Skip to main content
Log in

Isolation of a full-length CC–NBS–LRR resistance gene analog candidate from sugar pine showing low nucleotide diversity

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

An Erratum to this article was published on 16 March 2006

An Erratum to this article was published on 16 March 2006

Abstract

The nucleotide-binding-site and leucine-rich-repeat (NBS–LRR) class of R proteins is abundant and widely distributed in plants. By using degenerate primers designed on the NBS domain in lettuce, we amplified sequences in sugar pine that shared sequence identity with many of the NBS–LRR class resistance genes catalogued in GenBank. The polymerase chain reaction products were used to probe a cDNA library constructed from needle tissue of sugar pine seedlings. A full-length cDNA was obtained that demonstrated high predicted amino acid sequence similarity to the coiled coil (CC)–NBS–LRR subclass of NBS–LRR resistance proteins in GenBank. Sequence analyses of this gene in megagametophytes from two sugar pine trees segregating for the hypersensitive response to white pine blister rust revealed zero nucleotide variation. Moreover, there was no variation found in 24 unrelated sugar pine trees except for three single-nucleotide polymorphisms located in the 3′ untranslated region. Compared to other genes sequenced in Pinaceae, such a low level of sequence variation in unrelated individuals is unusual. Although, numerous studies have reported that plant R genes are under diversifying selection for specificity to evolving pathogens, the resistance gene analog discussed here appears to be under intense purifying selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aarts J, Metz M, Holub E, Staskawicz BJ, Daniels MJ (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci U S A 95:10306–10311

    Article  PubMed  CAS  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  3. Ancillo G, Hoegen E, Kombrink E (2003) The promoter of the potato chitinase C gene directs expression to epidermal cells. Planta 217:566–576

    Article  PubMed  CAS  Google Scholar 

  4. Arguade M, Miyashita N, Langley CH (1989) Reduced variation in the yellow-achaet-scute region in natural populations of Drosphila melanogaster. Genetics 122:607–615

    Google Scholar 

  5. Ashfield T, Ong LE, Nobuta K, Schneider M, Innes RW (2004) Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell 16:309–318

    Article  PubMed  CAS  Google Scholar 

  6. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JDG, Parker JE (2002) Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295:2077–2080

    Article  PubMed  CAS  Google Scholar 

  7. Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the avrRpt2-directed elimination of RIN4. Cell 112:369–377

    Article  PubMed  CAS  Google Scholar 

  8. Axtell MJ, McNellis TW, Mudgett MB, Hsu CS (2001) Mutational analysis of the Arabidopsis RPS2 disease resistance gene and the corresponding Pseudomonas syringae avrRpt2 avirulence gene. Mol Plant Microbe Interact 14:181–188

    Article  PubMed  CAS  Google Scholar 

  9. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076

    Article  PubMed  CAS  Google Scholar 

  10. Baumgarten A, Cannon S, Spangler R, May G (2003) Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics 165:309–319

    PubMed  CAS  Google Scholar 

  11. Belkhadir Y, Nimchuk Z, Hubert DA, Mackey D, Dangl JL (2004) Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16:2822–2835

    Article  PubMed  CAS  Google Scholar 

  12. Bent AF (1996) Plant resistant genes: function meets structure. Plant Cell 8:1757–1771

    Article  PubMed  CAS  Google Scholar 

  13. Bent AF, Kundel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265:1856–1859

    Article  PubMed  CAS  Google Scholar 

  14. Bergelson J, Kreitman M, Stahl EA, Tian D (2001) Evolutionary dynamics of plant R-genes. Science 292:2281–2285

    Article  PubMed  CAS  Google Scholar 

  15. Bogdanove A (2002) Pto update: recent progress on ancient plant defence response signaling pathway. Mol Plant Pathol 3:282–288

    Article  Google Scholar 

  16. Bonas U, Lahaye T (2002) Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Curr Opin Microbiol 5:44–50

    Article  PubMed  CAS  Google Scholar 

  17. Boyes DC, Nam J, Dangl JL (1998) The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci U S A 95:15849–15854

    Article  PubMed  CAS  Google Scholar 

  18. Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci U S A 101:15255–15260

    Article  PubMed  CAS  Google Scholar 

  19. Buck JM, Adams RS, Cone J, Conkle MT, Libby WJ, Eden CJ, Knight MJ (1970) California tree seed zones. USDA Forest Service, San Francisco

    Google Scholar 

  20. Caicedo AL, Schaal BA (2004) Heterogeneous evolutionary processes affect R gene diversity in natural populations of Solanum pimpinellifolium. Proc Natl Acad Sci U S A 101:17444–17449

    Article  PubMed  CAS  Google Scholar 

  21. Canton FR, Le Provost G, Garcia V, Barre A, Frigerio J-M, Paiva J, Fevereiro P, Avila C, Mouret J-F, Brach J, de Daruvar A, Canovas FM, Plomion C (2004) Transcriptome analysis of wood formation in maritime pine. In: Sustainable forestry, wood products and biotechnology. BIOFOR proceeding. pp 333–347

  22. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116

    Article  CAS  Google Scholar 

  23. Charlesworth B (1994) The effect of background selection against deleterious mutation on weakly selected, linked variants. Genet Res 63:213–227

    Article  PubMed  CAS  Google Scholar 

  24. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  25. Delaney TP, Freidrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92:6602–6606

    Article  PubMed  CAS  Google Scholar 

  26. Desveaux D, Subramaniam R, Després C, Mess J-N, Lévesque C, Fobert PR, Dangl JL, Brisson N (2004) A “Whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell 6:229–240

    Article  PubMed  CAS  Google Scholar 

  27. Devey ME, Delfino-Mix A, Kinloch BB Jr, Neale DB (1995) Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine. Proc Natl Acad Sci U S A 92:2066–2070

    Article  PubMed  CAS  Google Scholar 

  28. Ellis J, Dodds P, Pryor T (2000) The generation of plant disease resistance gene specificities. Trends Plant Sci 5:373–379

    Article  PubMed  CAS  Google Scholar 

  29. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  30. Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  PubMed  CAS  Google Scholar 

  31. Gill GP, Brown GR, Neale DB (2003) A sequence mutation in the cinnamyl alcohol dehydrogenase gene associated with altered lignification in loblolly pine. Plant Biotechnol J 1:253–258

    Article  PubMed  CAS  Google Scholar 

  32. González-Martinez SC, Ersoz ES, Brown GR, Wheeler NC, Neale DB (2005) Candidate genes for drought-stress response in Pinus taeda L.: DNA sequence variation and natural selection. Genetics, DOI 10.1534/genetics.105.047126

  33. Graham MA, Marek LF, Shoemaker RC (2002) Organization, expression and evolution of a disease resistance cluster in soybean. Genetics 162:1961–1977

    PubMed  CAS  Google Scholar 

  34. Grant JJ, Chini A, Basu D, Loake GJ (2003) Targeted activation tagging of the Arabidopsis NBS–LRR gene, ADR1, conveys resistance to virulent pathogens. Mol Plant Microbe Interact 16:669–680

    Article  PubMed  CAS  Google Scholar 

  35. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G-L, White FF, Yin Z (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122–1125

    Article  PubMed  CAS  Google Scholar 

  36. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Google Scholar 

  37. Holt BF III, Hubert DA, Dangl JL (2003) Resistance gene signaling in plants—complex similarities to animal innate immunity. Curr Opin Immunol 15:20–25

    Article  PubMed  CAS  Google Scholar 

  38. Innes RW (2004) Guarding the goods. New insights into the central alarm system of plants. Plant Physiol 135:695–701

    Article  PubMed  CAS  Google Scholar 

  39. Kim M-S, Brunsfield SJ, McDonald GI, Klopfenstein NB (2003) Effect of white pine blister rust (Cronartium ribicola) and rust-resistance breeding on genetic variation in western white pine (Pinus monticola). Theor Appl Genet 106:1004–1010

    PubMed  Google Scholar 

  40. Kinloch BB Jr (1992) Distribution and frequency of a gene for resistance to white pine blister rust in natural populations of sugar pine. Can J Bot 70:1319–1323

    Google Scholar 

  41. Kinloch BB Jr, Dupper GE (2002) Genetic specificity in the white pine-blister rust pathosystem. Phytopathology 92:278–280

    Article  PubMed  Google Scholar 

  42. Kinloch BB Jr, Littlefield L (1977) White pine blister rust: hypersensitive resistance in sugar pine. Can J Bot 55:1148–1155

    Article  Google Scholar 

  43. Kinloch BB Jr, Sniezko RA, Barnes GD, Greathouse TE (1999) A major gene for resistance to white pine blister rust in western white pine from the Western cascade range. Phytopathology 89:861–867

    Article  PubMed  CAS  Google Scholar 

  44. Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold hardiness and wood quality related candidate gene in Douglas-fir. Genetics 171:2029–2041

    Article  PubMed  CAS  Google Scholar 

  45. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  46. Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206

    Article  PubMed  CAS  Google Scholar 

  47. Lehmann P (2002) Structure and evolution of plant disease resistance genes. J Appl Genet 43:403–414

    PubMed  Google Scholar 

  48. Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    Article  PubMed  CAS  Google Scholar 

  49. Lercher MJ, Hurst LD (2002) Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet 18:337–340

    Article  PubMed  CAS  Google Scholar 

  50. Liu J-J, Ekramoddoullah AKM (2003a) Isolation, genetic variation and expression of TIR–NBS–LRR resistance gene analogs from western white pine (Pinus monticola Dougl. Ex. D. Don.). Mol Genet Genomics 270:432–441

    Article  PubMed  CAS  Google Scholar 

  51. Liu J-J, Ekramoddoullah AKM (2003b) Root-specific expression of a western white pine PR10 gene is mediated by different promoter regions in transgenic tobacco. Plant Mol Biol 52:103–120

    Article  PubMed  CAS  Google Scholar 

  52. Lorrain S, Vailleau F, Balagúe C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 6:263–271

    Article  CAS  Google Scholar 

  53. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  CAS  Google Scholar 

  54. Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangle JL (2003) Arabidopsis RIN4 is a target of the type III virulence effector avrRpt2 and modulates RPS2-mediated resistance. Cell 112:379–389

    Article  PubMed  CAS  Google Scholar 

  55. Marathe R, Dinesh-Kumar SP (2005) Plant defense: on post, multiple guards?! Mol Cell 11:282–286

    Google Scholar 

  56. Maurico R, Stahl EA, Korves T, Tian D, Kreitman M, Bergelson J (2003) Natural selection for polymorphism in the disease resistance gene Rps2 of Arabidopsis thaliana. Genetics 163:735–746

    Google Scholar 

  57. McDowell JM (2004) Convergent evolution of disease resistance genes. Trends Plant Sci 9:315–317

    Article  PubMed  CAS  Google Scholar 

  58. McDowell JM, Woffenden BJ (2003) Plant disease genes: recent insights and potential applications. Trends Biotechnol 21:178–183

    Article  PubMed  CAS  Google Scholar 

  59. Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  PubMed  CAS  Google Scholar 

  60. Meyers BC, Morgante M, Michelmore RW (2002) TIR-X and TIR–NBS proteins: two new families related to disease resistance TIR–NBS–LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 32:77–92

    Article  PubMed  CAS  Google Scholar 

  61. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS–LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed  CAS  Google Scholar 

  62. Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134

    Article  PubMed  CAS  Google Scholar 

  63. Nobuta K, Ashfield T, Kim S, Innes RW (2005) Diversification of non-TIR class NB–LRR genes in relation to whole-genome duplication events in Arabidopsis. Mol Plant Microbe Interact 18:103–109

    Article  PubMed  CAS  Google Scholar 

  64. Pedley KF, Martin GB (2003) Molecular basis of PTO-mediated resistance to bacterial speck disease in tomato. Annu Rev Phytopathol 41:215–143

    Article  CAS  Google Scholar 

  65. Pontier D, Balagué C, Bezombes-Marion I, Tronchet M, Deslandes L, Roby D (2001) Identification of a novel pathogen-responsive element in the promoter of the tobacco gene HSR203J, a molecular marker of the hypersensitive response. Plant J 26:495–507

    Article  PubMed  CAS  Google Scholar 

  66. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  67. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  68. Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microb Interact 11:815–823

    Article  CAS  Google Scholar 

  69. Shirasu K, Schulze-Lefert P (2003) Complex formation, promiscuity and multi-functionality: protein interaction in disease-resistance pathways. Trends Plant Sci 8:252–258

    Article  PubMed  CAS  Google Scholar 

  70. Temesgen G, Brown GR, Harry DE, Kinlaw CS, Sewell MM, Neale DB (2001) Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.). Theor Appl Genet 102:644–675

    Article  Google Scholar 

  71. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  72. Ujino-Ihara T, Yoshimura K, Ugawa Y, Yoshimaru H, Nagasaka K, Tsumura Y (2000) Expression analysis of ESTs derived from the inner bark of Cryptomeria japonica. Plant Mol Biol 43:451–457

    Article  PubMed  CAS  Google Scholar 

  73. Van der Hoorn R, De Wit P, Joosten M (2002) Balancing selection favors guarding resistance protein. Trends Plant Sci 7:67–71

    Article  PubMed  Google Scholar 

  74. Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr D, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to Blake Meyers, Delaware Biotechnology Institute, and John Davis, University of Florida, for review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Neale.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11295-006-0039-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jermstad, K.D., Sheppard, L.A., Kinloch, B.B. et al. Isolation of a full-length CC–NBS–LRR resistance gene analog candidate from sugar pine showing low nucleotide diversity. Tree Genetics & Genomes 2, 76–85 (2006). https://doi.org/10.1007/s11295-005-0029-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-005-0029-6

Keywords

Navigation