Skip to main content

Advertisement

Log in

The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

A Correction to this article was published on 07 February 2022

This article has been updated

Abstract

Microbial control agents serve as alternatives to synthetic pesticides for the management of insect pests and plant pathogens. Naturally occurring microorganisms such as bacteria, fungi, and protozoa may be beneficial, pathogenic, or neutral to host plants. This review focuses on the potential role of useful microorganisms as biofertilizers or biopesticides in sustaining and enhancing crop production, and protection. It is necessary to highlight the advantages of the beneficial microorganisms to encourage farmers to use biological control agents and biofertilizers and reduce the excessive use of toxic chemical pesticides and fertilizers. Here, we review the importance of using microorganisms in the agriculture sector for their potential role in fulfilling the nutritional requirements of plants, food safety, and sustainable crop production. Microorganisms can interact with the crop plants to improve their resistance to pathogen attack, plant growth, and development. Their metabolites have been recognized based on their precious excellent plant growth promotion, efficient biocontrol capabilities, successful mass production, appropriate formulation and availability for commercial application. Bio-complexes, including biofertilizers and biopesticides, promote growth and provide protection to plants against various biotic and abiotic stress through the production of plant growth regulators and siderophores, enhancement of nutrient uptake, increasing yield, and production of antagonistic compounds such as antibiotics, hydrolytic enzymes, hydrogen cyanide, and volatile organic compounds. This review sheds the light on the potential of employing microbial agents in agriculture as biofertilizers, biopesticides, nano-biofertilizers and nano-biopesticides to enhance plant productivity and sustainable agriculture.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  • Abadias, M., Usall, J., Teixidó, N., & Viñas, I. (2003). Liquid formulation of the postharvest biocontrol agent Candida sake CPA-1 in isotonic solutions. Phytopathology, 93, 436–442.

    PubMed  Google Scholar 

  • Abraham, A., Philip, S., Jacob, C. K., & Jayachandran, K. (2013). Novel bacterial endophytes from Hevea brasiliensis as biocontrol agent against Phytophthora leaf fall disease. BioControl, 58, 675–684.

    CAS  Google Scholar 

  • Abd El-Hack, M. E., Mohamed, E., Alaidaroos, B. A., Farsi, R. M., Abou-Kassem, D. E., El-Saadony, M. T., et al. (2021). Impacts of supplementing broiler diets with biological curcumin, zinc nanoparticles and Bacillus licheniformis on growth, carcass traits, blood indices, meat quality and cecal microbial load. Animals, 11, 1878.

    PubMed  PubMed Central  Google Scholar 

  • Adediran, G. A., Ngwenya, B. T., Mosselmans, J. F. W., & Heal, K. V. (2015). Bacteria–zinc colocalization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum. New Phytologist, 209, 280–293.

    Google Scholar 

  • Ahmad, M., Zahir, Z. A., Nazli, F., Akram, F., Arshad, M., & Khalid, M. (2013). Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Brazilian Journal of Microbiology, 44, 1341–1348.

    PubMed  Google Scholar 

  • Alami, Y., Achouak, W., Marol, C., & Heulin, T. (2000). Rhizosphere soil aggregation and plant growth-promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Applied and Environmental Microbiology, 66, 3393–3398.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Anazi, M. S., Virk, P., Elobeid, M., & Siddiqui, M. I. (2015). Ameliorative effects of Rosmarinus officinalis leaf extract and Vitamin C on cadmium-induced oxidative stress in Nile tilapia Oreochromis niloticus. Journal of Environmental Biology, 36, 1401.

    CAS  PubMed  Google Scholar 

  • Alaux, P. L., César, V., Naveau, F., Cranenbrouck, S., & Declerck, S. (2018). Impact of Rhizophagus irregularis MUCL 41833 on disease symptoms caused by Phytophthora infestans in potato grown under field conditions. Crop Protection, 107, 26–33.

    Google Scholar 

  • Alblooshi, A. A., Purayil, G. P.  Saeed, E. E., Ramadan, G. A., Tariq, S., Altaee, A. S., El-Tarabily, K. A., & AbuQamar, S.F. (2022). Biocontrol potential of endophytic actinobacteria against Fusarium solani, the causal agent of sudden decline syndrome on date palm in the UAE. Journal of Fungi, 8, 8.

  • Alexander, B. J. R., & Stewart, A. (2001). Glasshouse screening for biological control agents of Phytophthora cactorum on apple (Malus domestica). New Zealand Journal of Crop and Horticultural Science, 29, 159–169.

    Google Scholar 

  • Al Hamad, B. M., Al Raish, S. M., Ramadan, G. A., Saeed, E. E., Alameri, S. S. A., Al Senaani, S. S., AbuQamar, S. F., & El-Tarabily, K. A. (2021). Effectiveness of augmentative biological control of Streptomyces griseorubens UAE2 depends on 1-aminocyclopropane-1 carboxylic acid deaminase activity against Neoscytalidium dimidiatum. Journal of Fungi, 7, 885.

  • Al Raish, S. M., Saeed, E. E., Alyafei, D. M., El-Tarabily, K. A., & AbuQamar, S. F. (2021). Evaluation of streptomycete actinobacterial isolates as biocontrol agents against royal poinciana stem canker disease caused by Neoscytalidium dimidiatumBiological Control, 164, 104783.

  • Al-Taweil, H. I., Osman, M. B., Abdulhamid, A., Mohammad, N., & Wan Yussof, W. M. (2010). Microbial inoculants for enhancing rice growth and sheath spots disease suppression. Archives of Agronomy and Soil Science, 56, 623–632.

    CAS  Google Scholar 

  • Amakata, D., Matsuo, Y., Shimono, K., Park, J. K., Yun, C. S., Matsuda, H., Yokota, A., & Kawamukai, M. (2005). Mitsuaria chitosanitabida gen. nov., sp. nov., an aerobic, chitosanase-producing member of the ‘Betaproteobacteria.’ International Journal of Systematic and Evolutionary Microbiology, 55, 1927–1932.

    CAS  PubMed  Google Scholar 

  • Anderson, A. J., McLean, J. E., Jacobson, A. R., & Britt, D. W. (2017). CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. Journal of Agriculture and Food Chemistry, 66, 6513–6524.

    Google Scholar 

  • Anderson, J., Dubetz, C., & Palace, V. (2015). Neonicotinoids in the Canadian aquatic environment: A literature review on current use products with a focus on fate, exposure, and biological effects. Science of the Total Environment, 505, 409–422.

  • Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38, 145–180.

  • Antoun, H., & Prévost, D. (2005). Ecology of plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 1–38). Springer. https://doi.org/10.1007/1-4020-4152-7_1

  • Aoki, Y., Haga, S., & Suzuki, S. (2020). Direct antagonistic activity of chitinase produced by Trichoderma sp. SANA20 as biological control agent for grey mould caused by Botrytis cinerea. Cogent Biology, 6(1), 1747903.

    Google Scholar 

  • Arras, G. (1996). Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruits. Postharvest Biology and Technology, 8, 191–198.

    Google Scholar 

  • Ashelford, K. E., Day, M. J., & Fry, J. C. (2003). Elevated abundance of bacteriophage infecting bacteria in soil. Applied and Environmental Microbiology, 69, 285–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babaei, K., Seyed Sharifi, R., Pirzad, A., & Khalilzadeh, R. (2017). Effects of bio fertilizer and nano Zn– Fe oxide on physiological traits, antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress. Journal of Plant Interactions, 12, 381–389.

    CAS  Google Scholar 

  • Báez-Vallejo, N., Camarena-Pozos, D. A., Monribot-Villanueva, J. L., Ramírez-Vázquez, M., Carrión-Villarnovo, G. L., Guerrero-Analco, J. A., et al. (2020). Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium, causal agent of Fusarium dieback. Microbiological Research, 235, 126440.

    PubMed  Google Scholar 

  • Baffoni, L., Gaggia, F., Dalanaj, N., Prodi, A., Nipoti, P., Pisi, A., Biavati, B., & Di Gioia, D. (2015). Microbial inoculants for the biocontrol of Fusarium spp. in durum wheat. BMC Microbiology, 15, 242.

    PubMed  PubMed Central  Google Scholar 

  • Bailey, K., Boyetchko, S., & Längle, T. (2010). Social and economic drivers shaping the future of biological control: A Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biological Control, 52, 221–229.

    Google Scholar 

  • Bamisile, B. S., Dash, C. K., Akutse, K. S., Qasim, M., Ramos Aguila, L. C., Wang, F., et al. (2019). Endophytic Beauveria bassiana in foliar-treated citrus limon plants acting as a growth suppressor to three successive generations of Diaphorina citri Kuwayama (Hemiptera: Liviidae). Insects, 10, 176.

    PubMed Central  Google Scholar 

  • Bangeppagari, M., Gooty, J. M., Tirado, J. O., Mariadoss, S., Thangaswamy, S., Maddela, N. R., & Ortiz, D. R. (2014). Therapeutic efficiency of Spirulina against lead acetate toxicity on the fresh water fish Labeo rohita. American Journal of Life Sciences, 2, 389–394.

    Google Scholar 

  • Bano, A., & Fatima, M. (2009). Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils, 45(4), 405–413.

    Google Scholar 

  • Barik, T. K., Sahu, B., & Swain, V. (2008). Nanosilica from medicine to pest control. Parasitology Research, 103, 253–258.

    CAS  PubMed  Google Scholar 

  • Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances, 16, 729–770.

    CAS  Google Scholar 

  • Bashan, Y., & De-Bashan, L. E. (2002). Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology, 68, 2637–2643.

  • Baysal, F., Benitez, M.-S., Kleinhenz, M. D., Miller, S. A., & Gardener, B. B. M. (2008). Field management effects on damping-off and early season vigor of crops in a transitional organic cropping system. Phytopathology., 98, 562–570.

    PubMed  Google Scholar 

  • Beattie, G. A. (2007). Plant-associated bacteria: Survey, molecular phylogeny, genomics and recent advances. In S. S. Gnanamanickam (Ed.), Plant-associated bacteria (pp. 1–56). Springer. https://doi.org/10.1007/978-1-4020-4538-7_1.

  • Bektas, I., & Kusek, M. (2021). Biological control of onion basal rot disease using phosphate solubilising rhizobacteria. Biocontrol Science and Technology, 31, 190–205.

  • Benelli, G. (2016). Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review. Journal of Parasitology Research, 115, 23–34.

    Google Scholar 

  • Benítez, M.S., 2008. Applied T-RFLP analyses for the identification and characterization of microbial populations associated with damping-off incidence in a transitional organic cropping system. Dissertation, The Ohio State University.

  • Benítez, M.-S., & Gardener, B. B. M. (2009). Linking sequence to function in soil bacteria: Sequence-directed isolation of novel bacteria contributing to soil borne plant disease suppression. Applied and Environmental Microbiology, 75, 915–924.

    PubMed  Google Scholar 

  • Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84, 11–18.

  • Boddupalli, A., Tiwari, R., Sharma, A., Singh, S., Prasanna, R., & Nain, L. (2017). Elucidating the interactions and phytotoxicity of zinc oxide nanoparticles with agriculturally beneficial bacteria and selected crop plants. Folia Microbiologia (praha), 62, 253–262.

    CAS  Google Scholar 

  • Bonaterra, A., Mari, M., Casalini, L., & Montesinos, E. (2003). Biological control of Monilina laxa and Rhizopus stolonifer in post-harvest control of stone fruit by Pantoea agglomerans and putative mechanisms of antagonism. International Journal of Food Microbiology, 84, 93–104.

    PubMed  Google Scholar 

  • Bordes, P., Pollet, E., & Avérous, L. (2009). Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science, 34, 125–155.

    CAS  Google Scholar 

  • Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., de Heer, C., ten Voorde, S. E. C., Wijnhoven, W. P., Marvin, H. J. P., & Sips, A. (2009). Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology, 53, 52–62.

  • Bueno, D. J., & Oliver, G. (2004). Determination of aflatoxins and zearalenone in different culture media. Methods in Molecular Biology, 268, 133–137. 

  • Burdman, S., Okon, Y., & Jurkevitch, E. (2000). Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Critical Reviews in Microbiology, 26, 91–110.

    CAS  PubMed  Google Scholar 

  • Burges, H. D. (1998). Formulation of microbial biopesticides: Peneficial microorganisms, nematodes and seed treatments (pp. 412). Sringer Science & Business Media.

  • Butt, T. M., & Copping, L. G. (2000). Fungal biological control agents. Pesticide Outlook, 11, 186–191.

    Google Scholar 

  • Caballero-Mellado, J., Onofre-Lemus, J., Estrada-De Los Santos, P., & Martínez-Aguilar, L. (2007). The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Applied and Environmental Microbiology., 73, 5308–5319.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cañamás, T., Viñas, I., Usall, J., Magan, N., Solsona, C., & Teixidó, N. (2008). Impact of mild heat treatments on induction of thermotolerance in the biocontrol yeast Candida sake CPA-1 and viability after spray-drying. Journal of Applied Microbiology, 104, 767–775.

    PubMed  Google Scholar 

  • Card, S. D., Walter, M., Jaspers, M. V., Sztejnberg, A., & Stewart, A. (2009). Targeted selection of antagonistic microorganisms for control of Botrytis cinerea of strawberry in New Zealand. Australasian Plant Pathology, 38, 183–192.

    Google Scholar 

  • Cassa´n, F., Maiale, S., Masciarelli, O., Vidal, A., Luna, V., & Ruiz, O. (2009). Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. European Journal of Soil Biology, 45, 12–19.

    Google Scholar 

  • Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366, 1987–1998.

  • Chen, F., Tholl, D., Bohlmann, J., & Pichersky, E. (2011). The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal, 66, 212–229.

  • Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., Lee, Y. H., Cho, B. H., Yang, K. Y., Ryu, C. M., & Kim, Y. C. (2008). 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21, 1067–1075.

  • Cho, S. M., Kim, Y. H., Anderson, A. J., & Kim, Y. C. (2013). Nitric oxide and hydrogen peroxide production are involved in systemic drought tolerance induced by 2R,3R-butanediol in Arabidopsis thaliana. Plant Pathology Journal, 29, 427–434.

  • Chowdhury, S. P., Hartmann, A., Gao, X. W., & Borriss, R. (2015). Biocontrol mechanism by root associated Bacillus amyloliquefaciens FZB42—a review. Frontiers in Microbiology, 6, 780.

    PubMed  PubMed Central  Google Scholar 

  • Chuankun, X., Minghe, M., Leming, Z., & Keqin, Z. (2004). Soil volatile fungistasis and volatile fungistatic compounds. Soil Biology & Biochemistry, 36, 1997–2004.

    Google Scholar 

  • Cook, R. J., & Baker, K. F. (1983). The nature and practice of biological control of plant pathogens (pp. 539). American Phytopathological Society St Paul.

  • Crouch, I., & Van Staden, J. (1993). Effect of seaweed concentrate from Ecklonia maxima (Osbeck) Papenfuss on Meloidogyne incognita infestation on tomato. Journal of Applied Phycology, 5, 37–43.

    Google Scholar 

  • Dash, C. K., Bamisile, B. S., Keppanan, R., Qasim, M., Lin, Y., Islam, S. U., Hussain, M., & Wang, L. (2018). Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microbial Pathogenesis, 125, 385–392.

    PubMed  Google Scholar 

  • de Oliveira, J. L. (2021). Nano-biopesticides: Present concepts and future perspectives in integrated pest management. In S. Jogaiah, H. B. Singh, L. F. Fraceto, & R. de Lima (Eds.), Advances in nano-fertilizers and nano-pesticides in agriculture. A smart delivery system for crop improvement (1st ed., pp. 1–27).  Elsevier Science Publishing Co Inc.

  • de Weert, S., & Bloemberg, G. V. (2007). Rhizosphere competence and the role of root colonization in biocontrol. In S. S. Gnanamanickam (Ed.), Plant-associated bacteria (pp. 317–333). Springer. https://doi.org/10.1007/978-1-4020-4538-7_9.

  • Degani, O., & Dor, S. (2021). Trichoderma biological control to protect sensitive maize hybrids against late wilt disease in the field. Journal of Fungi, 7, 315.

  • Desoky, E.-S.M., Merwad, A.-R.M., Semida, W. M., Ibrahim, S. A., El-Saadony, M. T., & Rady, M. M. (2020). Heavy metals-resistant bacteria (HM-RB): Potential bioremediators of heavy metals-stressed Spinacia oleracea plant. Ecotoxicology and Environmental Safety, 198, 110685.

  • Desoky, E.-S.M., Saad, A. M., El-Saadony, M. T., Merwad, A.-R.M., & Rady, M. M. (2020). Plant growth-promoting rhizobacteria: Potential improvement in antioxidant defense system and suppression of oxidative stress for alleviating salinity stress in Triticum aestivum (L.) plants. Biocatalysis and Agricultural Biotechnology, 30, 101878.

    Google Scholar 

  • Dimkpa, C. O., Zeng, J., McLean, J. E., Britt, D. W., Zhan, J., & Anderson, A. J. (2012). Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Applied and Environmental Microbiology, 78, 1404–1410.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: It is time for a new paradigm? Postharvest Biology and Technology, 52, 137–145.

    Google Scholar 

  • Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11–23.

    PubMed  PubMed Central  Google Scholar 

  • El-Saadony, M. T., Abd El-Hack, M. E., Taha, A. E., Fouda, M. M. G., Ajarem, J. S., Maodaa, N. S., Allam, A. A., & Elshaer, N. (2020). Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomaterials, 10, 587.

  • El-Saadony, M. T., Saad, A. M., Taha, T. F., Najjar, A. A., Zabermawi, N. M., Nader, M. M., AbuQamar, S. F., El-Tarabily, K. A., & Salama, A. (2021a). Selenium nanoparticles, from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi, as a new source from human breast milk. Saudi Journal of Biological Sciences, 28, 6782–6794.

  • El-Saadony, M. T., Alkhatib, F. M., Alzahrani, S. O., Shafi, M. E., Abdel-Hamid, S. E., Taha, T. F., Aboelenin, S. M., Soliman, M. M., & Ahmed, N. H. (2021b). Impact of mycogenic zinc nanoparticles on performance, behavior, immune response, and microbial load in Oreochromis niloticus. Saudi Journal of Biological Sciences, 28(8), 4592–4604.

  • El-Saadony, M. T., Desoky, E.-S.M., Saad, A. M., Eid, R. S., Selem, E., & Elrys, A. S. (2021c). Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil. Journal of Environmental Sciences, 106, 1–14.

  • El-Saadony, M. T., Saad, A. M., Najjar, A. A., Alzahrani, S. O., Alkhatib, F. M., Shafi, M. E., Selem, E., Desoky, E.-S.M., Fouda, S.E.-S.E.-S., & El-Tahan, A. M. (2021d). The use of biological selenium nanoparticles in controlling Triticum aestivum L. crown root and rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi Journal of Biological Sciences, 28, 4461–4471.

  • El-Saadony, M. T., Sitohy, M. Z., Ramadan, M. F., & Saad, A. M. (2021e). Green nanotechnology for preserving and enriching yogurt with biologically available iron (II). Innovative Food Science and Emerging Technologies, 69, 102645.

  • Engle, J. S., Madden, L. V., & Lipps, P. E. (2006). Distribution and pathogenic characterization of Pyrenophora tritici-repentis and Stagonospora nodorum in Ohio. Phytopathology, 96, 1355–1362.

    PubMed  Google Scholar 

  • Environmental Protection Agency (EPA) (2001) Quality Assurance Guidance Document-Model Quality Assurance Project Plan for the PM Ambient Air, 2.

  • Esmaeel, Q., Miotto, L., Rondeau, M., Leclere, V., Clement, C., Jacquard, C., Sanchez, L., & Barka, E. A. (2018). Paraburkholderia phytofirmans PsJN-plants interaction: from perception to the induced mechanisms. Frontiers in Microbiology, 9, e2093.

    Google Scholar 

  • Faheed, F. A., & Abd-El Fattah, Z. (2008). Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. Journal of Agriculture and Social Sciences, 4, 165–169.

    Google Scholar 

  • Fanning, P., Grieshop, M., & Isaacs, R. (2018). Efficacy of biopesticides on spotted wing drosophila, Drosophila suzukii Matsumura in fall red raspberries. Journal of Applied Entomology, 142, 26–32.

    CAS  Google Scholar 

  • Farnia, A., & Ghorbani, A. (2014). Effect of K nano-fertilizer and N bio-fertilizer on yield and yield components of red bean (Phaseolus vulgaris L.). International Journal of Biosciences, 6655, 296–303.

    Google Scholar 

  • Fhoula, I., Najjari, A., Turki, Y., Jaballah, S., Boudabous, A., & Ouzari, H. (2013). Diversity and antimicrobial properties of lactic acid bacteria isolated from rhizosphere of olive trees and desert truffles of Tunisia. BioMed Research International, 2013, 1–14.

    Google Scholar 

  • Figueiredo, M. V. B., Burity, H. A., Martinez, C. R., & Chanway, C. P. (2008). Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Applied Soil Ecology, 40, 182–188.

    Google Scholar 

  • Flores-Vargas, R. D., & O’Hara, G. W. (2006). Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. Journal of Applied Microbiology, 100, 946–954.

    CAS  PubMed  Google Scholar 

  • Fravel, D. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359.

    CAS  PubMed  Google Scholar 

  • Freeman, S., Katan, T., & Shabi, E. (1998). Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Disease, 82, 596–605.

    PubMed  Google Scholar 

  • Fu, G., Huang, S., Ye, Y., Wu, Y., Cen, Z., & Lin, S. (2010). Characterization of a bacterial biocontrol strain B106 and its efficacies on controlling banana leaf spot and post-harvest anthracnose diseases. Biological Control, 55, 1–10.

    Google Scholar 

  • Fujiwara, A., Fujisawa, M., Hamasaki, R., Kawasaki, T., Fujie, M., & Yamada, T. (2011). Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and Environmental Microbiology, 77, 4155–4162.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukami, J., Cerezini, P., & Hungria, M. (2018). Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express, 8, 73.

  • Garbeva, P., & Weisskopf, L. (2020). Airborne medicine: Bacterial volatiles and their influence on plant health. New Phytologist, 226, 32–43.

  • Garbeva, P., & Van-Elsas, J. D. (2004). Assessment of the diversity and antagonism toward Rhizoctonia solani of pseudomonal species in soil from different agricultural regimes. FEMS Microbiology Ecology, 47, 51–64.

    CAS  PubMed  Google Scholar 

  • Gardener, B. B. M., & Fravel, D. R. (2002). Biological control of plant pathogens: Research, commercialization, and application in the USA. Plant Health Progress, 3, 17.

    Google Scholar 

  • Gathage, J. W., Lagat, Z. O., Fiaboe, K. K. M., Akutse, K. S., Ekesi, S., & Maniania, N. K. (2016). Prospects of fungal endophytes in the control of Liriomyza leafminer flies in common bean Phaseolus vulgaris under field conditions. BioControl, 61, 741–753.

    Google Scholar 

  • Ghalamboran, M. R., 2011. Symbiotic nitrogen fixation enhancement due to magnetite nanoparticles. Ph.D. Thesis, Cranfield University, UK.

  • Gheorghe, A., Jecu, L., Voicu, A., Popea, F., Rosu, A., & Roseanu, A. (2008). Biological control of phytopathogen micro-organisms with antagonist bacteria. Chemical Engineering Transactions, 14, 509–516.

    Google Scholar 

  • Ghooshchi, F. (2017). Influence of titanium and bio-fertilizers on some agronomic and physiological attributes of triticale exposed to cadmium stress. Global Nest Journal, 19, 458–463.

    CAS  Google Scholar 

  • Ghorai, A. K., Patsa, R., Jash, S., & Dutta, S. (2021). Microbial secondary metabolites and their role in stress management of plants. In S. Jogaiah (Eds.), Biocontrol Agents and Secondary Metabolites: Applications and Immunization for Plant Growth and Protection 1st Edition. pp. 283–319.  Elsevier Science Publishing Co Inc., USA.

  • Ghorbanpour, M., Omidvari, M., Abbaszadeh-Dahaji, P., Omidvar, R., & Kariman, K. (2018). Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 117, 147–157.

    Google Scholar 

  • Ghosh, D., Gupta, A., & Mohapatra, S. (2019). A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World Journal of Microbiology & Biotechnology, 35, 90.

  • Gnanamanickam, S. S. (2002). Biological control of crop diseases (p. 468). Marcel Dekker Inc.

    Google Scholar 

  • Gomez-Tenorio, M. A., Tello, J. C., Zanon, M. J., & de Cara, M. (2018). Soil disinfestation with dimethyl disulfide (DMDS) to control Meloidogyne and Fusarium oxysporum f. sp. radicis-lycopersici in a tomato greenhouse. Crop Protection, 112, 133–140.

  • González-Mas, N., Cuenca-Medina, M., Gutiérrez-Sánchez, F., & Quesada-Moraga, E. (2019). Bottom-up effects of endophytic Beauveria bassiana on multitrophic interactions between the cotton aphid, Aphis gossypii, and its natural enemies in melon. Journal of Pest Science, 92, 1271–1281.

    Google Scholar 

  • Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140.

    PubMed  Google Scholar 

  • Gould, M., Nelson, L., Waterer, D., & Hynes, R. (2008). Biocontrol of Fusarium sambucinum, dry rot of potato, by Serratia plymuthica 5–6. Biocontrol Science and Technology, 18, 1005–1016.

    Google Scholar 

  • Gu, Q., Yang, Y., Yuan, Q., Shi, G., Wu, L., Lou, Z., Huo, R., Wu, H., Borriss, R., & Gao, X. (2017). Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Applied and Environmental Microbiology, 83, e01075–e1117.

  • Hao, W. N., Li, H., Hu, M. Y., Yang, L., & Rizwan-ul-Haq, M. (2011). Integrated control of citrus green and blue mold and sour rot by Bacillus amyloliquefaciens in combination with tea saponin. Postharvest Biology and Technology, 59, 316–323.

    CAS  Google Scholar 

  • Haris, Z., & Ahmad, I. (2017). Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. International Journal of Life-Sciences Scientific Research, 3, 1020.

    Google Scholar 

  • Harman, G. E., Obregón, M. A., Samuels, G. J., & Lorito, M. (2010). Changing models for commercialization and implementation of biocontrol in the developing and the developed world. Plant Disease, 94, 928–939.

    PubMed  Google Scholar 

  • Hassan, M. N., Afghan, S., & Hafeeza, F. Y. (2011). Biological control of red rot in sugar cane by native pyoluteorin-producing Pseudomonas putida strain NH-50 under field conditions and its potential modes of action. Pest Management Science, 67, 1147–1154.

    CAS  PubMed  Google Scholar 

  • Heil, M. (2001). Induced systemic resistance (ISR) against pathogens–a promising field for ecological research. Perspectives in Plant Ecology, Evolution and Systematics, 4, 65–79.

    Google Scholar 

  • Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonist. Journal of Biological Sciences, 10, 273–290.

    Google Scholar 

  • Hol, W. H. G., Garbeva, P., Hordijk, C., Hundscheid, M. P. J., Gunnewiek, P. J. A. K., Van Agtmaal, M., Kuramae, E. E., & De Boer, W. (2015). Non-random species loss in bacterial communities reduces antifungal volatile production. Ecology, 96, 2042–2048.

    PubMed  Google Scholar 

  • Ingale, A. G., & Chaudhari, A. N. (2013). Biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach. Journal of Nanomedicine and Nanotechology, 4, 1–7.

  • Iqbal, M., Jamshaid, M., Zahid, M. A., Andreasson, E., Vetukuri, R. R., & Stenberg, J. A. (2021). Biological control of strawberry crown rot, root rot and grey mould by the beneficial fungus Aureobasidium pullulans. BioControl, 66, 535–545.

    CAS  Google Scholar 

  • Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9, 385–406.

  • Islam, M. T., Yasuyuk, H., Abhinanda, D., Toshiaki, T., & Satoshi, T. (2005). Suppression of damping off disease in host plants by the rhizoplane bacterium linked to plant colonization and antibiosis against soil borne peronsporomycetes. Applied and Environmental Microbiology, 71, 3786–3796.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaber, L. R., & Enkerli, J. (2016). Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control, 103, 187–195.

    CAS  Google Scholar 

  • Jaber, L. R., & Ownley, B. H. (2018). Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control, 116, 36–45.

    Google Scholar 

  • Jaber, L. R., & Salem, N. M. (2014). Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocontrol Science and Technology, 24, 1096–1109.

    Google Scholar 

  • Jacobson, A., Doxey, S., Potter, M., Adams, J., Britt, D., McManus, P., & Anderson, A. (2018). Interactions between a plant probiotic and nanoparticles on plant responses related to drought tolerance. Industrial Biotechnology, 14, 148–156.

    CAS  Google Scholar 

  • Jan, A., Azam, M., Siddiqui, K., Ali, A., Choi, I., & Haq, Q. (2015). Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences, 16, 29592–29630.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janisiewiez, W. J., & Peterson, D. C. (2004). Acceptability of the stem pull area of mechanically harvested applied to blue mold decay and it control with biocontrol agent. Plant Disease, 88, 662–666.

  • Jensen, R. E., Enkegaard, A., & Steenberg, T. (2019). Increased fecundity of Aphis fabae on Vicia faba plants following seed or leaf inoculation with the entomopathogenic fungus Beauveria bassiana. PLoS One, 14, e0223616.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Y. M., Zhu, X. R., & Li, Y. B. (2001). Post-harvest control of litchi fruit rot by Bacillus subtilis. LWT Food Science and Technology, 34, 430–436.

    CAS  Google Scholar 

  • Jianhui, Y., Kelong, H., Yuelong, W., & Suqin, L. (2005). Study on anti-pollution nanopreparation of dimethomorph and its performance. Chinese Science Bulletin, 50, 108–112.

  • Jogaiah, S., Abdelrahman, M., Tran, L. S. P., & Ito, S. I. (2018). Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Molecular Plant Pathology, 19, 870–882.

  • Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E., & Schaad, N. W. (2004). Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Systematic and Applied Microbiology, 27, 755–762.

  • Kamil, F. H., Saeed, E. E., El-Tarabily, K. A., & AbuQamar, S. F. (2018). Biological control of mango dieback disease caused by Lasiodiplodia theobromae using streptomycete and non-streptomycete actinobacteria in the United Arab Emirates. Frontiers in Microbiology, 9, 829.

  • Kalia A., & Kaur, H. (2019). Nano-biofertilizers: Harnessing dual benefits of nano-nutrient and bio-fertilizers for enhanced nutrient use efficiency and sustainable productivity. In R. Pudake, N. Chauhan, & C. Kole (Eds.), Nanoscience for sustainable agriculture (pp. 51–73). Springer. https://doi.org/10.1007/978-3-319-97852-9_3

  • Karunakaran, G., Manivasakan, P., Yuvakkumar, R., Yuvakkumar, R., Rajendran, V., Prabu, P., & Kannan, N. (2013). Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnology, 7, 70–77.

  • Khan, N., & Bano, A. (2016). Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. International Journal of Phytoremediation, 18, 211–221.

  • Khati, P., Bhatt, P., Kumar, R., & Sharma, A. (2018). Effect of nanozeolite and plant growth promoting rhizobacteria on maize. 3 Biotech., 8, 141.

    PubMed  PubMed Central  Google Scholar 

  • Kheirizadeh Arough, Y., Seyed Sharifi, R., & Seyed Sharifi, R. (2016). Bio fertilizers and zinc effects on some physiological parameters of triticale under water-limitation condition. Journal of Plant Interactions, 11, 167–177.

  • Kilani-Feki, O., Ben, K. S., Dammak, M., Kamoun, A., Jabnoun-Khiareddine, H., DaamiRemadi, M., & Touns, S. (2016). Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease. Biological Control, 95, 73–82.

    CAS  Google Scholar 

  • Kim, M. H., Yoo, D. S., Lee, S. Y., Byeon, S. E., Lee, Y. G., Min, T., Rho, H. S., Rhee, M. H., Lee, J., & Cho, J. Y. (2011). The TRIF/TBK1/IRF-3 activation pathway is the primary inhibitory target of resveratrol, contributing to its broad-spectrum anti-inflammatory effects. Die Pharmazie, 66, 293–300.

    CAS  PubMed  Google Scholar 

  • Kim, Y. C., Jung, H., Kim, K. Y., & Park, S. K. (2008). An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. European Journal of Plant Pathology, 120, 373–382.

    Google Scholar 

  • Klieber, J., & Reineke, A. (2016). The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta. Journal of Applied Entomology, 140, 580–589.

    CAS  Google Scholar 

  • Köhl, J., Rogier, K., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845.

    PubMed  PubMed Central  Google Scholar 

  • Kong, A. H. G., Kim, J. C., Choi, G. J., Lee, K. Y., Kim, H. J., Hwang, E. C., Moon, B. J., & Lee, S. W. (2010). Production of surfactin and iturin by Bacillus licheniformis N1 responsible for plant disease control. Plant Pathology Journal, 26, 170–177.

  • Kuan, K. B., Othman, R., Rahim, K. A., & Shamsuddin, Z. H. (2016). Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of Maize under greenhouse conditions. PLoS One, 10, 1371.

    Google Scholar 

  • Kuchár, M., Glare, T. R., Hampton, J. G., Dickie, I. A., & Christey, M. C. (2019). Virulence of the plant-associated endophytic fungus Lecanicillium muscarium to diamondback moth larvae. New Zealand Plant Protection, 72, 253–259.

    Google Scholar 

  • Lade B. D., & Gogle D. P. (2019). Nano-biopesticides: Synthesis and applications in plant safety. In K. Abd-Elsalam, & R. Prasad (Eds.), Nanobiotechnology applications in plant protection. Nanotechnology in the life sciences (pp. 169–190). Springer. https://doi.org/10.1007/978-3-030-13296-5_9

  • Lade, B. D., & Gogle, D. P. (2019). Nano-biopesticides: Synthesis and Applications in Plant Safety. Nanobiotechnology Applications in Plant Protection (pp. 169–190). Cham: Springer.

  • Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T., Richter, P., Tamayo, J., & Donoso, R. (2016). Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thalianaFrontiers in Microbiology, 7, e1838.

  • Lee, K. J., Kamala-Kannan, S., Sub, H. S., Seong, C. K., & Lee, G. W. (2008). Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World Journal of Microbiology & Biotechnology, 24, 1139–1145.

    CAS  Google Scholar 

  • Lefort, M. C., McKinnon, A., Nelson, T. L., & Glare, T. (2016). Natural occurrence of the entomopathogenic fungi Beauveria bassiana as a vertically transmitted endophyte of Pinus radiata and its effect on above-and below-ground insect pests. New Zealand Plant Protection, 69, 68–77.

    Google Scholar 

  • Leggett, M., Leland, J., Kellar, K., & Epp, B. (2011). Formulation of microbial biocontrol agents–an industrial perspective. Canadian Journal of Plant Pathology, 33, 101–107.

    CAS  Google Scholar 

  • Leverentz, B., Conway, W. S., Janisiewicz, W. J., Saftner, R. A., & Camp, M. J. (2003). Effect of combining MCP treatment, heat treatment, and biocontrol on the reduction of post-harvest decay of Golden Delicious apples. Postharvest Biology and Technology, 27, 221–233.

    CAS  Google Scholar 

  • Li, X., Zhang, Y., Wei, Z., Guan, Z., Cai, Y., & Liao, X. (2016). Antifungal activity of isolated Bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis. PLoS One, 11(9), e0162125.

    PubMed  PubMed Central  Google Scholar 

  • Liu, Q., Ni, X., Wang, Q., Peng, Z., Niu, L., Wang, H., Zhou, Y., Sun, H., Pan, K., & Jing, B. (2017). Lactobacillus plantarum BSGP201683 isolated from giant panda feces attenuated inflammation and improved gut microflora in mice challenged with enterotoxigenic Escherichia coli. Frontiers in Microbiology, 8, 1885.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Jia, J., Popat, R., Ortori, C. A., Li, J., Diggle, S. P., Gao, K., & Cámara, M. (2011). Characterisation of two quorum sensing systems in the endophytic Serratia plymuthicastrain G3: Differential control of motility and biofilm formation according to life-style. BMC Microbiology, 11, 26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez, D. C., & Sword, G. A. (2015). The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological Control, 89, 53–60.

    Google Scholar 

  • Lucy, M., Reed, E., & Glick, B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek, 86, 1–25.

    CAS  PubMed  Google Scholar 

  • Ma, Y., Oliveira, S. R., Wu, L., Luo, Y., Rajkumar, M., Rocha, I., & Freitas, H. (2015). Inoculation with metal-mobilizing plant-growth-promoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. Journal of Toxicology and Environmental Health. Part A, 78, 931–944.

    CAS  PubMed  Google Scholar 

  • Mahmood, S., Daur, I., Al-Solaimani, G. S., Ahmad, S., Madkour, H. M., Yasir, M., Hirt, H., Ali, S., & Ali, Z. (2016). Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Frontiers in Plant Science, 7, 876.

    PubMed  PubMed Central  Google Scholar 

  • Malhotra, M., & Srivastava, S. (2009). Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. European Journal of Soil Biology, 45(1), 73–80.

    CAS  Google Scholar 

  • Manganiello, G., Sacco, A., Ercolano, M. R., Vinale, F., Lanzuise, S., Pascale, A., Napolitano, M., Lombardi, N., Lorito, M., & Woo, S. L. (2018). Modulation of tomato response to Rhizoctonia solani by Trichoderma harzianum and its secondary metabolite harzianic acid. Frontiers in Microbiology, 9, 1966.

  • Mani, R., & Helena, F. (2008). Effects of inoculation of plant growth promoting bacteria on Ni uptake by Indian mustard. Bioresource Technology, 99, 3491–3498.

    Google Scholar 

  • Manoussopoulos, Y., Mantzoukas, S., Lagogiannis, I., Goudoudaki, S., & Kambouris, M. (2019). Effects of three strawberry entomopathogenic fungi on the prefeeding behavior of the aphid Myzus persicae. Journal of Insect Behavior, 32, 99–108.

    Google Scholar 

  • Mantzoukas, S., & Eliopoulos, P. A. (2020). Endophytic entomopathogenic fungi: A valuable biological control tool against plant pests. Applied Sciences, 10, 360.

    Google Scholar 

  • Mantzoukas, S., & Grammatikopoulos, G. (2020). The effect of three entomo-pathogenic endophytes of the sweet sorghum on the growth and feeding performance of its pest, Sesamia nonagrioides larvae, and their efficacy under field conditions. Crop Protection, 127, 104952.

    CAS  Google Scholar 

  • Mantzoukas, S., & Lagogiannis, I. (2019). Endophytic colonization of pepper (Capsicum annum) controls aphids (Myzus persicae Sulzer). Applied Sciences, 9, 2239.

    CAS  Google Scholar 

  • Mardalipour, M., Zahedi, H., & Sharghi, Y. (2014). Evaluation of nano biofertilizer efficiency on agronomic traits of spring wheat at different sowing date. Biological Forum—An International Journal, 6, 349–356.

    Google Scholar 

  • Marrone, P. (2008). Barriers to adoption of biological control agents and biological pesticides. In E. Radcliffe, W. Hutchison & R. Cancelado (Eds.), Integrated pest management: Concepts, tactics, strategies and case studies (pp. 163–178). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511626463.014

  • Mehnaz, S. (2015). Azospirillum: A biofertilizer for every crop. In N. Arora (Ed.), Plant microbes symbiosis: Applied facets (pp. 297–314). New Delhi: Springer. https://doi.org/10.1007/978-81-322-2068-8_15

  • Meldau, D. G., Meldau, S., Hoang, L. H., Underberg, S., Wunsche, H., Baldwin, I. T., Wunsche, H., & Baldwin, I. T. (2013). Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. The Plant Cell, 25, 2731–2747.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercier, J., & Jimenez, J. (2004). Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biology and Technology, 31, 1–8.

    Google Scholar 

  • Mercier, J., & Wilson, C. L. (1995). Effect of wound moisture on the biological control by Candida oleophila of gray mold rot (Botrytis cinerea) of apple. Postharvest Biology and Technology, 9, 15–22.

    Google Scholar 

  • Metwali, E., Abdelmoneim, T. S., Bakheit, M. A., & Kadasa, N. M. S. (2015). Alleviation of salinity stress in faba bean (Vicia faba L.) plants by inoculation with plant growth promoting rhizobacteria (PGPR). Plant Omics, 8, 449–460.

  • Mobarak, Y. M. (2008). Review of the developmental toxicity and teratogenicity of three environmental contaminants (cadmium, lead and mercury). Catrina-The International Journal of Environmental Sciences, 3, 31–43.

    Google Scholar 

  • Mohammed, A. F., Oloyede, A. R., & Odeseye, A. O. (2020). Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Archives of Phytopathology and Plant Protection, 53, 1–16.

    CAS  Google Scholar 

  • Mondani, L., Chiusa, G., & Battilani, P. (2021). Chemical and biological control of Fusarium species involved in garlic dry rot at early crop stages. European Journal of Plant Pathology160, 575–587.

  • Morsy, N. M., Shams, A. S., & Abdel-Salam, M. A. (2017). Zinc foliar spray on snap beans using nano-Zn with N-soil application using mineral, organic and biofertilizer. Middle East Journal, 6, 1301–1312.

  • Moser, R., Pertot, I., Elad, Y., & Raffaelli, R. (2008). Farmers’ attitudes toward the use of biocontrol agents in IPM strawberry production in three countries. Biological Control, 47, 125–132.

    Google Scholar 

  • Mota, S. F., Pádua, P. F., Ferreira, A. N., Gomes, L. D. B. W., Dias, M. A., Souza, E. A., Pereira, O. L., & Cardoso, P. G. (2021). Biological control of common bean diseases using endophytic Induratia spp. Biological Control, 159, 104629.

    CAS  Google Scholar 

  • Murolo, S., Concas, J., & Romanazzi, G. (2019). Use of biocontrol agents as potential tools in the management of chestnut blight. Biological Control, 132, 102–109.

    Google Scholar 

  • Nakayama, T., & Sayama, M. (2013). Suppression of potato powdery scab caused by Spongospora subterranea using an antagonistic fungus Aspergillus versicolor isolated from potato roots Conference poster. Proc. Ninth Symposium Int. Working Group on Plant Viruses with Fungal Vectors, Obihiro, Hokkaido, Japan, 19–22 August 2013, 53–54.

  • Narayanan, K., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 153, 1–13.

    Google Scholar 

  • Nasr M. (2019). Nanotechnology application in agricultural sector. In R. Prasad, V. Kumar, M. Kumar, & D. Choudhary (Eds.), Nanobiotechnology in bioformulations. Nanotechnology in the life sciences (pp. 317–329). Springer. https://doi.org/10.1007/978-3-030-17061-5_13

  • Nava Diaz C (2006) Role of plant growth-promoting rhizobacteria in integrated disease management and productivity of tomato. Dissertation, The Ohio State University, Ohio, USA.

  • New South Wales Environment Protection Authority. (2000). State of the Environment 2000. Environment Protection Authority.

    Google Scholar 

  • Nihorimbere, V., Ongena, M., Smargiassi, M., & Thonart, P. (2011). Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnology, Agronomy, Society and Environment, 15, 327–337.

    Google Scholar 

  • Nolan, S., & Cooke, B. (2000). Control of Stagonospora nodorum and Septoria tritici in wheat by pre-treatment with Drechslera teres, a non-host pathogen. European Journal of Plant Pathology, 106, 203–207.

    Google Scholar 

  • Obagwu, J., & Korsten, L. (2003). Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hot water. Postharvest Biology and Technology, 28, 187–194.

    Google Scholar 

  • O’Sullivan, L. A., & Mahenthiralingam, E. (2005). Biotechnological potential within the genus Burkholderia. Letters in Applied Microbiology, 41, 8–11.

    CAS  PubMed  Google Scholar 

  • Oves, M., Khan, M. S., Zaidi, A., Ahmed, A. S., & Azam, A. (2014). Production of plant-growth promoting substances by nodule forming symbiotic bacterium Rhizobium sp. OS1 is influenced by CuO, ZnO and Fe2O3 nanoparticles. IIOAB Journal, 5, 1–11.

    Google Scholar 

  • Pallavi Mehta, C. M., Srivastava, R., Arora, S., & Sharma, A. K. (2016). Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech, 6, 1–10. 

  • Park, J. K., Shimono, K., Ochiai, N., Shigeru, K., Kurita, M., Ohta, Y., Tanaka, K., Matsuda, H., & Kawamukai, M. (1999). Purification, characterization, and gene analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001. Journal of Bacteriology, 181, 6642–6649.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parke, J. (2000). Burkholderia cepacia: friend or foe. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2000-0926-01

  • Parke, J. L. (2001). Gurian-Sherman, D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annual Review of Phytopathology, 39, 225–258.

    CAS  PubMed  Google Scholar 

  • Patiño-Vera, M., Jimenez, B., Balderas, K., Ortiz, M., Allend, R., Carrillo, A., & Galindo, E. (2005). Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. Journal of Applied Microbiology, 99, 540–550.

    PubMed  Google Scholar 

  • Patterson, J. A., & Burkholder, K. M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science, 82, 627–631.

    CAS  PubMed  Google Scholar 

  • Pecchia, S., Franceschini, A., Santori, A., Vannacci, G., & Myrta, A. (2017). Efficacy of dimethyl disulfide (DMDS) for the control of chrysanthemum Verticillium wilt in Italy. Crop Protection, 93, 28–32.

    CAS  Google Scholar 

  • Peng, L., Wang, L. L., Bai, J. F., Jia, L. N., Yang, Q. C., Huang, Q. C., Xu, X. Y., & Wang, L. X. (2011). Highly effective and enantioselective phospho-Aldol reaction of diphenyl phosphite with N-alkylated isatins catalyzed by quinine. Tetrahedron Letters, 52, 6207–6209.

    CAS  Google Scholar 

  • Pineda, L., Chwalibog, A., Sawosz, E., Hotowy, A., Elnif, J., & Sawosz, F. (2012). Investigating the effect of in ovo injection of silver nanoparticles on fat uptake and development in broiler and layer hatchlings. Journal of Nanotechnology, 2012, 212486.

    Google Scholar 

  • Piechulla, B., Lemfack, M.-C., & Kai, M. (2017). Effects of discrete bioactive microbial volatiles on plants and fungi. Plant, Cell and Environment, 40, 2042–2067.

  • Pinton, R., Varanini, Z., & Nannipieri, P. (2007). The rhizosphere: Biochemistry and organic substances at the soil–plant interface (2nd ed., pp. 472). CRC Press.

  • Plaza, P., Usall, J., Smilanick, J. L., Lamarca, N., & Vinas, I. (2004). Combining Pantoea agglomerans (CPA-2) and curing treatments to control established infections of Penicillium digitatum on lemons. Journal of Food Protection, 67, 781–786.

    PubMed  Google Scholar 

  • Podile, A. R., & Kishore, G. K. (2007). Plant growth-promoting rhizobacteria. In S. S. Gnanamanickam (Ed.), Plant-associated bacteria (pp. 195–230). Springer. https://doi.org/10.1007/978-1-4020-4538-7_6

  • Poppe, L., Vanhoutte, S., & Hofte, M. (2003). Modes of action of Pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits. European Journal of Plant Pathology, 109, 963–973.

    CAS  Google Scholar 

  • Qin, C., Tao, J., Liu, T., Liu, Y., Xiao, N., Li, T., et al. (2019). Responses of phyllosphere microbiota and plant health to application of two different biocontrol agents. AMB Express, 9, 1–13.

  • Qin, G. Z., Tian, S. P., Xu, Y., & Wan, Y. K. (2003). Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiological and Molecular Plant Pathology, 62, 147–154.

    CAS  Google Scholar 

  • Rady, M. M., El-Shewy, A. A., Seif El-Yazal, M. A., & Abd El-Gawwad, I. F. M. (2019). Integrative application of soil P-solubilizing bacteria and foliar nano P improves Phaseolus vulgaris plant performance and antioxidative defense system components under calcareous soil conditions. Journal of Soil Science and Plant Nutrition, 23, 1–20.

    Google Scholar 

  • Ragaei, M., & Sabry, A. H. (2014). Nanotechnology for insect pest control. International Journal of Environmental Science and Technology, 3, 528–545.

  • Rajer, F. U., Wu, H., Xie, Y., Xie, S., Raza, W., Tahir, H. A. S., & Gao, X. (2017). Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis spp. sepedonicus, the causal agent of bacterial ring rot of potato. Microbiology, 163, 523–530.

  • Ramakuwela, T., Hatting, J., Bock, C., Vega, F. E., Wells, L., Mbata, G. N., & Shapiro-Ilan, D. (2020). Establishment of Beauveria bassiana as a fungal endophyte in pecan (Carya illinoinensis) seedlings and its virulence against pecan insect pests. Biological Control, 140, 104102.

    CAS  Google Scholar 

  • Rane, M., Bawskar, M., Rathod, D., Nagaonkar, D., & Rai, M. (2015). Influence of calcium phosphate nanoparticles, Piriformospora indica and Glomus mosseae on growth of Zea mays. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6, 45014.

    Article  CAS  Google Scholar 

  • Rangaraj, S., Gopalu, K., Muthusamy, P., Rathinam, Y., Venkatachalam, R., & Narayanasamy, K. (2014). Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.). RSC Advances, 4, 8461–8465.

    Article  CAS  Google Scholar 

  • Rao, A. P., Agbo, B. E., Ikpoh, I. S., Udoekong, N. S., & Etuk, H. A. (2016). Biological control mechanisms against plant-based pathogens. Journal of Biopesticides and Environment, 3, 1–11.

    Google Scholar 

  • Razzaghifard, S. A., Gholipouri, A., Tobeh, A., & Reza, S. (2017). Effect of mycorrhiza, vermicompost and nanofertilizer on quantitative and qualitative characteristics of Cucurbita pepo L. European Journal of Horticultural Science, 82, 105–114.

    Google Scholar 

  • Reda, F. M., El-Saadony, M. T., Elnesr, S. S., Alagawany, M., & Tufarelli, V. (2020). Effect of dietary supplementation of biological curcumin nanoparticles on growth and carcass traits, antioxidant status, immunity and caecal microbiota of Japanese quails. Animals, 10, 754.

    Article  PubMed Central  Google Scholar 

  • Reda, F. M., El-Saadony, M. T., El-Rayes, T. K., Attia, A. I., El-Sayed, S. A., Ahmed, S. Y., Madkour, M., & Alagawany, M. (2021). Use of biological nano zinc as a feed additive in quail nutrition: Biosynthesis, antimicrobial activity and its effect on growth, feed utilisation, blood metabolites and intestinal microbiota. Italian Journal of Animal Science, 20, 324–335.

  • Riedlmeier, M., Ghirardo, A., Wenig, M., Knappe, C., Koch, K., Georgii, E., Dey, S., Parker, J. E., Schnitzler, J.-P., & Vlot, C. (2017). Monoterpenes support systemic acquired resistance within and between plants. The Plant Cell, 29, 1440–1459.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rigby, D., & Cáceres, D. (2001). Organic farming and the sustainability of agricultural systems. Agricultural Systems, 68, 21–40.

    Google Scholar 

  • Rojas, E. C., Jensen, B., Jørgensen, H. J., Latz, M. A., Esteban, P., Ding, Y., & Collinge, D. B. (2020). Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biological Control, 144, 104222.

    CAS  Google Scholar 

  • Rondot, Y., & Reineke, A. (2018). Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biological Control, 116, 82–89.

    Google Scholar 

  • Rong, X., Gurel, F. B., Meulia, T., & Gardener, B. B. M. (2012). Draft genome sequences of the biocontrol bacterium Mitsuaria sp. strain H24L5A. Journal of Bacteriology, 194, 734–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roselló, G., Bonaterra, A., Francés, J., Montesinos, L., Badosa, E., & Montesinos, E. (2013). Biological control of fire blight of apple and pear with antagonistic Lactobacillus plantarum. European Journal of Plant Pathology, 137, 621–633.

    Google Scholar 

  • Roselló, G., Francés, J., Daranas, N., Montesinos, E., & Bonaterra, A. (2017). Control of fire blight of pear trees with mixed inocula of two Lactobacillus plantarum strains and lactic acid. Journal of Plant Pathology, 99, 111–120.

    Google Scholar 

  • Roy, S., & Anantharaman, P. (2017). Biosynthesis of silver nanoparticles by Chaetomorpha antennina (Bory de Saint-Vincent) Kutzing with its antibacterial activity and ecological implication. Journal of Nanomedicine and Nanotechnology, 8, 2.

  • Roy, S., & Anantharaman, P. (2018). Biosynthesis of silver nanoparticles by Sargassum ilicifolium (Turner) C. Agardh with their antimicrobial activity and potential for seed germination. International Journal of Trend in Scientific Research and Development., 1, 2.

  • Russo, M. L., Scorsetti, A. C., Vianna, M. F., Allegrucci, N., Ferreri, N. A., Cabello, M. N., & Pelizza, S. A. (2019a). Effects of endophytic Beauveria bassiana (Ascomycota: Hypocreales) on biological, reproductive parameters and food preference of the soybean pest Helicoverpa gelotopoeon. Journal of King Saud University—Science, 31, 1077–1082.

    Google Scholar 

  • Russo, M. L., Scorsetti, A. C., Vianna, M. F., Cabello, M., Ferreri, N., & Pelizza, S. (2019b). Endophytic effects of Beauveria bassiana on corn (Zea mays) and its herbivore, rachiplusia nu (lepidoptera: Noctuidae). Insects, 10, 110.

  • Ryder, M. H., Zhinong, Y., Terracea, T. E., Roviraa, A. D., Tang, W., & Correlld, R. L. (1998). Use of strains of Bacillus isolated in China to suppress take-all and rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biology & Biochemistry, 31, 19–29.

    Google Scholar 

  • Saad, A. M., El-Saadony, M. T., El-Tahan, A. M., Sayed, S., Moustafa, M. A., Taha, A. E., et al. (2021). Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate sustainable silver nanoparticles with larvicidal effect against Spodoptera littoralis. Saudi Journal of Biological Sciences, 28, 5674–5683.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghi, R., Rodriguez, R. J., Yao, Y., & Kokini, J. L. (2017). Advances in nanotechnology as they pertain to food and agriculture: benefits and risks. Annual Review of Food Science and Technology, 8, 467–492.

    Article  PubMed  Google Scholar 

  • Saeed, E. E., Sham, A., Salmin, Z., Abdelmowla, Y., Iratni, R., El-Tarabily, K. A., & AbuQamar, S. F. (2017). Streptomyces globosus UAE1, a potential effective biocontrol agent for black scorch disease in date palm plantations. Frontiers in Microbiology, 8, 1455.

  • Sales UCO, Competition I (2018) Grain: World markets and trade.

  • Sandhya, V., Ali, S. K. Z., Minakshi, G., Reddy, G., & Venkateswarlu, B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and Fertility of Soils, 46, 17–26.

    CAS  Google Scholar 

  • Sankari, U., Dinakar, S., & Sekar, C. (2011). Dual effect of Azospirillum exopolysaccharides (EPS) on the enhancement of plant growth and biocontrol of blast (Pyricularia oryzae) disease in upland rice (var. ASD-19). Journal of Phytology, 3, 16–19.

  • Sasan, R. K., & Bidochka, M. J. (2013). Antagonism of the endophytic insect pathogenic fungus Metarhizium robertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli. Canadian Journal of Plant Pathology, 35, 288–293.

    CAS  Google Scholar 

  • Sathya, A., Vijayabharathi, R., & Gopalakrishnan, S. (2017). Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech, 7, 102.

  • Schisler, D., Slininger, P., Behle, R., & Jackson, M. (2004). Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology, 94, 1267–1271.

    CAS  PubMed  Google Scholar 

  • Sessitsch, A., Howieson, J., Perret, X., Antoun, H., & Martinez-Romero, E. (2002). Advances in Rhizobium research. Critical Reviews in Plant Sciences, 21, 323–378.

    CAS  Google Scholar 

  • Shaik, Z. A., Sandhya, V., Grover, M., Linga, V. R., & Bandi, V. (2011). Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. Journal of Plant Interactions, 6, 239–246.

    Google Scholar 

  • Sharma, S., Kulkarni, J., & Jha, B. (2016). Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Frontiers in Microbiology, 7, 1600.

    PubMed  PubMed Central  Google Scholar 

  • Shcherbakova, E. N., Shcherbakov, A. V., Andronov, E. E., Gonchar, L. N., Kalenskaya, S. M., & Chebotar, V. K. (2017). Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis, 73, 57–69.

    Article  CAS  Google Scholar 

  • Sheiha, A. M., Abdelnour, S. A., Abd El-Hack, M. E., Khafaga, A. F., Metwally, K. A., Ajarem, J. S., Maodaa, S. N., Allam, A. A., & El-Saadony, M. T. (2020). Effects of dietary biological or chemical-synthesized nanoselenium supplementation on growing rabbits exposed to thermal stress. Animals, 10, 430.

    Article  PubMed Central  Google Scholar 

  • Shresth, A., Kim, B. S., & Park, D. H. (2014). Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Science and Technology, 24, 763–779.

    Google Scholar 

  • Simonin, M., Richaume, A., Guyonnet, J. P., Dubost, A., Martins, J. M., & Pommier, T. (2016). Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Scientific Reports, 6, 33643.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smilanick, J. L., Gouln-Behe, C. C., Margoson, D. A., Bull, C. T., & Mackey, B. F. (1996). Virulence on citrus of Pseudomonas syringae strains that control post-harvest green mold of citrus fruit. Plant Disease, 80, 1123–1128.

    Google Scholar 

  • Somers, E., Ptacek, D., Gysegom, P., Srinivasan, M., & Vanderleyden, J. (2005). Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Applied and Environmental Microbiology, 71, 1803–1810.

  • Someya, N., Ikeda, S., Morohoshi, T., Tsujimoto, M. N., Yoshida, T., Sawada, H., Ikeda, T., & Tsuchiya, K. (2011). Diversity of culturable chitinolytic bacteria from rhizospheres of agronomic plants in Japan. Microbes and Environments, 26, 7–14.

    PubMed  Google Scholar 

  • Speiser, B., Wyss, E., & Maurer, V. (2006). Biological control in organic production: First choice or last option? In J. Eilenberg, & H. Hokkanen (Eds.), An ecological and societal approach to biological control. Progress in biological control (Vol 2. pp. 27–46). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-4401-4_3

  • Spotts, R. A., Cervantes, L. A., Faeteau, T. J., & Chand-Goyal, T. (1998). Control of brown rot and blue mold of sweet cherry with pre-harvest iprodine, postharvest Cryptococcus infirmominiatus and modified atmosphere packaging. Plant Disease, 82, 1158–1160.

    CAS  PubMed  Google Scholar 

  • Stockwell, V. O., Johnson, K. B., & Sugar, D. J. E. (2002). Antibiosis contributes to biological control of fire blight by Pantoea agglomerans strain EH252 in orchards. Phytopathology, 92, 1202–1209.

    CAS  PubMed  Google Scholar 

  • Suárez-Moreno, Z. R., Devescovi, G., Myers, M., Hallack, L., Mendonça-Previato, L., Caballero-Mellado, J., & Venturi, V. (2010). Commonalities and differences in regulation of N-acyl homoserine lactone quorum sensing in the beneficial plant-associated Burkholderia species cluster. Applied and Environmental Microbiology, 76, 4302–4317.

    PubMed  PubMed Central  Google Scholar 

  • Sugar, D., & Spotts, R. A. (1999). Control of post-harvest decay in pear by four laboratory grown yeasts and two registered biocontrol products. Plant Disease, 83, 155–158.

    PubMed  Google Scholar 

  • Tahir, H. A. S., Gu, Q., Wu, H., Niu, Y., Huo, R., & Gao, X. (2017). Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Scientific Reports, 7, e40481.

    Google Scholar 

  • Taran, N. Y., Gonchar, O. M., Lopatko, K. G., Batsmanova, L. M., Patyka, M. V., & Volkogon, M. V. (2014). The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Research Letters, 9, 1–8.

    Google Scholar 

  • Temple, T. N., Stockwell, V. O., Loper, J. E., & Johnson, K. B. (2004). Bioavailability of iron to Pseudomonas fluorescens strain A506 on flowers of pear and apple. Phytopathology, 94, 1286–1294.

    CAS  PubMed  Google Scholar 

  • Tetzlaff, C. N., You, Z., Cane, D. E., Takamatsu, S., Omura, S., & Ikeda, H. (2006). A gene cluster for biosynthesis of the sesquiterpenoid antibiotic pentalenolactone in Streptomyces avermitilis. Biochemistry, 45, 6179–6186.

    CAS  PubMed  Google Scholar 

  • Tewari, S., & Arora, N. K. (2014a). Multifunctional exopolysacccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under stress conditions. Current Microbiology, 69, 484–494.

    CAS  PubMed  Google Scholar 

  • Tewari, S., & Arora, N. K. (2014b). Talc based exopolysaccharides formulation enhancing growth and production of Helcthus annuus under saline conditions. Cellular and Molecular Biology, 60, 73–81.

  • Timmusk, S., Seisenbaeva, G., & Behers, L. (2018). Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Scientific Reports, 8, 617.

    PubMed  PubMed Central  Google Scholar 

  • Tortora, M. L., D´ıaz-Ricci, J. C., & Pedraza, R. O. (2011). Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Archives of Microbiology, 193, 275–286.

    CAS  PubMed  Google Scholar 

  • Trias, R., Bañeras, L., Montesinos, E., & Badosa, E. (2008). Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. International Microbiology, 11, 231–236.

    CAS  PubMed  Google Scholar 

  • Tsuda, K., Tsuji, G., Higashiyama, M., Ogiyama, H., Umemura, K., Mitomi, M., Kubo, Y., & Kosaka, Y. (2016). Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions. Biological Control, 100, 63–69.

    Google Scholar 

  • Tyagi, S., Mulla, S. I., Lee, K. J., Chae, J. C., & Shukla, P. (2018). VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Critical Reviews in Biotechnology, 38, 1277–1296.

  • Vaishnav, A., Kumari, S., Jain, S., Varma, A., & Choudhary, D. K. (2015). Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. Journal of Applied Microbiology, 119, 539–551.

    CAS  PubMed  Google Scholar 

  • Van Elsas, J., Duarte, G., Rosado, A., & Smalla, K. (1998). Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. Journal of Microbiol Methods, 32, 133–154.

    Google Scholar 

  • Vega, F. E. (2018). The use of fungal entomopathogens as endophytes in biological control: A review. Mycologia, 110, 4–30.

    PubMed  Google Scholar 

  • Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules, 21, 1–17.

    Google Scholar 

  • Vero, S., Garmendia, G., Gonzalez, G. M. B., & Wisniewski, M. (2009). Aureobasidium pullulans as a biocontrol agent of postharvest pathogens of apples in Uruguay. Biocontrol Science and Technology, 19, 1033–1049.

    Google Scholar 

  • Vero, S., Mondino, P., Burgueno, J., Soubes, M., & Wisniewski, M. (2002). Characterization of biocontrol activity of two yeast strains from Uruguay against blue mold of apple. Postharvest Biology and Technology, 26, 155–164.

    Google Scholar 

  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.

    CAS  Google Scholar 

  • Vimala Devi, P. S., Duraimurugan, P., Chandrika, K. S. V. P., Gayatri, B., & Prasad, R. D. (2019). Nanobiopesticides for crop protection. In K. Abd-Elsalam & R. Prasad (Eds.), Nanobiotechnology applications in plant protection. Nanotechnology in the life sciences (pp. 145–168). Cham: Springer. https://doi.org/10.1007/978-3-030-13296-5_8

  • Visser, R., Holzapfel, W. H., Bezuidenhout, J. J., & Kotze, J. M. (1986). Antagonism of lactic acid bacteria against phytopathogenic bacteria. Applied and Environmental Microbiology, 52, 552–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Yan, H., Shin, J., Huang, L., Zhang, H., & Qi, W. (2011). Activity against plant pathogenic fungi of Lactobacillus plantarum IMAU10014 isolated from Xinjiang koumiss in China. Annales De Microbiology, 61, 879–885.

    CAS  Google Scholar 

  • Wani, P. A., Khan, M. S., & Zaidi, A. (2008). Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Archives of Environmental Contamination and Toxicology, 55, 33–42.

  • Wei, H. L., & Zhang, L. Q. (2006). Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie Van Leeuwenhoek, 89, 267–280.

    PubMed  Google Scholar 

  • Weisskopf, L. (2013). The potential of bacterial volatiles for crop protection against phytophathogenic fungi. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, 2, 1352–1363.

    Google Scholar 

  • Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 97, 250–256.

    PubMed  Google Scholar 

  • Xue, Q. Y., Chen, Y., Li, S. M., Chen, L. F., Ding, G. C., Guo, D. W., & Guo, J. H. (2009). Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control, 48, 252–258.

    Google Scholar 

  • Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T., & Arakawa, M. (1992). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. Nov. Microbiology and Immunology, 36, 1251–1275.

    CAS  PubMed  Google Scholar 

  • Yadav, V. R., Mandhan, M., Humar, Z., Gupta, D., & Sharma, G. H. (2010). Characterization of Escherichia coli antifungal protein PPEBL21. International Journal of Microbiology, 2010, 196363–196367.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, L., & Khan, R. A. A. (2021). Biological control of bacterial wilt in tomato through the metabolites produced by the biocontrol fungus Trichoderma harzianum. The Egyptian Journal of Biological Pest Control, 31, 1–9.

  • Yu, S., Teng, C., Bai, X., Liang, J., Song, T., Dong, L., Jin, Y., & Qu, J. (2017). Optimization of siderophore production by Bacillus sp PZ-1 and its potential enhancement of Phytoextration of Pb from soil. Journal of Microbiology and Biotechnology, 27, 1500–1512.

  • Yu, X., Ai, C., Xin, L., & Zhou, G. (2011). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47, 138–145.

  • Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., & Bahadar, K. (2018). Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis, 124, 198–202.

    CAS  PubMed  Google Scholar 

  • Zeller, S. L., Brandl, H., & Schmid, B. (2007). Host-plant selectivity of rhizobacteria in a crop/weed model system. PLoS One, 2, e846.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Sun, Y., Xie, X., Kim, M. S., Dowd, S. E., & Pare, P. W. (2009). A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. The Plant Journal, 58, 568–577.

    CAS  PubMed  Google Scholar 

  • Zhao, B., Lin, X., Lei, L., Lamb, D. C., Kelly, S. L., Waterman, M. R., & Cane, D. E. (2008). Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3 (2). Journal of Biological Chemistry, 283, 8183–8189.

Download references

Acknowledgements

Authors would like to thank the library at Murdoch University, Australia, for the valuable online resources and comprehensive databases.

Funding

The project was funded by Khalifa Center for Biotechnology and Genetic Engineering (Grant#: 12R028) to SAQ; and Abu Dhabi Department of Education and Knowledge (Grant#: 21S105) to KE-T.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Synan F. AbuQamar or Khaled A. El-Tarabily.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elnahal, A.S.M., El-Saadony, M.T., Saad, A.M. et al. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur J Plant Pathol 162, 759–792 (2022). https://doi.org/10.1007/s10658-021-02393-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02393-7

Keywords

Navigation