Skip to main content
Log in

Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The aim of this study was to assess the effects of potato plants expressing a barley cystatin on a potentially cystatin-susceptible natural enemy by predation on susceptible and non-susceptible preys feeding on the plant. We have focussed on the impact of the variant HvCPI-1 C68 → G, in which the only cysteine residue was changed by a glycine, on the growth and digestive physiology of the Colorado potato beetle (CPB), Leptinotarsa decemlineata, and the Egyptian cotton leafworm (ECW), Spodoptera littoralis. Moreover, we have studied the prey-mediated effects of the barley cystatin at the third trophic level, using the predatory spined soldier bug (SSB), Podisus maculiventris, as a model. Feeding trials conducted with CPB larvae reared on transgenic potato plants expressing the C68 → G variant resulted in significantly lower weight gains compared to those fed on non-transformed (NT) plants. On the contrary, larger weight gains were obtained when ECW larvae, that lack digestive cysteine proteases, were reared on transgenic potato expressing the cystatin, as compared to larvae fed on NT plants. No negative effects on survival and growth were observed when SSB nymphs were exposed to HvCPI-1 C68 → G by predation on either CPB or ECW larvae reared on transgenic potato plants expressing the barley cystatin, despite the fact that the inhibitor suppressed in vitro gut proteolysis of the predatory bug. To investigate the physiological background, biochemical analysis were carried out on guts of insects dissected at the end of the feeding assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashouri A, Overney S, Michaud D, Cloutier C (1998) Fitness and feeding are affected in the two-spotted stinkbug, Perillus bioculatus, by the cysteine proteinase inhibitor, oryzacystatin I. Arch Insect Biochem Physiol 38:74–83

    Article  CAS  Google Scholar 

  • Baulcombe DC, Saunders GR, Bevan MW, Mayo MA, Harrison BD (1986) Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321:446–449

    Article  CAS  Google Scholar 

  • Bell HA, Fitches EC, Down RE, Ford L, Marris GC, Edwards JP, Gatehouse JA, Gatehouse AMR (2001) Effect of dietary cowpea trypsin inhibitor (CpTI) on the growth and development of the tomato moth Lacanobia oleracea (Lepidoptera: Noctuidae) and on the success of the gregarious ectoparasitoid Eulophus pennicornis (Hymenoptera : Eulophidae). Pest Manag Sci 57:57–65

    Article  PubMed  CAS  Google Scholar 

  • Bell HA, Down RE, Fitches EC, Edwards JP, Gatehouse AMR (2003) Impact of genetically modified potato expressing plant-derived insecticidal proteins/insect resistance genes on the predatory bug Podisus maculiventris (Say). Biocontrol Sci Techn 13:729–741

    Article  Google Scholar 

  • Bell HA, Down RE, Edwards JP, Gatehouse JA, Gatehouse AMR (2005) Digestive proteolytic activity in the gut and salivary glands of the predatory bug Podisus maculiventris (Heteroptera: Pentatomidae); effect of proteinase inhibitors. Eur J Entomol 102:139–145

    CAS  Google Scholar 

  • Bolter CJ, Jongsma MA (1995) Colorado potato beetles (Leptinotarsa decemlineata) adapt to proteinase inhibitors induced in potato leaves by methyl jasmonate. J Insect Physiol 41:1071–1078

    Article  CAS  Google Scholar 

  • Bouchard E, Michaud D, Cloutier C (2003a) Molecular interactions between an insect predator and its herbivore prey on transgenic potato expressing a cysteine proteinase inhibitor from rice. Mol Ecol 12:2429–2437

    Article  CAS  Google Scholar 

  • Bouchard E, Cloutier C, Michaud D (2003b) Oryzacystatin I expressed in transgenic potato induces digestive compensation in an insect natural predator via its herbivorous prey feeding on the plant. Mol Ecol 12:2439–2446

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brunelle F, Nguyen-Quoc B, Cloutier C, Michaud D (1999) Protein hydrolysis by Colorado potato beetle, Leptinotarsa decemlineata, digestive proteases: the catalytic role of cathepsin D. Arch Insect Biochem Physiol 42:88–98

    Article  PubMed  CAS  Google Scholar 

  • Brunelle F, Cloutier C, Michaud D (2004) Colorado potato beetles compensate for tomato cathepsin D inhibitor expressed in transgenic potato. Arch Insect Biochem Physiol 55:103–113

    Article  PubMed  CAS  Google Scholar 

  • Cloutier C, Fournier M, Jean C, Yelle S, Michaud D (1999) Growth compensation and faster development of Colorado potato beetle (Coleoptera: Chrysomelidae) feeding on potato foliage expressing oryzacystatin I. Arch Insect Biochem Physiol 40:69–79

    Article  CAS  Google Scholar 

  • Cloutier C, Jean C, Fournier M, Yelle S, Michaud D (2000) Adult Colorado potato beetles, Leptinotarsa decemlineata compensate for nutritional stress on oryzacystatin I-transgenic potato plants by hypertrophic behavior and over-production of insensitive proteases. Arch Insect Biochem Physiol 44:69–81

    Article  PubMed  CAS  Google Scholar 

  • Cowgill SE, Danks C, Atkinson HJ (2004) Multitrophic interactions involving genetically modified potatoes, nontarget aphids, natural enemies and hyperparasitoids. Mol Ecol 13:639–647

    Article  PubMed  CAS  Google Scholar 

  • De Clercq P, Viñuela E, Smagghe G, Degheele D (1995) Transport and kinetics of diflubenzuron and pyriproxyfen in the beef armyworm Spodoptera exigua and its predator Podisus maculiventris. Entomol Exp Appl 76:189–194

    Article  Google Scholar 

  • De Clercq P (2000) Predaceous stinkbugs (Pentatomidae: Asopinae). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, pp 737–789

    Google Scholar 

  • De Leo F, Bonadé-Bottino MA, Ceci LR, Gallerani R, Jouanin L (1998) Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiol 118:997–1004

    Article  PubMed  Google Scholar 

  • De Leo F, Bonadé-Bottino M, Ceci LR, Gallerani R, Jouanin L (2001) Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochem Molec Biol 31:593–602

    Article  Google Scholar 

  • Ferry N, Raemaekers RJM, Majerus MEN, Jouanin L, Port G, Gatehouse JA, Gatehouse AMR (2003) Impact of oilseed rape expressing the insecticidal cysteine protease inhibitor oryzacystatin on the beneficial predator Harmonia axyridis (Multicoloured Asian ladybeetle). Mol Ecol 12:493–504

    Article  PubMed  CAS  Google Scholar 

  • Ferry N, Jouanin L, Ceci LR, Mulligan EA, Emami K, Gatehouse JA, Gatehouse AMR (2005) Impact of oilseed rape expressing the insecticidal serine protease inhibitor, mustard trypsin inhibitor-2 on the beneficial predator Pterostichus madidus. Mol Ecol 14:337–349

    Article  PubMed  CAS  Google Scholar 

  • Gaddour K, Vicente-Carbajosa J, Lara P, Isabel-LaMoneda I, Diaz I, Carbonero P (2001) A constitutive cystatin-encoding gene from barley (Icy) responds differentially to abiotic stimuli. Plant Mol Biol 45:599–608

    Article  PubMed  CAS  Google Scholar 

  • Girard C, Le Métayer M, Zaccomer B, Bartlet E, Williams I, Bonadé-Bottino M, Pham-Delegue MH, Jouanin L (1998) Growth stimulation of beetle larvae reared on a transgenic oilseed rape expressing a cysteine proteinase inhibitor. J Insect Physiol 44:263–270

    Article  PubMed  CAS  Google Scholar 

  • Gruden K, Popovic T, Cimerman N, Krizaj I, Strukelj B (2003) Diverse enzymatic specificities of digestive proteases, ‘intestains’, enable Colorado potato beetle larvae to counteract the potato defence mechanism. Biol Chem 384:305–310

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Campos R, Torres-Acosta J, Saucedo-Arias LJ, Gomez-Lim MA (1999) The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nature Biotechnol 17:1223–1226

    Article  CAS  Google Scholar 

  • Gutiérrez-Campos R, Torres-Acosta JA, Pérez-Martínez JDJ, Gómez-Lim MA (2001) Pleiotropic effects in transgenic tobacco plants expressing oryzacystatin I gene. Hortscience 36:118–119

    Google Scholar 

  • Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431:145–159

    Article  PubMed  CAS  Google Scholar 

  • Keil M, Sanchez-Serrano JJ, Willmitzer L (1989) Both wound-inducible and tuber-specific expression are mediated by the promoter of a single member of the potato proteinase inhibitor II gene family. EMBO J 8:1323–1330

    PubMed  CAS  Google Scholar 

  • Lagrimini LM, Burkhart W, Moyer M, Rothstein S (1987) Molecular cloning and complementary DNA encoding the lignin forming peroxidases from tobacco: molecular analysis and tissue-specific expression. P␣Natl Acad Sci USA 84:7542–7546

    Article  CAS  Google Scholar 

  • Lara P, Ortego F, Gonzalez-Hidalgo E, Castañera P, Carbonero P, Diaz I (2000) Adaptation of Spodoptera exigua (Lepidoptera: Noctuidae) to barley trypsin inhibitor BTI-CMe expressed in transgenic tobacco. Transgenic Res 9:169–178

    Article  PubMed  CAS  Google Scholar 

  • Lecardonnel A, Chauvin L, Jouanin L, Beaujean A, Prévost G, Sangwan-Norreel B (1999) Effects of rice cystatin I expression in transgenic potato on Colorado potato beetle larvae. Plant Sci 140:87–98

    Article  Google Scholar 

  • Lee MJ, Anstee JH (1995) Endoproteases from the midgut of larval Spodoptera littoralis include a chymotrypsin-like enzyme with an extended binding site. Insect Biochem Molec Biol 25:49–61

    Article  CAS  Google Scholar 

  • Marchetti S, Delledonne M, Fogher C, Chiaba C, Chiesa F, Savazzini F, Giordano A (2000) Soybean Kunitz, C-II and PI-IV inhibitor genes confer different levels of insect resistance to tobacco and potato transgenic plants. Theor Appl Genet 101:519–526

    Article  CAS  Google Scholar 

  • Martinez M, Lopez-Solanilla E, Rodriguez-Palenzuela P, Carbonero P, Diaz I (2003) Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties. Mol Plant Microbe In 16:876–883

    Article  CAS  Google Scholar 

  • Martinez M, Abraham Z, Gambardella M, Echaide M, Carbonero P, Diaz I (2005a) The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. J Exp Bot 56:1821–1829

    Article  CAS  Google Scholar 

  • Martinez M, Abraham Z, Carbonero P, Diaz I (2005b) Comparative phylogenetic analysis of barley, rice and arabidopsis cystatin gene families. Mol Genet Genomics 273:423–432

    Article  CAS  Google Scholar 

  • Michaud D, Cantin L, Vrain TC (1995) Carboxy-terminal truncation of oryzacystatin II by oryzacytatin-insensitive insect digestive proteinases. Arch Biochem Biophys 322:469–474

    Article  PubMed  CAS  Google Scholar 

  • Michaud D, Cantin L, Raworth DA, Vrain TC (1996) Assessing the stability of cystatin/cysteine proteinase complexes using mildly-denaturing gelatin-polyacrylamide gel electrophoresis. Electrophoresis 17:74–79

    Article  PubMed  CAS  Google Scholar 

  • Novillo C, Castañera P, Ortego F (1997) Characterization and distribution of chymotrypsin-like and other digestive proteases in Colorado potato beetle larvae. Arch Insect Biochem Physiol 36:181–201

    Article  CAS  Google Scholar 

  • Ortego F, Novillo C, Castañera P (1996) Characterization and distribution of digestive proteases of the stalk corn borer, Sesamia nonagrioides Lef. (Lepidoptera: Noctuidae). Arch Insect Biochem Physiol 33:163–180

    Article  CAS  Google Scholar 

  • Ortego F, López-Olguín J, Ruíz M, Castañera P (1999) Effects of toxic and deterrent terpenoids on digestive protease and detoxication enzyme activities of Colorado potato beetle larvae. Pestic Biochem Physiol 63:76–84

    Article  CAS  Google Scholar 

  • Ortego F, Novillo C, Sánchez-Serrano JJ, Castañera P (2001) Physiological response of Colorado potato beetle and beet armyworm larvae to depletion of wound-inducible proteinase inhibitors in transgenic potato plants. J Insect Physiol 47:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Overney S, Fawe A, Yelle S, Michaud D (1997) Diet-related plasticity of the digestive proteolytic system in larvae of the Colorado potato beetle (Leptinotarsa decemlineata Say). Arch Insect Biochem Physiol 36:241–250

    Article  CAS  Google Scholar 

  • Pernas M, Sánchez-Monge R, Gómez L, Salcedo G (1998) A chestnut seed cystatin differentially effective against cysteine proteinases from closely related pests. Plant Mol Biol 38:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Pernas M, Sanchez-Ramos I, Sanchez-Monge R, Lombardero M, Ateaga C, Castañera P, Salcedo G (2000) Der p1 and Der f1, the highly related and major allergens from house mites, are differentially affected by a plant cystatin. Clin Exp Allergy 30:972–978

    Article  PubMed  CAS  Google Scholar 

  • Poitout S, Bues R (1970) Elevage de plusíeurs espèces de Lépidoptères Noctuidae sur milieu artificiel riche et sur milieu artificiel simplifié. Ann Zool Ecol Anim 2:79–91

    Google Scholar 

  • Rivard D, Cloutier C, Michaud D (2004) Colorado potato beetles show differential digestive compensatory responses to host plants expressing distinct sets of defense proteins. Arch Insect Biochem Physiol 55:114–123

    Article  PubMed  CAS  Google Scholar 

  • Ruberson JR, Tauber MJ, Tauber CA (1986) Plant feeding by Podisus maculiventris (Heteroptera: Pentatomidae): effect on survival, development, and preoviposition period. Environ Entomol 15:894–897

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. 3rd edn. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Taylor B, Powell A (1988) Isolation of plant DNA and RNA. Focus 4:4–6

    Google Scholar 

  • Thie NMR, Houseman JG (1990) Identification of cathepsin B, D, and H in the larval midgut of Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Insect Biochem 20:313–318

    Article  CAS  Google Scholar 

  • Vain P, Worland B, Clarke MC, Richard G, Beavis M, Liu H, Kohli A, Leech M, Snape J, Christou P, Atkinson H (1998) Expression of an engineered cysteine proteinase inhibitor (oryzacystatin-IΔD86) for nematode resistance in transgenic plants. Theor Appl Genet 96:266–271

    Article  CAS  Google Scholar 

  • Van der Vyver C, Schneidereit J, Driscoll S, Turner J, Kunert K, Foyer CH (2003) Oryzacystatin I expression in transformed tobacco produces a conditional growth phenotype and enhances chilling tolerance. Plant Biotech J 1:101–112

    Article  Google Scholar 

  • Walker AJ, Urwin PE, Atkinson HJ, Brain P, Glen DM, Shewry PR (1999) Transgenic Arabidopsis leaf tissue expressing a modified oryzacystatin shows resistance to the field slug Deroceras reticulatum (Muller). Transgenic Res 8:95–103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Elisa Viñuela (ETSIA-UPM, Spain) for providing the laboratory colony of S. littoralis. We are also grateful to Pilar Carbonero for a critical reading of the manuscript. This work was supported by “Comunidad de Madrid” (Grants 07M/0050/2002 and 07M/0051/2002). M.M. is a recipient of a Ramon y Cajal contract from the Ministerio de Educación y Ciencia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Ortego.

Additional information

Fernando Álvarez-Alfageme and Manuel Martínez are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez-Alfageme, F., Martínez, M., Pascual-Ruiz, S. et al. Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Transgenic Res 16, 1–13 (2007). https://doi.org/10.1007/s11248-006-9022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9022-6

Keywords

Navigation