Skip to main content
Log in

Rhizosphere Microbiome Cooperations: Strategies for Sustainable Crop Production

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Interactions between microorganisms and host plants determine the growth and development as well as the health of the host plant. Various microbial groups inhabit the rhizosphere, each with its peculiar function. The survival of each microbial group depends to a large extent on its ability to colonize the plant root and outcompete the native organisms. The role of the rhizospheric microbiome in enhancing plant growth has not been fully maximized. An understanding of the complexities of microbial interactions and factors affecting their assembly in the community is necessary to benefit maximally from the cooperations of various microbial communities for sustainable crop production. In this review, we outline the various organisms associated with the plant rhizosphere with emphasis on their interactions and mechanisms used in plant growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(suppl_1):487–511. https://doi.org/10.1093/jexbot/52.suppl_1.487

  2. Reed M, Glick BR (2013) Applications of plant growth-promoting bacteria for plant and soil systems. Applications of Microbial Engineering Taylor and Francis, Enfield, CT:181–229

  3. Tabassum B, Khan A, Tariq M, Ramzan M, Khan MSI, Shahid N, Aaliya K (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117

    Article  Google Scholar 

  4. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799. https://doi.org/10.1038/nrmicro3109

    Article  CAS  PubMed  Google Scholar 

  5. Cheng M-H, Dien BS, Singh V (2019) Economics of plant oil recovery: a review. Biocatal Agric Biotechnol 18:101056

    Article  Google Scholar 

  6. Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321(1–2):213–233

    Article  CAS  Google Scholar 

  7. Buée M, De Boer W, Martin F, Van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321(1–2):189–212

    Article  Google Scholar 

  8. Ali MA, Naveed M, Mustafa A, Abbas A (2017) The good, the bad, and the ugly of rhizosphere microbiome. In: Probiotics and plant health. Springer, New York, pp 253–290

  9. Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72(3):313–327

    Article  CAS  PubMed  Google Scholar 

  10. Alawiye TT, Babalola OO (2019) Bacterial diversity and community structure in typical plant rhizosphere. Diversity 11(10):179

    Article  CAS  Google Scholar 

  11. Lee SA, Kim Y, Kim JM, Chu B, Joa J-H, Sang MK, Song J, Weon H-Y (2019) A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Sci Rep 9(1):1–15

    Google Scholar 

  12. Chelius M, Triplett E (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 252–263

  13. Pires AC, Cleary DF, Almeida A, Cunha Â, Dealtry S, Mendonça-Hagler LC, Smalla K, Gomes NC (2012) Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl Environ Microbiol 78(16):5520–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89(4):917–930. https://doi.org/10.1007/s00253-010-3004-6

    Article  CAS  PubMed  Google Scholar 

  15. Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis—model and research methods. Soil Biol Biochem 43(5):883–894. https://doi.org/10.1016/j.soilbio.2011.01.005

    Article  CAS  Google Scholar 

  16. Johnson D, Leake J, Read D (2001) Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytol 152(3):555–562

    Article  PubMed  Google Scholar 

  17. Adeleke R, Cloete T, Bertrand A, Khasa D (2012) Iron ore weathering potentials of ectomycorrhizal plants. Mycorrhiza 22(7):535–544

    Article  CAS  PubMed  Google Scholar 

  18. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x

    Article  CAS  PubMed  Google Scholar 

  19. Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 102(18):7821–7835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ambrosini A, Beneduzi A, Stefanski T, Pinheiro FG, Vargas LK, Passaglia LM (2012) Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356 (1–2):245–264

  21. Maheshwari DK, Saraf M, Aeron A (2013) Bacteria in agrobiology: crop productivity. Springer, New York

    Book  Google Scholar 

  22. Patel JS, Singh A, Singh HB, Sarma BK (2015) Plant genotype, microbial recruitment and nutritional security. Front Plant Sci 6:608–608. https://doi.org/10.3389/fpls.2015.00608

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zancarini A, Mougel C, Voisin A-S, Prudent M, Salon C, Munier-Jolain N (2012) Soil nitrogen availability and plant genotype modify the nutrition strategies of M. truncatula and the associated rhizosphere microbial communities. PLoS ONE 7(10):e47096. https://doi.org/10.1371/journal.pone.0047096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  25. Marques JM, da Silva TF, Vollu RE, Blank AF, Ding G-C, Seldin L, Smalla K (2014) Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol Ecol 88(2):424–435. https://doi.org/10.1111/1574-6941.12313

    Article  CAS  PubMed  Google Scholar 

  26. Wei Z, Hu J, Yin S, Xu Y, Jousset A, Shen Q, Friman V-P (2018) Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion. Soil Biol Biochem 118:8–17

    Article  CAS  Google Scholar 

  27. Kong HG, Kim BK, Song GC, Lee S, Ryu C-M (2016) Aboveground whitefly infestation-mediated reshaping of the root microbiota. Front Microbiol 7:1314

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A (2019) Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci 24(2):165–176

    Article  CAS  PubMed  Google Scholar 

  29. Ourry M, Lebreton L, Chaminade V, Guillerm-Erckelboudt A-Y, Hervé M, Linglin J, Marnet N, Ourry A, Paty C, Poinsot D, Cortesero A-M, Mougel C (2018) Influence of belowground herbivory on the dynamics of root and rhizosphere microbial communities. Front Ecol Evol 6:91 (91). https://doi.org/10.3389/fevo.2018.00091

  30. Zhang B, Zhang J, Liu Y, Shi P, Wei G (2018) Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol Biochem 118:178–186. https://doi.org/10.1016/j.soilbio.2017.12.011

    Article  CAS  Google Scholar 

  31. Hou J, Liu W, Wu L, Ge Y, Hu P, Li Z, Christie P (2019) Rhodococcus sp. NSX2 modulates the phytoremediation efficiency of a trace metal-contaminated soil by reshaping the rhizosphere microbiome. Appl Soil Ecol 133:62–69

    Article  Google Scholar 

  32. Santoyo G, Hernández-Pacheco C, Hernández-Salmerón J, Hernández-León R (2017) The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture. A review. Span J Agri Res 15(1):1. https://doi.org/10.5424/sjar/2017151-9990

    Article  Google Scholar 

  33. Saravanakumar K, Li Y, Yu C, Wang Q-q, Wang M, Sun J, Gao J-x, Chen J (2017) Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci Rep 7(1):1–13

    Article  CAS  Google Scholar 

  34. Ndeddy Aka RJ, Babalola OO (2016) Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Int J Phytorem 18(2):200–209

    Article  CAS  Google Scholar 

  35. Wu S-H, Huang B-H, Huang C-L, Li G, Liao P-C (2018) The aboveground vegetation type and underground soil property mediate the divergence of soil microbiomes and the biological interactions. Microb Ecol 75(2):434–446. https://doi.org/10.1007/s00248-017-1050-7

    Article  CAS  PubMed  Google Scholar 

  36. van der Voort M, Kempenaar M, van Driel M, Raaijmakers JM, Mendes R (2016) Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecol Lett 19(4):375–382. https://doi.org/10.1111/ele.12567

    Article  PubMed  Google Scholar 

  37. Li K, DiLegge MJ, Minas IS, Hamm A, Manter D, Vivanco JM (2019) Soil sterilization leads to re-colonization of a healthier rhizosphere microbiome. Rhizosphere 12:100176

    Article  Google Scholar 

  38. Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, McLean J, Malik KA (2018) Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome. World J Microbiol Biotechnol 34(9):136. https://doi.org/10.1007/s11274-018-2509-5

    Article  CAS  PubMed  Google Scholar 

  39. Ibekwe AM, Ors S, Ferreira JF, Liu X, Suarez DL (2017) Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought. Sci Total Environ 579:1485–1495

    Article  Google Scholar 

  40. Maghnia FZ, Abbas Y, Mahé F, Prin Y, El Ghachtouli N, Duponnois R, Sanguin H (2019) The rhizosphere microbiome: a key component of sustainable cork oak forests in trouble. For Ecol Manag 434:29–39

    Article  Google Scholar 

  41. Wang Z, Li T, Li Y, Zhao D, Han J, Liu Y, Liao Y (2020) Relationship between the microbial community and catabolic diversity in response to conservation tillage. Soil Till Res 196:104431. https://doi.org/10.1016/j.still.2019.104431

    Article  Google Scholar 

  42. Wang Z, Liu L, Chen Q, Wen X, Liu Y, Han J, Liao Y (2017) Conservation tillage enhances the stability of the rhizosphere bacterial community responding to plant growth. Agron Sustain Dev 37(5):44. https://doi.org/10.1007/s13593-017-0454-6

    Article  Google Scholar 

  43. Cui E, Fan X, Li Z, Liu Y, Neal AL, Hu C, Gao F (2019) Variations in soil and plant-microbiome composition with different quality irrigation waters and biochar supplementation. Appl Soil Ecol 142:99–109

    Article  Google Scholar 

  44. Zhao C, Liu Y, Lai S, Cao H, Guan Y, San Cheang W, Liu B, Zhao K, Miao S, Riviere C, Capanoglu E, Xiao J (2019) Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Trends Food Sci Technol 85:55–66. https://doi.org/10.1016/j.tifs.2019.01.004

    Article  CAS  Google Scholar 

  45. Pii Y, Borruso L, Brusetti L, Crecchio C, Cesco S, Mimmo T (2016) The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol Biochem 99:39–48. https://doi.org/10.1016/j.plaphy.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  46. Krause SM, Dohrmann AB, Gillor O, Christensen BT, Merbach I, Tebbe CC (2020) Soil properties and habitats determine the response of bacterial communities to agricultural wastewater irrigation. Pedosphere 30(1):146–158

    Article  Google Scholar 

  47. Fan K, Weisenhorn P, Gilbert JA, Shi Y, Bai Y, Chu H (2018) Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biol Biochem 121:185–192

    Article  CAS  Google Scholar 

  48. Qiao Q, Wang F, Zhang J, Chen Y, Zhang C, Liu G, Zhang H, Ma C, Zhang J (2017) The variation in the rhizosphere microbiome of cotton with soil type. Genotype Dev Stage Sci Rep 7(1):3940–3940. https://doi.org/10.1038/s41598-017-04213-7

    Article  CAS  Google Scholar 

  49. Goss-Souza D, Mendes LW, Borges CD, Rodrigues JL, Tsai SM (2019) Amazon forest-to-agriculture conversion alters rhizosphere microbiome composition while functions are kept. FEMS Microbiol Ecol 95(3):fiz009

    Article  CAS  PubMed  Google Scholar 

  50. Benitez M-S, Osborne SL, Lehman RM (2017) Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome. Sci Rep 7(1):1–13

    Article  Google Scholar 

  51. Li X, Jousset A, de Boer W, Carrión VJ, Zhang T, Wang X, Kuramae EE (2019) Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J 13(3):738–751. https://doi.org/10.1038/s41396-018-0300-0

    Article  CAS  PubMed  Google Scholar 

  52. Berkelmann D, Schneider D, Meryandini A, Daniel R (2020) Unravelling the effects of tropical land use conversion on the soil microbiome. Environ Microbiome 15(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Venter ZS, Jacobs K, Hawkins H-J (2016) The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59(4):215–223

    Article  Google Scholar 

  54. Zhang Y, Jewett C, Gilley J, Bartelt-Hunt SL, Snow DD, Hodges L, Li X (2018) Microbial communities in the rhizosphere and the root of lettuce as affected by Salmonella-contaminated irrigation water. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiy135

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  56. Canarini A, Wanek W, Merchant A, Richter A, Kaiser C (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B (2006) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant Microbe Interact 19(10):1121–1126

  58. Bressan M, Roncato M-A, Bellvert F, Comte G, el Zahar HF, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3(11):1243–1257

    Article  CAS  PubMed  Google Scholar 

  59. Cotta SR, Dias ACF, Marriel IE, Andreote FD, Seldin L, van Elsas JD (2014) Different effects of transgenic maize and nontransgenic maize on nitrogen-transforming archaea and bacteria in tropical soils. Appl Environ Microbiol 80(20):6437–6445

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    Article  PubMed  PubMed Central  Google Scholar 

  61. Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci USA 110(17):E1621–E1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, MacDougall AS, McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, Fierer N (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett 18(1):85–95. https://doi.org/10.1111/ele.12381

    Article  PubMed  Google Scholar 

  63. Zhang N, Yang D, Kendall JR, Borriss R, Druzhinina IS, Kubicek CP, Shen Q, Zhang R (2016) Comparative genomic analysis of Bacillus amyloliquefaciens and Bacillus subtilis reveals evolutional traits for adaptation to plant-associated habitats. Front Microbiol 7:2039

    Article  PubMed  PubMed Central  Google Scholar 

  64. Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D, Kierul K, Becker A, von Wiren N, Borriss R (2013) Linking plant nutritional status to plant-microbe interactions. PLoS ONE 8(7):e68555. https://doi.org/10.1371/journal.pone.0068555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shi S, Nuccio E, Herman DJ, Rijkers R, Estera K, Li J, da Rocha UN, He Z, Pett-Ridge J, Brodie EL (2015) Successional trajectories of rhizosphere bacterial communities over consecutive seasons. MBio 6(4):e00746-e715

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK (2016) The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol Lett 19(8):926–936. https://doi.org/10.1111/ele.12630

    Article  PubMed  Google Scholar 

  67. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14(1):e1002352 (1). https://doi.org/10.1371/journal.pbio.1002352

  68. Essarioui A, Kistler HC, Kinkel LL (2016) Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities. Plant Soil 409(1–2):329–343

    Article  CAS  Google Scholar 

  69. Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41. https://doi.org/10.1016/j.tplants.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  70. González-Torres P, Pryszcz LP, Santos F, Martínez-García M, Gabaldón T, Antón J (2015) Interactions between closely related bacterial strains are revealed by deep transcriptome sequencing. Appl Environ Microbiol 81(24):8445–8456

    Article  PubMed  PubMed Central  Google Scholar 

  71. Garbeva P, Silby MW, Raaijmakers JM, Levy SB, De Boer W (2011) Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J 5(6):973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21(3):187–198. https://doi.org/10.1016/j.tplants.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  73. el Zahar HF, Heulin T, Guyonnet JP, Achouak W (2016) Stable isotope probing of carbon flow in the plant holobiont. Curr Opin Biotechnol 41:9–13

    Article  Google Scholar 

  74. Mönchgesang S, Strehmel N, Schmidt S, Westphal L, Taruttis F, Müller E, Herklotz S, Neumann S, Scheel D (2016) Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci Rep 6(1):1–11

    Article  Google Scholar 

  75. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803

    Article  CAS  PubMed  Google Scholar 

  76. Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33(11):197

    Article  PubMed  PubMed Central  Google Scholar 

  77. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220

    Article  CAS  PubMed  Google Scholar 

  78. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  79. Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64(9):2541–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Grobelak A, Napora A, Kacprzak M (2015) Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecol Eng 84:22–28

    Article  Google Scholar 

  81. Ali B, Sabri AN, Hasnain S (2010) Rhizobacterial potential to alter auxin content and growth of Vigna radiata (L.). World J Microbiol Biotechnol 26(8):1379–1384

  82. Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482(7383):103–106

    Article  CAS  PubMed  Google Scholar 

  83. Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136(16):2675–2688

    Article  PubMed  Google Scholar 

  84. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y-S, Amasino R, Scheres B (2004) The plethora genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119(1):109–120

    Article  CAS  PubMed  Google Scholar 

  85. Grieneisen VA, Xu J, Marée AF, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449(7165):1008–1013

    Article  CAS  PubMed  Google Scholar 

  86. Ioio RD, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322(5906):1380–1384

    Article  Google Scholar 

  87. Marhavý P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H, Pařezová M, Petrášek J, Friml J, Kleine-Vehn J (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21(4):796–804

    Article  PubMed  Google Scholar 

  88. Abeles F, Morgan P, Saltveit M (1992) Ethylene in plant biology, 2nd edn. Academic Press, New York, p 414

    Google Scholar 

  89. Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169(1):13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  91. Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235

    Article  CAS  PubMed  Google Scholar 

  92. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: New perspectives and approaches in plant growth-promoting Rhizobacteria research. Springer, New York, pp 329–339

  93. Yim W, Seshadri S, Kim K, Lee G, Sa T (2013) Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions. Plant Physiol Biochem 67:95–104

    Article  CAS  PubMed  Google Scholar 

  94. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  95. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica

  96. Toklikishvili N, Dandurishvili N, Vainstein A, Tediashvili M, Giorgobiani N, Lurie S, Szegedi E, Glick B, Chernin L (2010) Inhibitory effect of ACC deaminase‐producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathol 59(6):1023–1030

  97. Igiehon NO, Babalola OO, Aremu BR (2019) Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiol 19(1):159

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic 193:231–239

    Article  Google Scholar 

  99. Baas P, Mohan JE, Markewitz D, Knoepp JD (2014) Assessing heterogeneity in soil nitrogen cycling: a Plot-Scale Approach. Soil Sci Soc Am J 78(S1):S237–S247

    Article  Google Scholar 

  100. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotech Lett 32(11):1559–1570

    Article  CAS  Google Scholar 

  101. Pérez-Montaño F, Alías-Villegas C, Bellogín R, Del Cerro P, Espuny M, Jiménez-Guerrero I, López-Baena FJ, Ollero F, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169(5–6):325–336

    Article  PubMed  Google Scholar 

  102. Igiehon N, Babalola O (2018) Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. Int J Environ Res Public Health 15(4):574

    Article  PubMed Central  Google Scholar 

  103. Geddes BA, Ryu M-H, Mus F, Costas AG, Peters JW, Voigt CA, Poole P (2015) Use of plant colonizing bacteria as chassis for transfer of N2-fixation to cereals. Curr Opin Biotechnol 32:216–222

    Article  CAS  PubMed  Google Scholar 

  104. Oldroyd GE, Dixon R (2014) Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26:19–24

    Article  CAS  PubMed  Google Scholar 

  105. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68(2):280–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Igiehon NO, Babalola OO (2018) Below-ground-above-ground plant-microbial interactions: focusing on soybean, rhizobacteria and mycorrhizal fungi. Open Microbiol J 12:261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48(5):505–512

    Article  CAS  PubMed  Google Scholar 

  108. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41(1):117–153

  109. Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  110. Glick BR (2015) Beneficial plant-bacterial interactions. Springer, New York

    Book  Google Scholar 

  111. de Jesus Sousa JA, Olivares FL (2016) Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem Biol Technol Agric 3(1):1–12

    Google Scholar 

  112. Heimpel GE, Mills NJ (2017) Biological control. Cambridge University Press, Cambridge

    Book  Google Scholar 

  113. Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1):1127500

    Google Scholar 

  114. Chang W-T, Chen Y-C, Jao C-L (2007) Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Biores Technol 98(6):1224–1230

    Article  CAS  Google Scholar 

  115. Ramette A, Moënne-Loccoz Y, Défago G (2006) Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiol Ecol 55(3):369–381

    Article  CAS  PubMed  Google Scholar 

  116. Nandi M, Selin C, Brawerman G, Fernando WD, de Kievit T (2017) Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biol Control 108:47–54

    Article  CAS  Google Scholar 

  117. Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22(6):641–650

    Article  CAS  Google Scholar 

  118. Ahmad F, Ahmad I, Khan M (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    Article  CAS  PubMed  Google Scholar 

  119. Das K, Prasanna R, Saxena AK (2017) Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol 62(5):425–435

    Article  CAS  Google Scholar 

  120. Zachow C, Müller H, Monk J, Berg G (2017) Complete genome sequence of Pseudomonas brassicacearum strain L13-6-12, a biological control agent from the rhizosphere of potato. Stand Genom Sci 12(1):6

    Article  Google Scholar 

  121. Barahona E, Navazo A, Martínez-Granero F, Zea-Bonilla T, Pérez-Jiménez RM, Martín M, Rivilla R (2011) Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 77(15):5412–5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77(10):3202–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14(1):1–12

    Article  Google Scholar 

  124. Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101(12):4871–4881

    Article  CAS  PubMed  Google Scholar 

  125. Van Der Heijden MG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706):69–72

    Article  Google Scholar 

  126. Staley JT, Mortimer SR, Morecroft MD, Brown VK, Masters GJ (2007) Summer drought alters plant-mediated competition between foliar- and root-feeding insects. Glob Chang Biol 13(4):866–877. https://doi.org/10.1111/j.1365-2486.2007.01338.x

    Article  Google Scholar 

  127. Zamioudis C, Pieterse CMJ (2012) Modulation of Host Immunity by Beneficial Microbes. Mol Plant Microbe Interact 25(2):139–150. https://doi.org/10.1094/mpmi-06-11-0179

    Article  CAS  PubMed  Google Scholar 

  128. de Román M, Fernández I, Wyatt T, Sahrawy M, Heil M, Pozo MJ (2011) Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. J Ecol 99(1):36–45

    Article  Google Scholar 

  129. Joosten L, Mulder PP, Klinkhamer PG, van Veen JA (2009) Soil-borne microorganisms and soil-type affect pyrrolizidine alkaloids in Jacobaea vulgaris. Plant Soil 325(1–2):133

    Article  CAS  Google Scholar 

  130. van de Mortel JE, de Vos RC, Dekkers E, Pineda A, Guillod L, Bouwmeester K, van Loon JJ, Dicke M, Raaijmakers JM (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160(4):2173–2188

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kundan R, Pant G, Jadon N, Agrawal P (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic 6(2):9

    Article  Google Scholar 

  132. Arora P, Tiwari A (2017) Microbes and crop production. In: Probiotics in agroecosystem. Springer, New York, pp 437–450

  133. Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, Kaushik R, Saxena AK (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro‐ecological zones of India. J Basic Microbiol 56(1):44–58

  135. Haling RE, Brown LK, Bengough AG, Valentine TA, White PJ, Young IM, George TS (2014) Root hair length and rhizosheath mass depend on soil porosity, strength and water content in barley genotypes. Planta 239(3):643–651

    Article  CAS  PubMed  Google Scholar 

  136. Daly KR, Keyes SD, Masum S, Roose T (2016) Image-based modelling of nutrient movement in and around the rhizosphere. J Exp Bot 67(4):1059–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kaur R, Saxena A, Sangwan P, Yadav AN, Kumar V, Dhaliwal HS (2017) Production and characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nusantara Biosci 9(1):68–76

    Article  Google Scholar 

  138. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65(4):1885–1899. https://doi.org/10.1007/s13213-014-1027-4

    Article  CAS  Google Scholar 

  139. Reis VM, Teixeira KRdS (2015) Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture. J Basic Microbiol 55(8):931–949. https://doi.org/10.1002/jobm.201400898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Choudhary M, Meena VS, Yadav RP, Parihar M, Pattanayak A, Panday S, Mishra P, Bisht J, Yadav M, Nogia M (2019) Does PGPR and mycorrhizae enhance nutrient use efficiency and efficacy in relation to crop productivity? In: Field crops: sustainable management by PGPR. Springer, New York, pp 45–68

  141. Dahal B, NandaKafle G, Perkins L, Brözel VS (2017) Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota. Microbiol Res 195:31–39

    Article  CAS  PubMed  Google Scholar 

  142. Jamir E, Kangabam RD, Borah K, Tamuly A, Boruah HD, Silla Y (2019) Role of soil microbiome and enzyme activities in plant growth nutrition and ecological restoration of soil health. In: Microbes and enzymes in soil health and bioremediation. Springer, New York, pp 99–132

  143. Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE (2018) Bacterial symbionts in lepidoptera: their diversity, transmission, and impact on the host. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00556

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ahmed T, Shahid M, Noman M, Hussain S, Khan MA, Zubair M, Ismail M, Manzoor N, Shahzad T, Mahmood F (2019) Plant growth-promoting rhizobacteria as biological tools for nutrient management and soil sustainability. In: Plant growth promoting rhizobacteria for agricultural sustainability. Springer, New York, pp 95–110

  145. Fauziah F, Setiawati MR, Pranoto E, Susilowati DN, Rachmiati Y (2019) Effect of indigenous microbes on growth and blister blight disease of tea plant. J Plant Prot Res 59(4):529–534

    Google Scholar 

  146. Sherathia D, Dey R, Thomas M, Dalsania T, Savsani K, Pal K (2016) Biochemical and molecular characterization of DAPG-producing plant growth-promoting rhizobacteria (PGPR) of groundnut (Arachis hypogaea L.). Legume Res 39(4):614–622

  147. Patil A, Kale A, Ajane G, Sheikh R, Patil S (2017) Plant growth-Promoting Rhizobium: mechanisms and biotechnological prospective. In: Rhizobium Biology and Biotechnology. Springer, pp 105–134

  148. Zarea MJ (2019) Applications of beneficial microbe in arid and semiarid agroecosystem: IAA-producing bacteria. In: Microbiome in plant health and disease. Springer, New York, pp 105–118

  149. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  150. Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 5(2):111–121

  151. Zameer M, Zahid H, Tabassum B, Ali Q, Nasir IA, Saleem M, Butt SJ (2016) PGPR potentially improve growth of tomato plants in salt-stressed environment. Turkish J Agr Food Sci Tech 4(6):455–463

    Article  Google Scholar 

  152. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001

    Article  CAS  Google Scholar 

  153. Tiquia-Arashiro SM (2018) Lead absorption mechanisms in bacteria as strategies for lead bioremediation. Appl Microbiol Biotechnol 102(13):5437–5444. https://doi.org/10.1007/s00253-018-8969-6

    Article  CAS  PubMed  Google Scholar 

  154. Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. In: Microbial inoculants in sustainable agricultural productivity. Springer, New York, pp 257–270

  155. Bardin M, Pugliese M (2020) Biocontrol agents against diseases. In: Gullino ML, Albajes R, Nicot PC (eds) Integrated pest and disease management in greenhouse crops. Springer, Cham, pp 385–407. https://doi.org/10.1007/978-3-030-22304-5_13

  156. Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas. Indian J Exp Biol 54(2):142–150

    PubMed  Google Scholar 

  157. Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS ONE 9(3): e90841 (3)

  158. Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25(1):13–24

    Article  PubMed  Google Scholar 

  159. Yadav R, Mahatma M, Thirumalaisamy P, Meena H, Bhaduri D, Arora S, Panwar J (2017) Arbuscular Mycorrhizal Fungi (AMF) for sustainable soil and plant health in salt-affected soils. In: Bioremediation of salt affected soils: an Indian perspective. Springer, pp 133–156

  160. Cardoso Filho JA, Sobrinho RR, Pascholati SF (2017) Arbuscular mycorrhizal symbiosis and its role in plant nutrition in sustainable agriculture. In: Agriculturally important microbes for sustainable agriculture. Springer, New York, pp 129–164

  161. Sato T, Ezawa T, Cheng W, Tawaraya K (2015) Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. Soil Sci Plant Nutr 61(2):269–274

    Article  CAS  Google Scholar 

  162. Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5(4):587–612

    Article  Google Scholar 

  163. Pepe A, Sbrana C, Ferrol N, Giovannetti M (2017) An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. Mycorrhiza 27(7):659–668

    Article  CAS  PubMed  Google Scholar 

  164. Kakvan N, Heydari A, Zamanizadeh HR, Rezaee S, Naraghi L (2013) Development of new bioformulations using Trichoderma and Talaromyces fungal antagonists for biological control of sugar beet damping-off disease. Crop Prot 53:80–84

    Article  Google Scholar 

  165. Watanabe T, Asakawa S, Hayano K (2020) Long-term submergence of non-methanogenic oxic upland field soils helps to develop the methanogenic archaeal community as revealed by pot and field experiments. Pedosphere 30(1):62–72

    Article  Google Scholar 

  166. Adeleke BS, Babalola OO (2020) The endosphere microbial communities, a great promise in agriculture. Int Microbiol 24:1–17

    Article  PubMed  Google Scholar 

  167. Song GC, Im H, Jung J, Lee S, Jung MY, Rhee SK, Ryu CM (2019) Plant growth-promoting archaea trigger induced systemic resistance in Arabidopsis thaliana against Pectobacterium carotovorum and Pseudomonas syringae. Environ Microbiol 21(3):940–948

    Article  CAS  PubMed  Google Scholar 

  168. Yadav AN, Verma P, Kaushik R, Dhaliwal H, Saxena A (2017) Archaea endowed with plant growth promoting attributes. EC Microbiol 8(6):294–298

    Google Scholar 

  169. Paul VG, Wronkiewicz DJ, Mormile MR, Foster JS (2016) Mineralogy and microbial diversity of the microbialites in the hypersaline storr’s Lake, the bahamas. Astrobiology 16(4):282–300

    Article  CAS  PubMed  Google Scholar 

  170. Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R, Dey R, Pal KK, Kaushik R, Saxena AK (2019) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74(8):1031–1043

    Article  Google Scholar 

  171. Odelade KA, Babalola OO (2019) Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. Int J Env Res Public Health 16(20):3873. https://doi.org/10.3390/ijerph16203873

    Article  CAS  Google Scholar 

  172. Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA (2018) Archaea are interactive components of complex microbiomes. Trends Microbiol 26(1):70–85

    Article  CAS  PubMed  Google Scholar 

  173. Zhu Y, Tian J, Shi F, Su L, Liu K, Xiang M, Liu X (2013) Rhizosphere bacterial communities associated with healthy and Heterodera glycines-infected soybean roots. Eur J Soil Biol 58:32–37

    Article  CAS  Google Scholar 

  174. Kumar V, Yadav AN, Verma P, Sangwan P, Saxena A, Kumar K, Singh B (2017) β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 98:595–609

    Article  CAS  PubMed  Google Scholar 

  175. Dignam BE, O’Callaghan M, Condron LM, Kowalchuk GA, Van Nostrand JD, Zhou J, Wakelin SA (2018) Effect of land use and soil organic matter quality on the structure and function of microbial communities in pastoral soils: implications for disease suppression. PLoS ONE 13(5)

  176. Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG (2020) Diversity, ecology and evolution of Archaea. Nat Microbiol 4:1–14

    CAS  Google Scholar 

  177. Hartman K, van der Heijden MG, Roussely-Provent V, Walser J-C, Schlaeppi K (2017) Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  178. Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WIC, Madsen EL, Kim SJ, Hong H, Si OJ, Kerou M, Schleper C (2016) A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. Environ Microbiol Rep 8(6):983–992

    Article  CAS  PubMed  Google Scholar 

  179. Berg G, Rybakova D, Grube M, Köberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67(4):995–1002

    Article  CAS  PubMed  Google Scholar 

  180. Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26(6):715–721

    Article  CAS  PubMed  Google Scholar 

  181. Ayangbenro AS, Babalola OO, Aremu OS (2019) Bioflocculant production and heavy metal sorption by metal resistant bacterial isolates from gold mining soil. Chemosphere 231:113–120. https://doi.org/10.1016/j.chemosphere.2019.05.092

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

OOB would like to acknowledge the research grant from the National Research Foundation, South Africa (Unique Grant No: 123634).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the development of the manuscript.

Corresponding author

Correspondence to Olubukola O. Babalola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babalola, O.O., Emmanuel, O.C., Adeleke, B.S. et al. Rhizosphere Microbiome Cooperations: Strategies for Sustainable Crop Production. Curr Microbiol 78, 1069–1085 (2021). https://doi.org/10.1007/s00284-021-02375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02375-2

Navigation