Physiol Plant 30:175–181

    Article  CAS  Google Scholar 

  • Parsons TJ, Bradshaw HD Jr, Gordon MP (1989) Systemic accumulation of specific mRNAs in response to wounding in poplar trees. Proc Natl Acad Sci USA 86:7895–7899

    Article  CAS  PubMed  Google Scholar 

  • Pernas M, Lopez-Solanilla E, Sanchez-Monge R, Salcedo G, Rodriguez-Palenzuela P (1999) Antifungal activity of a plant cystatin. Mol Plant Microbe Interact 12:624–627

    Article  CAS  Google Scholar 

  • Pervieux I, Bourassaa M, Lauransb F, Hamelina R, Séguin A (2004) A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiol Mol Plant Pathol 64(6):331–341

    Article  CAS  Google Scholar 

  • Philippe RN, Ralph SG, Külheim C, Jancsik SI, Bohlmann J (2009) Poplar defense against insects: genome analysis, full-length cDNA cloning, and transcriptome and protein analysis of the poplar Kunitz-type protease inhibitor family. New Phytol 184(4):865–884

    Article  CAS  PubMed  Google Scholar 

  • Piggott N, Ekramoddoullah AKM, Liu J, Yu X (2004) Gene cloning of a thaumatin-like (PR-5) protein of western white pine (Pinus monticola D. Don) and expression studies of members of the PR-5 group. Physiol Mol Plant Pathol 64(1):1–8

    Article  CAS  Google Scholar 

  • Qin W, Ming-Xing H, Ying X, Xin-Shen Z, Fang C (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30(3):351–357

    Article  PubMed  Google Scholar 

  • Ralph S, Oddy C, Cooper D et al (2006a) Genomics of hybrid poplar (Populus trichocarpa x deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and fulllength cDNA libraries, expressed sequence tags (ESTs), and a cDNA microarray for the study of insect-induced defenses in poplar. Mol Ecol 15:1275–1297

    Article  PubMed  Google Scholar 

  • Ralph S, Park JY, Bohlmann J, Mansfield SD (2006b) Dirigent proteins in insect-induced conifer defense: discovery, phylogeny and differential expression of a family of DIR and DIR-like genes in spruce. Plant Mol Biol 60:21–40

    Article  CAS  PubMed  Google Scholar 

  • Richardson M (1991) Seed storage proteins: the enzyme inhibitors. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry. Academic Press, New York, pp 259–306

    Google Scholar 

  • Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Le Thiec D, Fluch S, Martin F, Duplessis S (2007) Transcript Profiling of Poplar Leaves upon Infection with Compatible and Incompatible Strains of the Foliar Rust Melampsora larici-populina1[W]. Plant Physiol 144:347–366

    Article  CAS  PubMed  Google Scholar 

  • Rioux D, Nicole M, Simard M, Ouellette GB (1998) Immunocytochemical evidence that secretion of pectin occurs during gel (gum) and tylosis formation in trees. Phytopathol 88:494–505

    Article  CAS  Google Scholar 

  • Roberts MR, Bowles DJ (1999) Fusicoccin, 14-3-3 proteins and defense responses in tomato plants. Plant Physiol 119:1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1990) Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J Gen Microbiol 136:1771–1778

    CAS  Google Scholar 

  • Roberts MR, Salinas J, Collinge DB (2002) 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol Biol 50:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Robinson RM, Sturrock RN, Davidson JJ, Ekramoddoullah AKM, Morrison DJ (2000) Detection of chitinase-like protein in the roots of DF trees infected with Armillaria ostoyae and Phellinus weirii. Tree Physiol 20:493–502

    CAS  PubMed  Google Scholar 

  • Ryan CA (1990) Proteinase inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449

    Article  CAS  Google Scholar 

  • Salzer P, Hübner B, Sirrenberg A, Hager A (1997) Differential effect of purified spruce chitinases and β-1, 3-glucanases on the activity of elicitors from ectomycorrhizal fungi. Plant Physiol 11(4):957–968

    Article  Google Scholar 

  • Santi-Gadelha T, Rocha BAM, Oliveira CC et al (2008) Purification of a PHA-Like Chitin-binding Protein from Acacia farnesiana seeds: a time-dependent oligomerization protein. Appl Biochem Biotechnol 150:97–111

    Article  CAS  PubMed  Google Scholar 

  • Schafleitner R, Wilhelm E (1997) Effect of virulent and hypovirulent Cryphonectria parasitica(Murr.) Barr on the intercellular pathogen related proteins and on total protein pattern of chestnut (Castanea sativaMill.). Physiol Mol Plant Pathol 51(5):323–332

    Article  CAS  Google Scholar 

  • Schlink K (2009) Identification and characterization of differentially expressed genes from Fagus sylvatica roots after infection with Phytophthora citricola. Plant Cell Rep 28:873–882

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Børja D, Stougaard P, Lönneborg A (1993) PR-proteins accumulating in spruce roots infected with a pathogenic Pythium sp. isolate include chitinases, chitosanases and beta-1-3-glucanases. Physiol Mol Plant Pathol 43:57–67

    Article  CAS  Google Scholar 

  • Simmons CR (1994) The physiology and molecular biology of plant 1, 3-ß-glucanases and 1, 3;1, 4-ß-glucanases. Crit Rev in Plant Sci 13:325–387

    CAS  Google Scholar 

  • Simões P, Santos J, Fragata I, Mueller LD, Rose MR, Matos M (2008) How repeatable is adaptive evolution? The role of geographical origin and founder effects in laboratory adaptation. Evolution 62(8):1817–1829

    Article  PubMed  Google Scholar 

  • Sirhindi G (2003) Polyphenol oxidase production and activity under high temperature exotherm in vegetative organs of Thuja orientalis. Environ Inform Arch 1:574–580

    Google Scholar 

  • Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A (1999) The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11:431–443

    Article  CAS  PubMed  Google Scholar 

  • Stirling B, Newcombe G, Vrebalov J, Bosdet I, Bradshaw HD (2001) Suppressed recombination around the MXC3 locus, a major gene for resistance to poplar leaf rust. Theor Appl Genet 103:1129–1137

    Article  CAS  Google Scholar 

  • Stripe F, Battelli MG (2006) Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci 63:1850–1866

    Article  CAS  Google Scholar 

  • Sturrock RN, Islam MA, Ekramoddoullah AKM (2007) Host-pathogen interactions in Douglas-fir seedlings infected by Phellinus sulphurascens. Phytopathol 97:1406–1414

    Article  CAS  Google Scholar 

  • Swoboda I, Jilek A, Ferreira F, Hoffmann-Sommergruber K, Scheiner O, Kraft D, Breiteneder H, Pittenauer E, Schmid E, Vicente O, Heberle-Bors E, Ahorn H, Breitenbach M (1995) Isoforms of Bet v 1, the major birch pollen allergen, analyzed by liquid chromatography, mass spectrometry and cDNA cloning. J Biol Chem 270:2607–2613

    Article  CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Broekaert WF (1998) Tissue-specific expression of defensin genes PDF2.1 and PDF 2.2 in Arabidopsis thaliana. Plant Physiol Biochem 36:533–537

    Article  CAS  Google Scholar 

  • Tremacoldi CR, Pascholati SF (2002) Detection of trypsin inhibitor in seeds of Eucalyptus urophylla and its influence on the in vitro growth of the fungi Pisolithus tinctorius and Rhizoctonia solani. Braz J Microbiol 33(4):281–286

    Article  CAS  Google Scholar 

  • Tremacoldi CR, Pascholati SF (2004) Trypsin inhibitor from roots of Eucaliptus urophylla. Fitopatol Bras 29:134–140

    Article  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related Proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • Vannini A, Caruso C, Leonardi L, Rugini E, Chiarot E, Caporale C, Buonocore V (1999) Antifungal properties of chitinases from Castanea sativa against hypovirulent and virulent strains of the chestnut blight fungus Cryphonectria parasitica. Physiol Mol Plant Pathol 55(1):29–35

    Article  CAS  Google Scholar 

  • von Weissenberg K (1990) Host-parasite relationships in forest ecosystems: a review. Silva Fenn 24:129–139

    Google Scholar 

  • Wang W, Shakes DC (1996) Molecular evolution of the 14-3-3 protein family. J Mol Evol 43:384–398

    Article  CAS  PubMed  Google Scholar 

  • Warren JM, Covert SF (2004) Differential expression of pine and Cronartium quercuum f. sp. fusiforme genes in fusiform rust galls. Appl Environ Microbiol 70:441–451

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Liao Y, Chen Y, Wang SH, Xu Y, Tang L, Chen F (2005) Isolation, characterization and antifungal activity of β-1, 3-glucanase from seeds of Jatropha curcas. S Afr J Bot 71(1):95–99

    CAS  Google Scholar 

  • Wilcox PL, Amerson HV, Kuhlman EG, Liu BH, O’Malley DM, Sederoff RR (1996) Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. Proc Natl Acad Sci USA 93:3859–3864

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zheng T, Meguro S, Kawachi S (2004) Purification and characterization of polyphenol oxidase from Henry chestnuts (Castanea henryi). J Wood Sci 50:260–265

    CAS  Google Scholar 

  • Yamada K, Lim J, Dale JM et al (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302(5646):842–846

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Zhang X, Yue JX, Tian D, Chen JQ (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Gen Genomics 280:187–198

    Article  CAS  Google Scholar 

  • Yeats TH, Rose JK (2008) The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci 17(2):191–198

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Ekramoddoullah AKM, Misra S (2000) Characterization of Pin m III cDNA in western white pine. Tree Physiol 20:663–671

    CAS  PubMed  Google Scholar 

  • Zamani A, Sturrock RN, Ekramoddoullah AKM, Liu J-J, Yu X (2004) Gene cloning and tissue expression analysis of a PR-5 thaumatin- like protein in Phellinus weirii infected Douglas-fir. Phytopathol 94:1235–1243

    Article  CAS  Google Scholar 

  • Zhang Q, Lin SZ, Zheng HQ, Lin YZ, An XM, Li Y, Li HX, Zhang ZY (2008) Characterization of resistance gene analogs with a nucleotide binding site isolated from a Triploid white poplar In: International poplar symposium 23rd session Beijing, China

Download references

Acknowledgments

The authors thank the Department of Biotechnology, Ministry of Science and Technology Government of India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Modhumita Ghosh Dasgupta.

Additional information

Communicated by W. Osswald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veluthakkal, R., Dasgupta, M.G. Pathogenesis-related genes and proteins in forest tree species. Trees 24, 993–1006 (2010). https://doi.org/10.1007/s00468-010-0489-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0489-7

Keywords

Navigation