Skip to main content
Log in

A ribosome-inactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

A new kind of ribosome-inactivating protein (curcin 2), induced by several different kinds of stress from Jatropha curcas leaves, under the control of the CaMV (cauliflower mosaic virus) 35S promoter, was introduced into the tobacco genome by Agrobacterium tumefaciens-mediated transformation method. The curcin 2 protein was only detected in the transgenic tobacco plantlets transformed with the cur2p fragment (coding premature curcin 2 protein), but not in the plantlets with the cur2m fragment (coding mature curcin 2 protein). The T1 population of the transgenic lines shows an increased tolerance to tobacco mosaic virus (TMV) and a fungal pathogen Rhizoctonia solani by delaying the development of systemic symptoms of TMV and reducing the damage caused by the fungal disease. The increases of the tolerances correspond to the curcin 2 level in the transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbieri L, Batelli MG, Stirpe F (1993) Ribosome-inactivating proteins from plants. Biochim Biophys Acta 1154:237–282

    PubMed  CAS  Google Scholar 

  • Barbieri L, Valbonesi P, Bonora E, Gorini P, Bolognesi A, Stirpe F (1997) Polynucleotide: adenosine glycosidase activity of ribosome-inactivating proteins: effect on DNA, RNA and poly (A). Nucleic Acids Res 25:518–522

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Peumans WJ, Van Damme EJM (2002) The Sambucus nigra type-2 ribosome-inactivating protein SNA-I’ exhibits in planta antiviral activity in transgenic tobacco. FEBS Lett 516:27–30

    Article  PubMed  CAS  Google Scholar 

  • Corrado G, Bovi PD, Ciliento R, Gaudio L, Di Maro A (2005) Inducible expression of a Phytolacca heterotepala ribosome-inactivating protein leads to enhanced resistance against major fungal pathogens in tobacco. Genet Resist 95:206–215

    CAS  Google Scholar 

  • Duggar BM, Armostrong JK (1925) The effect of treating virus of tobacco mosaic with juice of various plants. Ann MO Bot Gard 12:359–366

    Article  Google Scholar 

  • Girbés T, Ferreras JM, Arias FJ, Stirpe F (2004) Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini Rev Med Chem 4:461–476

    PubMed  Google Scholar 

  • Girbés T, de Torre C, Iglesias R, Ferreras JM, Méndez E (1996) RIP for viruses. Nature 379:777–778

    Article  Google Scholar 

  • Gorschen E, Dunaeva M, Hause B, Reeh I, Wasternack C, Parthier B (1997a) Expression of the ribosome-inactivating protein JIP 60 from barley in transgenic tobacco leads to an abnormal phenotype and alterations on the level of translation. Planta 202:470–478

    Article  PubMed  CAS  Google Scholar 

  • Gorschen E, Dunaeva M, Reeh I, Wasternack C (1997b) Overexpression of the jasmonate-inducible 23 kDa protein (JIP 23) from barley in transgenic tobacco leads to the repression of leaf proteins. FEBS Lett 419:58–62

    Article  PubMed  CAS  Google Scholar 

  • Heller J, (1996) Physic nut. Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crops. 1. Institute of Plant Genetics and Crop Plant Research, 2. Gatersleben/ International Plant Genetic Resources Institute, Rome, 7 pp

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  CAS  Google Scholar 

  • Hong Y, Saunders K, Hartley MR, Stanley J (1996) Resistance to geminivirus infection by virus-induced expression of dianthin in transgenic plants. Virology 220:119–127

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eicholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes to plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Irvin JD (1975) Purification and partial characterization of the antiviral protein from Phytolacca americana which inhibits eukaryotic protein synthesis. Arch Biochem Biophys 169:522–528

    Article  PubMed  CAS  Google Scholar 

  • Irvin JD, Kelly T, Robertus JD (1980) Purification and properties of a second antiviral protein from Phytolacca americana which inactivates eukaryotic ribosomes. Arch Biochem Biophys 200:418–425

    Article  PubMed  CAS  Google Scholar 

  • Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Mass C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  PubMed  CAS  Google Scholar 

  • Lam YH, Wong YS, Wang B, Wong RNS, Yeung HW, Shaw PC (1996) Use of trichosanthin to reduce infection by turnip mosaic virus. Plant Sci 114:111–117

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Chen Y, Xu Y, Yan F, Tang L, Chen F (2003) Cloning and expression of curcin, a ribosome-inactivating protein from the seeds of Jatropha curcas. Acta Bot Sin 45:858–863

    CAS  Google Scholar 

  • Lodge JK, Kaniewski WK, Tumer NE (1993) Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci USA 90:7089–7093

    Article  PubMed  CAS  Google Scholar 

  • Logemann J, Jach G, Tommerup H, Mundy J, Schell J (1992) Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Biotechnology 10:305–308

    Article  CAS  Google Scholar 

  • Maddaloni M, Forlani F, Balmas V (1997) Tolerance to the fungal pathogen Rhizoctonia solani AG4 of transgenic tobacco expressing the maize ribosome-inactivating protein b-32. Transgenic Res 6:393–402

    Article  CAS  Google Scholar 

  • McKinney HH (1923) Influence of soil temperature and moisture on infection on wheat seedling by Helmintosporium sativum. J Agric Res 26:195–217

    Google Scholar 

  • Montanaro L, Sperti S, Mattioli A, Testoni G, Stirpe F (1975) Inhibition by ricin of protein synthesis in vitro. Biochem J 146:127–131

    PubMed  CAS  Google Scholar 

  • Moon YH, Song SK, Choi KW, Lee JS (1997) Expression of a cDNA encoding Phytolacca insularis antiviral protein confers virus resistance on transgenic potato plants. Mol Cells 7:807–815

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ng TB, Wang HX (2001) Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Sci 68:739–749

    Article  PubMed  CAS  Google Scholar 

  • Ng TB, Parkash A (2002) Hispin, a novel ribosome inactivating protein with antifungal activity from hairy melon seeds. Protein Expr Purif 26:211–217

    Article  PubMed  CAS  Google Scholar 

  • Nielsen K, Boston RS (2001) Ribosome-inactivating proteins: a plant perspective. Annu Rev Plant Physiol Plant Mol Biol 52:785–816

    Article  PubMed  CAS  Google Scholar 

  • Nielsen K, Payne GA, Boston RS (2001) Maize ribosome-inactivating protein inhibits normal development of Aspergillus nidulans and Aspergillus flavus. MPMI 14:164–172

    PubMed  CAS  Google Scholar 

  • Park SW, Vivanco JM (2001) Characterization of an antifungal ribosome-inactivating protein exuded from root cultures of Phytolacca Americana. Colorado State University, Fort Collins. APS, MSA, SON Annual Meeting A-147

  • Patrick HK, Ngai PH, Ng TB (2003) Purification of glysojanin, an antifungal protein, from the black soybean Glycine soja. Biochem Cell Biol 81:387–394

    Article  Google Scholar 

  • Reinbothe S, Reinbothe C, Lehmann J, Becker W, Apel K, Parthier B (1994) JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci USA 91:7012–7016

    Article  PubMed  CAS  Google Scholar 

  • Rippmann JF, Michalowski CB, Nelson DE, Bohnert HJ (1997) Induction of a ribosome-inactivating protein upon environmental stress. Plant Mol Biol 35:701–709

    Article  PubMed  CAS  Google Scholar 

  • Sehnke PC, Pedrosa L., Paul AL, Frankel AE, Ferl RJ (1994) Expression of active, processed ricin in transgenic tobacco. J Biol Chem 269:22473–22476

    PubMed  CAS  Google Scholar 

  • Smirnov S, Shulaev V, Tumer NE (1997) Expression of pokeweed antiviral protein in transgenic plants induces virus resistance in grafted wild-type plants independently of salicylic acid accumulation and pathogenesis-related protein synthesis. Plant Physiol 114:1113–1121

    PubMed  CAS  Google Scholar 

  • Song SK, Choi Y, Moon YH, Kim SG, Choi YD, Lee JS (2000) Systemic induction of a Phytolacca insularis antiviral protein gene by mechanical wounding, jasmonic acid, and abscisic acid. Plant Mol Biol 43:439–450

    Article  PubMed  CAS  Google Scholar 

  • Stripe F, Pession-Brizzi A, Lorenzoni E (1976) Studies on the proteins from the seeds of Croton toglium and of Jatropha curcas. Biochem J 156:1–6

    Google Scholar 

  • Stirpe F, Barbieri L (1986) Ribosome-inactivating proteins up to date. FEBS Lett 195:1–8

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Barbieri L, Battelli MG, Soria M, Lappi DA (1992) Ribosome-inactivating proteins from plants-present status and future prospects. BioTechnology 10:405–412

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Barbieri L, Gorini P, Valbonesi P, Bolognesi A, Polito L (1996) Activities associated with the presence of ribosome-inactivating proteins increase in senescent and stressed leaves. FEBS Lett 382:309–312

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Walsh TA, Morgan AE, Hey TD (1991) Characterization and molecular cloning of a proenzyme form of a ribosome-inactivating protein from maize. J Biol Chem 266:23422–23427

    PubMed  CAS  Google Scholar 

  • Wang HX, Ye XY, Ng TB (2001) Purification of Chrysancorin, a novel antifungal protein with mitogenic activity from garland Chrysanthemum seeds. Biol Chem 382:947–951

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Zoubenko O, Tumer NE (1998) Reduced toxicity and broad spectrum resistance to viral and fungal infection in transgenic plants expressing pokeweed antiviral protein II. Plant Mol Biol 38:957–964

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Huang MX, Xu Y, Zhang XS, Chen F (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30:101–107

    Google Scholar 

  • Zoubenko O, Hudak K, Tumer NE (2000) A nontoxic pokeweed antiviral protein mutant inhibits pathogen infection via a novel salicylic acid-independent pathway. Plant Mol Biol 44:219–229

    Article  PubMed  CAS  Google Scholar 

  • Zhang JP, Qin XB, Xu Y, Chen F (2005) Isolation and analysis on the genomic DNA sequence of members of a curcin gene family encoding a ribosome-inactivating protein from Jatropha curcas. J Sichuan Univ (Natural Science Edition) 42:1042–1046

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Wang Feng-Long from the Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China, who donated the TMV used in this study. This work was supported by the key science and technology project of the Ministry of Education of China (104151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, MX., Hou, P., Wei, Q. et al. A ribosome-inactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. Plant Growth Regul 54, 115–123 (2008). https://doi.org/10.1007/s10725-007-9234-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-007-9234-7

Keywords

Navigation